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What is the Second LAW?*
The thesis of this article is that thermodynamics is a rigorous science, and that the first
law and the second law can be stated in an unambiguous and general way so that their
implications are concrete and valid for both equilibrium and nonequilibrium states. In
this light, we summarize the principles of thermodynamics, and introduce a graphical
tool, the energy versus entropy diagram, that is very helpful to explain and grasp
the general implications of these principles, especially in the nonequilibrium domain.
[DOI: 10.1115/1.4026379]

Premise

In a recent thermodynamics text, Truesdell [1] identifies several
different “second laws”. In a review in 1986, the physicist-
philosopher Bunge [2] compiles a list of about twenty ostensibly
inequivalent but equally vague formulations of the “second law”.
In a manuscript published in 1983, Lindblad [3] gives a large
number of different expressions for entropy. No wonder scientists
and engineers are puzzled about the foundations of thermodynam-
ics in general, and the second law in particular.

The thesis of this presentation is that thermodynamics is a rig-
orous science, that its principles can be stated in an unambiguous
and general way, and the implications of these principles are con-
crete and valid for both equilibrium and nonequilibrium states.

In this article, we present a concise summary of the principles
of thermodynamics. The summary provides evidence in support
of our thesis.

Most of the definitions, statements, and observations presented
here, as well as the graphical representation by means of the
energy versus entropy diagram, are well familiar to the M.I.T
alumni who took the graduate course taught by the first author
during the last twenty years (jointly with the second author during
the last six), but are published here for the first time, and cannot
be found in any of the hundreds of textbooks on thermodynamics
published to date.

Introduction

Thermodynamics is concerned with the instantaneous condition
that any material may assume, and the time-dependent evolution
of this condition that may occur either spontaneously or as result
of interactions with other materials, or both. It is a science with
the same objective as the whole of physics and, therefore, sub-
sumes each special branch of physics, such as the theory of
mechanics, electromagnetism, and classical thermodynamics, as a
special case.

Because of the breadth and depth of its scope, the exposition
of thermodynamics requires rigorous consideration of many ba-
sic concepts. Some of these concepts are very well known from
introductory courses in physics and, for this reason, we assume
that ideas such as space, time, velocity, acceleration, mass, force,
kinetic energy, and potential energy are well understood and
need not be reemphasized. On the other hand, other concepts
such as those represented by the terms system, property, state,
process, energy, and entropy are sometimes not clearly defined
and need special emphasis. In this article, we provide a brief
summary of the key concepts, and graphical illustrations of the
results.

Systems, Properties and States

A system is a collection of constituents which is defined by the
following specifications: (a) the type and the range of values of
the amount of each constituent; for example, 1 kg of water mole-
cules, or between 5 and 10 kg of atmospheric air; (b) the type and
the range of values of the parameters which fully characterize
the external forces that are exerted on the constituents by bodies
other than the constituents; for example, the parameters that
describe the geometrical shape of an airtight container; and (c) the
internal forces between constituents such as the forces between
water molecules, the forces that promote or inhibit a chemical
reaction, the partitions separating constituents in one region of
space from constituents in another region, or the interconnections
between separated parts. Everything that is not included in the
system is called the environment or the surroundings of the
system.

For a system consisting of r different types of constituents, we
denote their amounts by the vector n¼ {n1, n2, … , nr} where n1,
stands for the amount of the first type of constituent, n2 for the
amount of the second, and so on. For example, the different types
of constituents could be: three specific molecules, such as the H2,
O2, and H2O molecules, with amounts denoted, respectively, by
n1, n2, and n3, two specific ions, such as Hþ, O�, H3Oþ, and OH�

ions, with amounts denoted, respectively, by n1, n2, n3 and n4;
four specific ions, such as the Hþ, O�, H3Oþ, and OH� ions, with
amounts denoted, respectively, by n1, n2, n3, and n4; three specific
elementary particles such as the electron, proton, and neutron par-
ticles, with amounts denoted by n1, n2, and n3; or a single specific
field such as the electromagnetic radiation field, with amount
denoted by n and equal to unity, n¼ 1.

It is clear that for each set of different types of constituents
there are different internal forces between constituents. For exam-
ple, if only H2O molecules are considered then the only internal
force is that between H2O molecules. Again, if H2O, H2 and O2

molecules are considered, and the chemical reaction H2þ 1=2
O2¼H2O occurs, the intermolecular forces between ail types of
molecules must be specified as well as the forces that control the
chemical reaction.

For a system with external forces described by s parameters, we
denote the parameters by the vector b¼fb1; b2;… bsg where b1

stands for the first parameter, b2 for the second, and so on. For
example, one of the parameters could be the side L or the volume
V of a three-dimensional cubic region in space which is enclosed
by either the walls of a container or a geometric (as opposed to
material) surface chosen to separate the constituents that belong to
the system from all the others that do not and are outside the en-
closure. Again, another parameter could be the potential � of a
uniform gravitational field in which the constituents are
immersed, the potential w of an electromagnetic field in which the
constituents are floating, or the area a of a two-dimensional sur-
face in space on which the constituents are constrained.

At any instant of time, the amount of each type of constituent
and the parameters of each external force have specific values
within the corresponding ranges of the system. By themselves,

*Published in the Proceedings of the Fourth International Symposium on Second
Law Analysis of Thermal Systems (Rome, Italy, May 25–29, 1987), Edited by M. J.
Moran and E. Sciubba, ASME book I00236, pp. 155-170 (1987). Reprinted with
permission.

Journal of Energy Resources Technology MARCH 2015, Vol. 137 / 021003-1Copyright VC 2015 by ASME

Downloaded From: http://energyresources.asmedigitalcollection.asme.org/ on 01/09/2015 Terms of Use: http://asme.org/terms



these values do not suffice to characterize completely the condi-
tion of the system at that time. We need, in addition, the values of
all the properties at the same instant of time. Each property is an
attribute that can be evaluated by means of a set of measurements
and operations which are performed on the system and result in a
value – the value of the property. This value is independent of
the measuring devices, other systems in the environment, and the
history of the system. For example, the instantaneous position of
each molecule of a constituent is a property of a system.

For general discussions, we denote properties by the set of sym-
bols P1, P2,…, and their values by the same symbols, with or with-
out an additional subscript. For example, P1 may stand for
position, P2 for velocity, and so on. For specific discussions, more
often than not we use a different letter for each property, such as
E for energy, S for entropy, W for adiabatic availability and X for
available energy.

Some properties in a given set are independent if the value of
each such property can be varied without affecting the value of
any other property in the set. Other properties are not independent.
For example, speed and kinetic energy of a molecule are not inde-
pendent properties.

The values of the amounts of all the constituents, the values of
all the parameters, and the values of a complete set of independent
properties encompass all that can be said at an instant of time
about a system and about the results of any measurements or
observations that may be performed on the system at that instant
of time. As such, the collection of all these values constitutes a
complete characterization of the system at that instant of time. We
call this characterization at an instant of time the state of the
system.

Changes of State With Time

The state of a system may change with time either spontane-
ously due to the internal dynamics of the system or as a result of
interactions with other systems, or both. A system that can experi-
ence only spontaneous changes of state, i.e., a system that cannot
induce any effects on the state of the environment, is called iso-
lated. Systems that are not isolated can interact with each other in
a number of different ways, some of which may result in net flows
of properties from one system to another. For example, an interac-
tion by means of elastic collisions results in the flow or transfer of
momentum from one system to the other.

The relation that describes the evolution of the state of a system
as a function of time is called the equation of motion. In thermo-
dynamics, the complete equation of motion is not known. For this
reason, the description of a change of state is done in terms of the
end states, i.e., the initial and the final states of the system, the
modes of interactions that are active during the change of state,
and conditions that have been established even without the com-
plete knowledge of the equation of motion. Each mode of interac-
tion is characterized by means of well-specified net flows of
properties across the boundaries of the interacting systems. The
conditions are consequences of the laws of thermodynamics
which reflect facets of the equation of motion such as, as we will
see, the conditions that energy is conserved and entropy cannot be
destroyed.

The end states and the modes of interactions associated with a
change of state of a system are said to specify a process. Proc-
esses may be classified on the basis of the modes of interactions
they involve. For example, a process that involves no interactions
is called a spontaneous process. Again, a process that involves
interactions that result in no external effects other than the change
in height of a weight (or an equivalent mechanical effect) is called
a weight process.

Another important classification of processes is in terms of the
possibility of annulling all their effects. A process may be either
reversible or irreversible. A process is reversible if there is a way
to restore both the system and its environment to their respective
initial states, i.e., if all the effects of the process can be annulled.

A process is irreversible if it there is no way to restore both the
system and its environment to their respective initial states.

It is noteworthy that, in general, a system A that undergoes a
process from state A1 at time t1 to state A2 at time t2 is well-
defined at these two times but is not necessarily well-defined dur-
ing the lapse of time between t1 and t2. The reason is that the inter-
actions which induce the change of state may involve such
temporary alterations of internal and external forces that no
system A can be defined during the period t1 to t2.

Energy, and Energy Balance

The main consequence of the first law of thermodynamics is
that every system A in any state A1 has a property called energy
and denoted by the symbol E1. In particular, the first law asserts
that any two states of a system can always be interconnected by
means of a weight process and, for a given weight subject to a
constant gravitational acceleration, the change in height during
such process is fixed uniquely by the two states of the system. The
energy E1 of any state A1 can be evaluated by means of an auxil-
iary weight process that interconnects state A1 and a reference
state A0 to which is assigned a fixed reference energy value E0.
Energy is an additive property. Moreover, energy is conserved
whenever the system experiences a zero-net-effect weight process
or a spontaneous process. Because of additivity, and because any
process of a system can always be thought of as part of a zero-net-
effect weight process of an overall system consisting of all the
interacting systems, the conclusion of energy conservation is of
great generality and practical importance.

Energy can be transferred between systems by means of inter-
actions. Denoting by EA the net amount of energy transferred
from the environment to system A as a result of all the interactions
involved in a process that changes the state of A from A1 to A2, an
extremely important analytical tool used in all physics and engi-
neering applications is the energy balance equation. This equa-
tion is based on the additivity and conservation of property
energy. It requires that, as a result of a process, the change in the
energy of the system from E1 to E2 must be equal to the net
amount of energy EA transferred into the system, i.e.,

E2 � E1 ¼ EA (1)

We can express the values of energy in absolute terms by using
the relation of general relativity

E ¼ mc2 (2)

where m is the total mass, E the absolute energy, and c the speed
of light in vacuum. When Equation 1 is combined with Equation
2, we find the mass balance equation, i.e.,

m2 � m1 ¼ mA (3)

For most practical applications that involve no transfer of constit-
uents from other systems to system A, the total mass transfer mA 

is much smaller than either the total m2 corresponding to E2 or the
total mass m1 corresponding to E1. Thus, the mass of A is taken as
fixed and equal to the rest mass m0 corresponding to the absolute
ground-state energy.

Types of States

Because the number of independent properties of a system is
very large even for a system consisting of a single particle, and
because most properties can vary over a large range of values, the
number of possible states of a system is very large. To facilitate
the discussion of these states, we find it useful to classify them
into different categories with common features based on some cri-
terion, in particular, we find that a classification of states
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according to their time evolutions, i.e., according to the way each
state changes as a function of time, brings forth many important
aspects of physics.

We classify the states of a system into four types: unsteady,
steady, nonequilibrium, and equilibrium. Moreover, we further
classify equilibrium states into three types: unstable, metastable,
and stable.

Unsteady is a state that changes as a function of time because
of interactions of the system with other systems. Steady is a state
that does not change as a function of time despite interactions of
the system with other systems in the environment. Nonequili-
brium is a state that changes spontaneously as a function of time,
i.e., a state that evolves as time goes on without any effects on or
interactions with any other systems. Equilibrium is a state that
does not change as a function of time while the system is isolated
— a state that does not change spontaneously. Unstable equilib-
rium is an equilibrium state which, upon experiencing a minute
and short lived influence by a system in the environment, proceeds
from then on spontaneously to a sequence of entirely different
states. Metastable equilibrium is an equilibrium state that may
be changed to an entirely different state without leaving net
effects in the environment of the system, but this can be done only
by means of interactions which have a finite temporary effect on
the state of the environment. Stable equilibrium is an equilibrium
state that can be altered to a different state only by interactions
that leave net effects in the environment of the system.

Starting either from a nonequilibrium or from an equilibrium
state that is not stable, a system can be made to raise a weight
without leaving any other net changes in the state of the environ-
ment. In contrast, if we start from a stable equilibrium state such a
raise of a weight is impossible. This impossibility is one of the
consequences of the laws of thermodynamics.

Adiabatic Availability and Available Energy

The main consequence of the second law of thermodynamics is
that, in general, not all the energy of a system can be transferred
to a weight during a weight process. In particular, for each given
set of values of the energy, the amounts of constituents and the
parameters, the second law asserts the existence of one and only
one stable equilibrium state. It also implies that from this state, no
energy can be transferred to the weight in a weight process if the
given values of amounts of constituents and parameters experi-
ence no net change.

Close examination of the question “how much energy can be
transferred to a weight in a weight process of a system?” discloses
that every system A in any state A1 has a property called adia-
batic availability, denoted by the symbol W1, equal to the energy
transferred to a weight in the course of a reversible weight process
that interconnects state A1 and a stable equilibrium state AS1 with
the same values of amounts of constituents and parameters as state
A1. It also discloses the existence of another property called gener-
alized adiabatic availability which is determined in the same man-
ner as the adiabatic availability except that the values of the
amounts of constituents and parameters of the final stable equilib-
rium state differ from those of the state A1. Adiabatic availability
is not an additive property.

The adiabatic availability of a composite system consisting of a
system A in state A1, and a given reservoir R fixed once and for
all is an additive property called available energy with respect to
reservoir R, and denoted by the symbol XR

1 . A reservoir is an
idealized kind of system with a behavior that approaches the fol-
lowing three limiting conditions: (1) it passes through stable equi-
librium states only; (2) in the course of finite changes of state it
remains in mutual stable equilibrium with a duplicate of itself that
experiences no such changes; and (3) at constant values of
amounts of constituents and parameters of each of two reservoirs
initially in mutual stable equilibrium, energy can be transferred
reversibly from one reservoir to the other with no net effects on

any other system. Two systems are in mutual stable equilibrium
if their combination is in a stable equilibrium state.

The available energy XR
1 of a system A in any state A1 with

respect to a reservoir R is the largest amount of energy that can be
transferred to a weight in a weight process for the combination of
system A and the reservoir R without changing the values of the
amounts of constituents and the parameters of the system and the
reservoir.

A generalized available energy may also be defined as a prop-
erty of a system A in any state A1 with respect to a reservoir R. It
differs from available energy only in that the final state of system
A does not correspond to the same values of the amounts of con-
stituents and parameters as state A1.

A distinguishing feature of both adiabatic availability and avail-
able energy is that neither of these two properties is necessarily
conserved in weight processes. Each cannot be created but is
destroyed in any process that is irreversible. Said differently, in
the course of an irreversible weight process a system loses some
of its potential ability to transfer energy to a weight. Whereas
energy is conserved, the amount of energy that can be transferred
to a weight in a weight process – the potential of a system to per-
form useful tasks – is not conserved. This potential cannot be cre-
ated but may be dissipated to a lesser or larger degree depending
on whether the process is a little or a lot irreversible. A quantita-
tive measure of irreversibility can be expressed in terms of the
property entropy discussed immediately below.

A noteworthy feature of energy, adiabatic availability, and
available energy is that these properties are defined for all states
of any system, whether they are steady, unsteady, equilibrium,
nonequilibrium, or stable equilibrium states.

Entropy, and Entropy Balance

An important consequence of the laws of thermodynamics is
that every system A in any state A1 has a property called entropy,
and denoted by the symbol S1.

This property can he evaluated by means of an auxiliary reser-
voir R, a reference state A0 to which is assigned a fixed reference
value A0, and the expression

S1 ¼ S0 þ C�1
R ½ðE1 � E0Þ � XR

1 � XR
0 Þ� (4)

where CR is a well-defined constant property of the reservoir (that
turns out to be equal to the temperature of the reservoir). Despite
the dependence of the values of CR and XR

1 � XR
0 on the selection

of the reservoir, the values of entropy found by means of Equation
4 are independent of the reservoir, i.e., S is a property of system A
only, in the same sense that energy E is a property of system A
only.

Whereas energy is conserved whenever the system experiences
a zero-net-effect weight process, entropy is conserved only when
the weight process is reversible. In the course of any irreversible
weight process, the system loses part of its potential ability to
transfer energy to a weight, and the entropy of the system
increases. These conclusions are known as the principle of en-
tropy nondecrease. This increase is called entropy generated by
irreversibility or entropy production due to irreversibility. En-
tropy is an additive property and can be transferred between sys-
tems by means of interactions.

The principle of entropy nondecrease, and the additivity of en-
tropy imply that a change in the entropy of a system A from S1 to
S2 during any process starting from state A1 and ending in state A2

must be balanced by the sum of the net amount of entropy SA 

transferred into the system by means of all the interactions of A
with the environment, and the positive amount of entropy SA 

generated inside A due to the irreversibility of the process, i.e.,
that

S2 � S1¼ SA þ Sirr (5)
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Equation 5 is called the entropy balance, in addition to the
energy balance, the entropy balance is an important analytical tool
for physics and engineering applications.

Stable Equilibrium States

Another important consequence of the laws of thermodynamics
is that any stable equilibrium state and, therefore, the value of any
property of the system in a stable equilibrium state is uniquely
determined by the values of the energy E, the amounts of constitu-
ents n1, n2, …, nr, and the parameters b1;b2;…;bs, i.e., any prop-
erty P can be written as a function of the form

P¼PðE; n1n2;…; nr; b1;b2;…;bsÞ (6)

This result, known as the stable-equilibrium-state principle or,
simply, the state principle, expresses a fundamental physical fea-
ture of the stable equilibrium states of any system, and implies the
existence of fundamental interrelations among the properties of
these states. In general, a system admits an indefinite number of
states that have given values of the energy E, the amounts of con-
stituents n1; n2;…; nr and the parameters b1;b2;…;bs. Most of
these states are nonequilibrium, some are equilibrium, and only
one is stable equilibrium.

Relation 6, when written for property entropy, i.e.,

S¼ SðE; n1n2;…nr;b1; b2;…;bsÞ (7)

is known as the fundamental stable-equilibrium-state relation for
entropy or, simply, the fundamental relation. The function
SðE; n;b) admits of partial derivatives to all orders and, therefore,
any difference between the entropies of two stable equilibrium
states may be expressed in the form of a Taylor series in terms of
differences in the values of the energy, amounts of constituents
and parameters of the two stable equilibrium states. In addition,
the function SðE; n; bÞ) is concave in each of the variables

E; n1n2;…nr;b1;b2;…bs in the sense that ð@2S=@E2Þn;b
� 0; ð@2S=@n2

i ÞE;n;b � 0 for each i, and ð@2S=@b2
j ÞE;n;b � 0 for

each j. It is noteworthy that the entropy of each unique stable
equilibrium state is larger than that of any other state with the
same values of E, n, and b. This latter assertion is known as the

highest entropy principle.
Equation 7 may be solved for E as a function of S, n1, n2,…., nr,

b1; b2;…; bs so that

E ¼ EðS; n1; n2;:::; nr;b1; b2;:::; bsÞ (8)

The function EðS; n;bÞ admits of partial derivatives to all orders
and. therefore, any difference between the energies of two stable
equilibrium states may be expressed in the form of a Taylor series
in terms of differences in the values of the entropy, amounts of
constituents and parameters of the two stable equilibrium states.

Each first order partial derivative of either the function
SðE; n;bÞ or the function EðS; n;bÞ represents a feature of the
family of stable equilibrium states of a system and plays an impor-
tant role in establishing conditions for mutual stable equilibrium
with other systems. Each such derivative is a property defined
only for the stable equilibrium states of the system.

The absolute temperature or, simply, the temperature T is
defined as the inverse of the partial derivative of SðE; n; bÞ with
respect to energy, or the partial derivative of EðS; n;bÞ with
respect to entropy, i.e.,

T¼ð@S=@EÞ�1
n;b ¼ ð@E=@SÞn;b (9)

The total potential of the i-th constituent li, is defined by ei-
ther of the two relations

li ¼ ð@E=@niÞS;n;b ¼ �Tð@S=@niÞE;n;b (10)

The generalized force conjugated to the j-th parameter fj is
defined by either of the two relations

f j ¼ ð@E=@biÞS;n;b ¼ �Tð@S=@biÞE;n;b (11)

When volume V is a parameter, the negative of the generalized
force conjugated to V is called pressure, denoted by p, and given
by either of the two relations

p ¼ �ð@E=@VÞS;n;b ¼ Tð@S=@VÞE;n;b (12)

Equality of temperatures of two systems is a necessary condi-
tion for the two systems to be in mutual stable equilibrium. Equal-
ity of total potentials of a component common in two systems is a
necessary condition for the two systems to be in mutual equilib-
rium if that component in each of the two systems can he changed
over a range of values. Equality of pressures of two systems, each
having volume as a parameter, is another necessary condition for
the two systems to be in mutual stable equilibrium if the volume
of each system can be changed over a range of values.

Work and Work Interactions

Interactions result in the exchange of properties across the
boundaries of the interacting systems. Various combinations of
exchanges are used to classify interactions into different
categories.

An interaction between two systems that results in a transfer of
energy between the two systems without any transfer of entropy is
classified as a work interaction, and the amount of energy
exchanged as a result of such an interaction as work. All interac-
tions that result in the exchange of entropy between the interacting
systems are called nonwork interactions.

A process of a system experiencing only work interactions is
called an adiabatic process. Any process that involves nonwork
interactions is called nonadiabatic.

In the course of an adiabatic process, system A changes from
state A1 to state A2, the energy exchange ðEA Þa equals the nega-
tive of the work done on the environment WA! i.e.,
ðEA Þa¼ �WA!, and the entropy exchange ðSA Þa ¼ 0 where
the superscript “a” denotes that the process of A is adiabatic.
Therefore, the energy and entropy balances are

ðE2 � E1Þa ¼ �WA! (13)

ðS2 � S1Þa ¼ Sirr (14)

A special example of a nonwork interaction that is entirely dis-
tinguishable from work is an interaction between two systems, ini-
tially differing infinitesimally in temperature, that results in a
transfer of energy and a transfer of entropy between the two sys-
tems such that the ratio of the amount of energy transferred to the
amount of entropy transferred equals the almost common temper-
ature of the interacting systems. It is called a heat interaction,
and the amount of energy transferred as a result of such an interac-
tion heat.

Often, in applications, a system A consists of many subsystems,
one of which A0 is in a stable equilibrium state at a temperature
TQ. Similarly, a system B consists of many subsystems, one of
which B0 is in a stable equilibrium state at temperature almost
equal to TQ. If the two subsystems A0 and B0 experience a heat
interaction, then we say that systems A and B experience a heat
interaction at temperature TQ, even though A and B are not neces-
sarily in stable equilibrium states.

In the course of a process that involves only a heat interaction
at temperature TQ, system A changes from state A1 to state A2, the
energy exchange is ðEA Þh ¼ QA , and the entropy exchange
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ðSA Þh ¼ QA =TQ where the superscript “h” denotes that the
process of A involves heat interactions only. Therefore, the energy
and entropy balances are

ðE2 � E1Þh¼ QA (15)

ðS2 � S1Þh ¼ QA =TQ þ Sirr (16)

If a process of a system A involves both work and heat but no
other interactions, the energy and entropy balances for A are

E2 � E1¼ QA �WA! (17)

S2 � S1 ¼ QA =TQ þ Sirr (18)

or, for differential changes,

dE ¼ dQA � dWA! (19)

dS ¼ dQA =TQþdSirr (20)

Work and heat interactions are most frequently encountered in
engineering applications.

A noteworthy observation emerges very clearly from our pre-
sentation so far, namely, that the widespread jargon by which the
energy balance equation is called “the first law” and the entropy
balance equation “the second law”, is incorrect and misleading,
indeed, it should suffice to note that the main consequence of the
first law is the very existence of the additive property energy, and
that the definition of entropy and the entropy balance equation
require both the first and the second laws, as well as many other
important auxiliary concepts.

Graphical Representations on the Energy Versus

Entropy Diagram

Because they are defined in terms of the values of the amounts
of constituents, the parameters, and a complete set of independent
properties, states can in principle be represented by points in a
multidimensional geometrical space with one axis for each
amount, parameter and independent property. Such a representa-
tion, however, would not be enlightening because the number of
independent properties of any system is indefinitely large. Never-
theless, useful information can be summarized by first cutting the
multidimensional space with a plane corresponding to given val-
ues of each of the amounts of constituents and each of the parame-
ters, and then projecting the result onto a two-dimensional plane –
a plane with two property axes. One such plane that illustrates
many of the basic concepts of thermodynamics is the energy ver-
sus entropy plane.

We consider a system with volume, V, as the only parameter.
For given values of the amounts of constituents and the volume,
we project the multidimensional state space of the system onto the
E versus S plane. This projection must have the shape of the
cross-hatched area shown in Figure 1, namely, all the states that
share the given characteristics have property values that project
on the area between the two heavy lines – the vertical line denoted
as the line of the zero-entropy states and the curve denoted as the
curve of the stable equilibrium states.

A point either inside the cross-hatched area or on the vertical
line S¼ 0 represents a large number of states. Each such state has
the same values of amounts of constituents, volume V, energy E,
and entropy S, but differing values of other properties, and is not a
stable equilibrium state. It can be any type of state except a stable
equilibrium state.

A point on the convex curve of the stable equilibrium states
represents one and only one state. For each of these states, the
value of any property is uniquely determined only by the values
of the amounts of constituents, the volume, and the pair (E,S) of
the point on the curve.

This projection of states on the E versus S plane is novel
because it includes both stable equilibrium states and other states
that are not stable equilibrium whereas, usually, graphical repre-
sentations of thermodynamic relations are restricted to stable equi-
librium states only

Zero Entropy Line. The line of the zero-entropy states corre-
sponds to all the states that have the least amount of entropy. This
amount can be assigned the value zero because no states exist
with lower entropy. Thus, entropy has absolute values greater
than or equal to zero. It turns out that the zero-entropy line repre-
sents all the states that are defined in mechanics (classical or quan-
tum) without concern about the laws of thermodynamics. So
mechanics can be thought of as a special case of thermodynamics,
namely, as zero-entropy physics.

Lowest Energy States. For the given values of the amounts of
constituents and the volume, the lowest energy of the system is
Eg. It corresponds to a unique stable equilibrium state having zero
entropy and zero temperature — the slope from above of the sta-
ble-equilibrium-state curve at point Eg is equal to zero. The slope
from below of the curve at point Eg is indeterminate because no
states and, therefore, no curve of stable equilibrium states exist for
S< 0.

The energy Eg is the lowest energy for which the system can
exist with the given types and amounts of constituents, and for the
given value of the volume. For example, if the system consists of
one hydrogen molecule in a small container, Eg would be the
smallest value of the energy of the hydrogen molecule. The small-
est energy of two hydrogen atoms in the same container or two
protons and two electrons in the same container would clearly dif-
fer from Eg. For other values of the amounts of the constituents
and the volume, the lowest energy state will be different from that
in Figure 1 but still a stable equilibrium state with zero entropy
and zero temperature.

The Fundamental Relation. The stable-equilibrium-state
curve can be regarded as representing either the convex stable
equilibrium state relation E versus S or, equivalently, the concave
fundamental relation S versus E, both for the given values of the
amounts of constituents and the volume. It is a single-valued rela-
tion because for each set of values E; n, and V there is one and
only one stable equilibrium state and, therefore, a unique value of
S.

The shape of the stable-equilibrium-state curve is convex as
shown because this is the only shape consistent with the results

Fig. 1
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derived from the laws of thermodynamics, and that we summarize
below with reference to Figure 2.

Each Stable Equilibrium State is a State of Lowest Energy
Among all The States With the Same Values of S, n, and V. For
each set of values S, n, and V, the stable equilibrium state AS1 on
the vertical line S¼ S1 is the state of lowest energy – no states
exist below AS1 that correspond to the same values of n and V, and
that lie on the line S¼ S1. State AS1 can be reached starting from
any state A1 on the line S¼ S1 by means of a reversible weight
process without net changes in n and V. Indeed, in such a process
the net change in the entropy of the system is zero, SS1¼ S1 and
the energy E1�ES1 is transferred out from the system to the
weight.

Each Stable Equilibrium State is a State of Highest Entropy
Among all the States With the Same Values of E, n and V. For
each set of values E1, n, and V, the stable equilibrium state A0 on
the horizontal line E¼E1 is the state of highest entropy – no states
exist beyond A0 that correspond to the same values of n and V and
that lie on the line E¼E1. In an isolated system – a system experi-
encing no interactions – state A0 can be reached starting from any
state A1 on the line E¼E1 by means of a spontaneous change of
state. Any such spontaneous process would be irreversible
because it entails an increase in the entropy of the system without
any effects on the environment.

Temperature is Positive and Increasing with Energy. Because
each stable equilibrium state is unique, the temperature
ð@E=@SÞn;V at each point on the convex boundary is uniquely
defined. Temperature is not defined for states that are not stable
equilibrium because then E depends on more variables than S, n,
and V and, therefore, more quantities should be kept fixed while
finding the partial derivative of E with respect to S. More impor-
tantly, however, even if the variables in addition to S, n, and V
were specified, the partial derivative of E with respect to S would
not be the quantity that enters the temperature equality require-
ment for systems in mutual stable equilibrium and, therefore, such
a derivative would not have the same meaning as the absolute
temperature of thermodynamics.

Perpetual Motion of the Second Kind. Starting from a stable
equilibrium state AS1 on the convex boundary EgAS1A0, the system
cannot transfer energy to a weight without net changes in the val-
ues of the amounts of constituents and the volume because no
state of lower energy exists that has an entropy equal to or larger
than the entropy of state AS1. Indeed, if energy were transferred to
a weight, the energy of the system would be reduced. But starting
from state AS1 all states with smaller energy have also smaller en-
tropy. Because the weight receives only energy, and entropy can-
not decrease by itself, it follows that no such transfer can occur

under the conditions specified. This feature of the graph represents
the impossibility of perpetual motion machines of the second
kind. This impossibility is sometimes expressed as the nonexis-
tence of a Maxwellian demon, the nonexistence of a superbeing
that would be capable of extracting energy but no entropy from a
stable equilibrium state without affecting n and V.

Classical Thermodynamics. For each set of given values
of amounts of constituents and volume, the convex boundary
EgASlA0 represents the corresponding stable equilibrium states.
These are the states considered in classical thermodynamics, which
is sometimes also called “thermostatics” because it contemplates
only states that are equilibrium. These states are often referred to
in the literature as the thermodynamic equilibrium states. So clas-
sical thermodynamics can be thought of as another special case of
thermodynamics, namely, as highest-entropy physics.

Adiabatic Availability. For a given state A1 the energy E1 –
ES1 shown graphically in Figure 3 is equal to the adiabatic avail-
ability W1 of A1 because the change of state from A1, to AS1 repre-
sents the change specified in the definition of W1. We see from the
figure that, in general, is smaller than the energy of the system
above the ground state energy, E1�Eg. it varies from E1�Eg to
zero as the entropy S1 of the state varies from zero to the highest
value that is possible for the set of values E1, n and V. So entropy
affects the usefulness of the energy of a system, i.e., the larger the
entropy for given values of E, n and V, the smaller the adiabatic
availability. This limitation on the amount of energy that can be
transferred from a system to a weight in a weight process without
net changes in the values of n and V is a consequence of the laws
of thermodynamics of paramount theoretical importance and with
many practical implications.

For given values of n and V, we see graphically from Figure 3
that stable equilibrium states, such as for example state AS1, have
zero adiabatic availability, and that any state with nonzero adia-
batic availability cannot be stable equilibrium.

Work in an Adiabatic Process. In an adiabatic process with-
out net changes in amounts and volume, the work done by the sys-
tem starting from state A1 and ending in a state different from AS1

(Figure 3) is always smaller than the adiabatic availability W1.
If the process is reversible, the final state A2 must have entropy

S2¼ S1, and energy E2>ES1. Therefore,

ðWA!Þrev ¼ E1 � E3 < E1 � ES1 ¼ W1 (21)

If the process is irreversible, the final state A3 must have en-
tropy S3> S1. But for S3> S1, the graph shows that A3 must have
energy E3>ES1 and, therefore,

Fig. 2
Fig. 3
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ðWA!Þirr ¼ E1 � E3 < E1 � ES1 ¼ W1 (22)

Here, the entropy increase S3�S1 is not supplied by another sys-
tem because the process is adiabatic and, therefore, is generated
by irreversibility

Generalized Adiabatic Availability. The generalized adia-
batic availability is illustrated graphically in Figure 4. For a given
state A10 with values of amounts n0 and volume V0, the energy
E10�ES1 is equal to the generalized adiabatic availability W10 of
A10 with respect to given values n of the amounts and V of the vol-
ume which may differ from n0 and V0, respectively

Available Energy. The ER versus SR diagram of a reservoir R
is just a straight line of slope TR (Figure 5) because the reservoir
passes through stable equilibrium states only, and has a constant
temperature. It is noteworthy that, for very small values of en-
tropy, no system can behave as a constant nonzero temperature
reservoir because as entropy approaches zero, the temperature of
any system must also approach zero. Moreover, no system at zero
temperature can be regarded as a reservoir because its entropy
cannot be both decreased and increased, and because for a finite
entropy increase the temperature becomes greater than zero.

Given the E versus S diagram of a system A with specified
values of amounts of constituents and volume, and a reservoir R
at temperature TH, we can draw a line of slope TR tangent to the
convex stable-equilibrium-state curve of system A, i.e., tangent to
the curve EgAS1A0 in Figure 5. The point of tangency A0 repre-
sents the state A0 in which system A is in mutual stable equilib-
rium with the reservoir because in state A0 the system has a
temperature T0 ¼ ð@E=@SÞn;V and, therefore, equal to the temper-
ature TR of the reservoir. In state A0 the system has energy E0 and
entropy S0.

The tangent is also useful in providing a way to represent
graphically the available energy of any state of A. Specifically,
for a given state A1 the vertical distance of point A1, from the tan-
gent, i.e., the energy E1�Ea represents the available energy XR

1 of
A1 with respect to reservoir R.

Indeed, with respect to reservoir R, the available energy XR
1 of

state A1 with energy E1 and entropy S1 is given by the relation

XR
1 ¼ E1 � E0 � TRðS1 � S0Þ (23)

because the available energy XR
0 of state A0 is zero. We recall that

the available energy XR
1 equals the work that would be done in the

course of a reversible weight process for the combination of sys-
tems A and R in which A would end in state A0 (Figure 5) and R
would change from state R1 to state R2 (Figure 5).

The term E1�E0 in the right-hand side of Equation 23 is the
length bA1 in Figure 6, i.e., the negative of the change in energy
of system A as it goes from state A1 to state A0. The term -
TR(S1�S0) is the length ab because ab¼ (bA0)tan h¼ (S0 – S1)TR.
Of course ab is also equal to the negative of the change in energy
E1

R - E2
R of the reservoir as it goes from state R1 to state R2 (Figure

5). Thus, the length aA1¼ bA1þ ab is indeed the negative of the
energy change of the combination of A and R and, therefore, the
available energy XR

1 of state A1.
The graphs in Figures 5 and 6 also account for the entropy

changes that correspond to any reversible process that yields the
available energy. They show that the change in entropy S0 –S1 of
system A is equal and opposite the change in entropy S2

R� S1
R of

the reservoir R.
By comparing the graphical representations for W1 and XR

1

(Figures 3 and 6), we see that in general the available energy XR
1

is greater than the adiabatic availability W1. We also see that XR
1

can be greater than the energy of the system above the ground
state energy, E1 – Eg. For states with energy E1, the available
energy varies from the largest value E1 – Eg to the lowest value E1

– E4 depending on the entropy S1 of state A1, i.e., depending on
whether the entropy is zero or the largest for the given E1,
respectively.

It is noteworthy that although the available energy can be
extracted as a result of an adiabatic process for the combination of
systems A and R, the processes experienced by both A and R are

Fig. 4

Fig. 5

Fig. 6
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not necessarily adiabatic because they may involve exchanges of
both energy and entropy. In fact, it is precisely the exchange of
entropy between A and R that results in sometimes the available
energy being greater than the energy of A, or in getting work even
when A is in a stable equilibrium state, provided that A and R are
not initially in mutual stable equilibrium. In this sense, the reser-
voir acts as a source or sink of entropy for A. Of course, this en-
tropy exchange between A and R is always accompanied by a
definite energy exchange because the reservoir must change both
its entropy and its energy as it passes from stable equilibrium state
to stable equilibrium state.

One of the many ways of extracting the available energy of,
say, state A1 (Figure 6) is as follows. We first use machinery that
interacts reversibly and adiabatically with A only, and extracts the
adiabatic availability W1.

Thus, system A is brought to stable equilibrium state AS1. At
this state, the system is in general at a temperature different from
that of the reservoir. Next, we connect the system to the reservoir
via reversible heat engines that heat the system to temperature TR

while producing work. Thus, the total work done XR
1 is greater

than W1.

Generalized Available Energy. For a given state A10 with val-
ues of amounts n0 and volume V0, the generalized available energy
XR

10 ¼ E10 with respect to reservoir R and values n and V is repre-
sented graphically in Figure 7 and given by the relation

XR
10 ¼ E10 � E0 � TRðS10 � S0Þ (24)

where in state A0 system A is in mutual stable equilibrium with
the reservoir, and has values n and V that may differ from n0 and
V0, respectively, of state A10.

Examples of Work Interactions. Graphical illustrations of
work-only interactions between two systems A and B are provided
by Figure 8. The combination of A and B is isolated and
immersed in a vacuum, so that both A and B can change volume
with no external effects. Moreover, the process for each system is
reversible. Accordingly, the energy change of A is equal and op-
posite to the energy change of B, and the entropy changes of both

A and B are zero because a work interaction does not transfer any
entropy and the processes for both A and B are reversible.

As a result of the interaction depicted in Figure 8a, the state of
A changes from state A1 to state A2 and that of B from state B1 to
state B2, none being a stable equilibrium state. Moreover, the vol-
ume of either system A, or system B or both may or may not
change.

As a result of the interaction shown in Figure 8b, the state of A
changes from A3 to A4 and that of B from B3 to B4, all being stable
equilibrium states. Here the volume of system A changes from VA

3

to VA
4 , and the volume of system B from V3

B to VA
3 to VB

4 .
As a result of the interaction shown in Figure 8c, the state of A

changes from stable equilibrium state A5 to state A6 that is not sta-
ble equilibrium and may or may not have a different volume than
A5, whereas the state of B changes from state B5 to state B6 both
being stable equilibrium states, but with different volumes VB

5 and
VB

6 .
For the conditions specified in Figures 8a and 8c, the processes

for systems A and B could evolve into irreversible processes
because some of the final states of A and B are not stable equilib-
rium and, therefore, the potential exists for spontaneous entropy
creation within the systems. In the example of Figure 8a, irrever-
sibility could occur in either A, or B, or both because state A2, or
state B2, or both could evolve spontaneously towards the corre-
sponding stable equilibrium states. Again, in the example of Fig-
ure 8c, irreversibility could occur in A but not in B because only
state A6 could evolve spontaneously, whereas stable equilibrium
state B6 could not.

The processes in Figure 8b cannot become irreversible because
the final states of both A and B are stable equilibrium states and,
therefore, each has the highest entropy compatible with the corre-
sponding energy.

These simple examples illustrate the well known fact that spon-
taneous creation of entropy by irreversibility can occur if and only
if the system experiences a departure from stable equilibrium.

Fig. 7

Fig. 8
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Examples of Heat Interactions. Graphical illustrations of
heat-only interactions between two systems A and B are provided
in Figures 9 and 10. In each illustration we assume that the combi-
nation of A and B is isolated and that the processes for both sys-
tems are reversible. Therefore, the changes in energy and entropy
of system A are equal and opposite to the changes in energy and
entropy of system B, respectively

As a result of the heat interaction shown in Figure 9, system A
changes from state A1 to state A2, system B from state B1 to state
B2, all being stable equilibrium states, without net changes in val-
ues of amounts of constituents and volumes. The temperatures of
A and B are almost equal to TQ. The two systems exchange energy
and entropy. The ratio of the energy exchanged to the entropy
exchanged is equal to the common temperature. Because the final
states are stable equilibrium, no spontaneous changes of state can
occur and, therefore, no entropy can be generated by
irreversibility.

As a result of the interaction shown in Figure 10, system A
changes from state A1 to state A2, system B from state B1 to state
B2, none of which is a stable equilibrium state. However, systems
A and B each contain a subsystem A0 and B0 changing from stable
equilibrium states A01 and B1

0, to stable equilibrium states A02 and
B02, respectively, all with temperatures almost equal to TQ. Thus,
the interaction between subsystems A0 and B0 is of the same kind
as that sketched in Figure 9. When viewed as an interaction
between systems A and B, however, it is clear that the interaction
may be followed by irreversible spontaneous rearrangements of
energy and entropy between either A0 and other subsystems of A,
or B0 and other subsystems of B, or both.

Examples of Other Nonwork Interactions. Nonwork interac-
tions that are not heat between two systems A and B are illustrated
in Figure 11 where the combination of A and B is isolated and all
processes are assumed to be reversible.

As a result of the interaction shown in Figure 11a, the energy
of system A decreases but its entropy increases as A changes from
state A1 to state A2 and, correspondingly, the energy of system B
increases but its entropy decreases as B changes from state B1 to
state B2. It is clear that this interaction is not heat in the strict
sense of the example in Figure 9 because neither system A nor
system B pass through stable equilibrium states. It is not heat even
in the generalized sense of the example in Figure 10 because the
ratio of the energy exchanged to the entropy exchanged is
negative.

As a result of the interaction shown in Figure 11b, the energy
and the entropy of system A are both decreased as A changes
from nonequilibrium state A3 to stable equilibrium state A4 and,
correspondingly, the energy and entropy of system B are both
increased as B changes from stable equilibrium state B3 to none-
quilibrium state B4. Assuming that the temperatures T4 and T3 of
stable equilibrium states A4 and B3 are not equal, then the interac-

tion cannot be heat in the strict sense illustrated in Figure 9. It is
not heat even in the generalized sense represented in Figure 10
because, even if the exchanges occurred between two subsystems
A0 and B0 passing through stable equilibrium states, the tempera-
tures of these two subsystems are not almost equal to each other.

The reason is that the temperature of A0 must be equal to TA,
and that of B0 to TB because in state A4 subsystem A is in mutual
stable equilibrium with the other subsystems of A, and in state B3

subsystem B0 is in mutual stable equilibrium with the other sub-
systems of B.

Fig. 9

Fig. 10

Fig. 11
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All the processes represented in Figure 11 could evolve into ir-
reversible processes. For example, in Figure 11a, irreversibility
could occur in either system A, or system B, or both because the
final states of both A and B are not stable equilibrium. Again, in
Figure 11b, irreversibility could occur only in system B because
the final state is not stable equilibrium, but not in system A
because the final state A4 is stable equilibrium.

The need for the distinction between heat and other types of
nonwork interactions is illustrated by the changes of state shown
in Figure 12. System A is initially in a stable equilibrium state A1

at temperature TQ. As a result of interactions involving no net
changes in values of amounts of constituents and volume, A
decreases its energy by an amount dEA!. As the graph illustrates,
this change in energy is consistent with each of the final states on
the line A2A3. Except for state A2, every state on this line corre-
sponds to a transfer of entropy dSA! different from dEA!=TQ.
Therefore, either we call heat all the interactions that involve an
exchange of both energy and entropy, but then we cannot use the
relation dQA! ¼ TQdSA!, i.e., dEA! ¼ TQdSA!, for all these
interactions, or we reserve the term heat for interactions for which
dQA! ¼ TQdSA!, and then we need the term nonwork for inter-
actions that involve exchanges of both energy and entropy, and
we must realize that heat is only one special kind of nonwork
interaction. It is the latter choice that has been made in the present
exposition of thermodynamics.

Optimum Changes in Available Energy. Figure 13 is a graph-
ical illustration of the result that the optimum amount of energy
that can be exchanged between a weight and a system A in combi-
nation with a reservoir R as A changes from state A1, to state A2

equals the change in available energy between these two states.
In Figure 13, available energies are evaluated with respect to

the values n and V of the amounts of constituents and the volume.
for which system A is in mutual stable equilibrium with reservoir
R in states A0. We have already shown that the length A1a¼XR

1 ,
and is the largest amount of energy that can be transferred to the
weight as system A changes from state A1 to state A0 in a weight
process for the combination of A and the reservoir R. Similarly,
the negative of the length A2b equals the negative of XR

2 , and is
the smallest amount of energy that must be transferred from the
weight to the combination of A and R in order to change system
A from state A0 to state A2. Accordingly the difference XR

1 � XR
2

depicted by the length A1c is the optimum amount of energy
exchanged with the weight as A changes from A1 to A2, where

point c is determined as the intersection of the vertical line A1ca
and the line A2c which passes through A2 and has slope equal to
TR, the temperature of the reservoir.

It is noteworthy that states A1 and A2 need not have the same
values of amounts of constituents and volume, indeed, Figure 13
must be viewed as the superposition of three E versus S diagrams
for system A, corresponding, respectively, to the values n1, V1 of
state A1, the values n2, V2 of state A2, and the values n, V chosen
as reference values to evaluate available energies. The optimum
amount of energy exchanged with the weight, XR

1 � XR
2 , can be

positive, negative, or zero. If it is positive, then XR
1 � XR

2 corre-
sponds to the highest work that the combination of A and R can
do as a result of an adiabatic process for the combination in which
A changes from state A1 to state A2. If it is negative, then
XR

1 � XR
2 corresponds to the lowest work that must be done on the

combination of A and R in an adiabatic process for the combina-
tion in order to change system A from A1 to A2.

Effects of Irreversibility on Available Energy We have al-
ready illustrated the adverse effects of irreversibility in adiabatic
processes for system A. Figure 14 provides a graphical explana-
tion of the adverse effects of irreversibility on the capacity to do
work of a system A that is in combination with a reservoir R.

To make ideas specific, we consider a reversible adiabatic pro-
cess for the combination of A and R in which the state of A
changes from state A1, to state A3 having energy E3¼E2. The
work done by the combination is given by the length A1d on the
vertical line A1ca. Because state A3 is not stable equilibrium, it
could change spontaneously to state A2 thus generating an amount
of entropy Sirr¼ S2� S3 due to irreversibility. During this sponta-
neous change of state, no work is done by either A or the combi-
nation of A and R, and the energies of both A and R remain fixed.
However, had state A2 been reached as a result of a reversible adi-
abatic process for the combination of A and R, the work done
would have been given by the length A1c which is greater than
A1d. We can readily verify that the difference cd¼A1c–A1d is
equal to TRSirr, and so confirm again the adverse effects of
irreversibility.

Modified Statement of the Second Law

To obtain the results just summarized, the second law must be
stated with the proviso that “starting from any state of a system it
is always possible to reach a stable equilibrium state with arbitra-
rily specified values of amounts of constituents and parameters by
means of a reversible weight process.”

Among other implications, this proviso results in the conclusion
that for each given set of values of amounts of constituents and

Fig. 12

Fig. 13

021003-10 / Vol. 137, MARCH 2015 Transactions of the ASME

Downloaded From: http://energyresources.asmedigitalcollection.asme.org/ on 01/09/2015 Terms of Use: http://asme.org/terms



parameters a system admits a unique ground-energy state and,
therefore, that the E versus S curve for the stable equilibrium
states has the shape sketched in Figure 15. Using the language of
quantum theory, we may express this conclusion by saying that
each ground-energy value is nondegenerate, in the sense that it is
realized only by one state.

If the proviso were modified to read: “starting from any state of
a system it is always possible to reach either a stable equilibrium
state or a ground energy state with arbitrarily specified values of
amounts of constituents and parameters by means of a reversible
weight process”, then the second law would be consistent with the
possibility that for a given set of values of amounts of constituents
and parameters a system admits more than a single ground-energy
state, i.e., consistent with the possibility that a ground-energy
value be degenerate, In the sense that it is realized by more than a
single state.

Indeed, with the modified statement and for given values of the
amounts of constituents and parameters of a system A, we would
conclude that the curved boundary of the projection onto the E
versus S plane could take the shape shown in Figure 16. Specifi-
cally, the horizontal line EgAg represents the E versus S relation
for all the states that are not stable equilibrium but have the

ground-state energy Eg, and the curve AgA0 the E versus S rela-
tion, for the stable equilibrium states. Each point on the line EgAg,
except Ag, is the projection of states none of which can be stable
equilibrium, whereas each point on the curve AgA0 is a unique
stable equilibrium state.

To verify the last assertion, we note that given a set of values of
amounts of constituents and parameters for which Ag is the
ground-energy stable equilibrium state, a reversible weight pro-
cess starting from a state A1 of system A would reach a stable
equilibrium state if the entropy of A1 is greater than or equal to
that of Ag, otherwise it would reach a ground-energy state that is
not stable equilibrium.

The value Sg of the entropy of the ground-energy stable equilib-
rium state Ag would be larger than the lowest possible for the
states of system A, and could be different for different values of
amounts of constituents and parameters. However, in the limit of
very large values of amounts of constituents, it turns out that the
stable equilibrium states with sufficiently high temperature have
entropy that grows linearly with the amounts of constituents,
whereas the entropy Sg, of the ground-energy stable equilibrium
state grows only logarithmically with the amounts of constituents
and. therefore, in this limit, the value of Sg can be taken for practi-
cal purposes to be negligible, and the modification of the state-
ment of the second law to have negligible practical implications.
In many texts on thermodynamics where the treatment is re-
stricted from the outset to the stable equilibrium states of systems
with very large values of the amounts of constituents, the conclu-
sion just cited is added as part of the third law by stating that Sg is
equal to zero for all values of the amounts of constituents and the
parameters.

The graph in Figure 16, however, has a disturbing feature. Start-
ing from any state A1 with entropy S1< Sg and using a reversible
weight process, we can reach a ground-energy state A2 that is not
stable equilibrium. The adiabatic availability W1 is represented by
the length A1A2. Similarly, starting from any state A3 with energy
E3¼E1, and entropy S1 < S3 < Sg, and using a reversible weight
process, we can reach a state A4 that is not stable equilibrium. Now,
the adiabatic availability W3 ¼ W1 and is represented by the length
A3A4. But state A1 can evolve spontaneously into A3 and the
increase in entropy S3 – S1 would be created by irreversibility Then
we would conclude that irreversibility does not affect the values of
adiabatic availabilities for states with entropy between zero and Sg,
a conclusion that is an exception to our understanding of the
adverse effects of irreversibility.
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