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What makes some physical principles �great�?

Mechanics

Energy

Momentum

Charge

Number of constituents
(considered as indivisible)

are:
properties of all states

exchanged via interactions

conserved in all processes

Thermodynamics

Second Law:
among all states with identical values of all conserved
properties, one and only one is stable equilibrium

Entropy is:

a property of all states

maximal at stable equilibrium

exchanged via interactions

conserved in reversible processes

generated in irreversible processes
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Any �great� principles from NET?

Usual NET assumptions for near-equilibrium models:

Continuum (�elds)

Local (or nonlocal)
equilibrium relations

Heat&Di�usion �uxes
within the continuum

e = u(s, ci ) + speci�c kinetic and
potential energies + nonlocal energies

such as 1
2∇ci · ∇cj

µitot = µi + partial molar kinetic
and potential energies + nonlocal

terms

d(ρu) = T d(ρs) +
∑

i
µtot,i dci Yk = − 1

T

∑
i
νikµi

JJJE = T JJJS +
∑

i
µtot,i JJJni JJJZ =

∑
i
ziJJJni

Combined with the balance equations for energy, momentum, charge, and species,
they yield the usual force��ux expression for the entropy production density:

σ =
∑

f
JJJ f �XXX f

JJJ={ rk ; JJJE , JJJni , JJJZ ; JJJmvvv }

�={ × ; ··· , ··· , ··· ; ::: }

XXX ={Yk ;∇∇∇
1

T
,∇∇∇µn − µi

T
,−∇∇∇ϕel

T
;− 1

T
∇∇∇vvv }

i.e.:

σ =
∑

k
rkYk + JJJE · ∇

1

T
+
∑n−1

i=1
JJJni · ∇

µn − µi
T

− JJJZ · ∇
ϕel
T
− 1

T
JJJmvvv ::: ∇vvv
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σ =
∑

f JJJ f �XXX f is an extrinsic relation

Extrinsic because:

it follows from general balance equations
and local equilibrium assumptions only

it holds for all materials, independently of
their particular properties

For given JJJ f and XXX f , and To the temperature of the environment,

Toσ = To

∑
f
JJJ f �XXX f

represents the rate of exergy dissipation per unit volume when we drive:

a chemical reaction in the direction of decreasing Gibbs free energy;

a heat �ux down a temperature gradient;

a di�usion �ux down a chemical potential gradient;

an electric current down a voltage drop;

a capillary �ow down a pressure gradient;

a momentum �ux down a strain rate;
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Material resistance to �ux: intrinsic relation for σ

O� equilibrium, local material properties depend on the local equilibrium potentials

Γ = {1/T ,−µ1/T , . . . ,−µn/T ,−ϕel/T}

and determine how strongly the material tries to restore equilibrium:

it resists to imposed �uxes JJJ

by building up forces XXX

The �ux→force constitutive relation
characterizes the material:

XXX = XXX (JJJ, Γ)

In this picture, σ is a function of JJJ:

σ =
∑

f
JJJ f �XXX f (JJJ, Γ) = σ(JJJ, Γ)

it resists to imposed forces XXX

by building up �uxes JJJ

The force→�ux constitutive relation
characterizes the material:

JJJ = JJJ(XXX , Γ)

In this picture, σ is a function of XXX :

σ =
∑

f
JJJ f (XXX , Γ)�XXX f = σ(XXX , Γ)

Compatibility
conditions:

σ(0, Γ) = 0 at equilibrium (where JJJeq = 0 and XXX eq = 0)

σ ≥ 0 o� equilibrium

Onsager reciprocity near equilibrium

Curie principle for isotropic conditions
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Near equilibrium: Onsager's �great� principle

Linearize the relations XXX = XXX (JJJ, Γ)
with respect to JJJ near equilibrium

XXX f (JJJ) = XXX f (0) +
∂XXX f

∂JJJg

∣∣∣∣
0

�JJJg + . . .

RRR0

fg ≡
∂XXX f

∂JJJg

∣∣∣∣
0

XXX f ≈ RRR0

fg (Γ)� JJJg

σ(JJJ) = JJJ f �XXX f (JJJ) ≈ JJJ f �RRR0

fg �JJJg

Second Law: RRR0

fg ≥ 0

Onsager∗: RRR0

fg = RRR0

gf

Curie: RRR0

fg = 0 for XXX f and JJJg
of di�erent tensorial order.

Flux picture

σ

J1J2

Force picture

σ

X1X2

Linearize the relations JJJ = JJJ(XXX , Γ)
with respect to XXX near equilibrium

JJJ f (XXX ) = JJJ f (0)+
∂JJJ f
∂XXX g

∣∣∣∣
0

�XXX g + . . .

LLL0fg ≡
∂JJJ f
∂XXX g

∣∣∣∣
0

JJJ f ≈ LLL0fg (Γ)�XXX g

σ(XXX ) = JJJ f (XXX )�XXX f ≈ XXX f�LLL0fg�XXX g

Second Law: LLL0fg ≥ 0

Onsager∗: LLL0fg = LLL0gf

Curie: LLL0fg = 0 for JJJ f and XXX g

of di�erent tensorial order.

RRR−1
0

= LLL
0
≥ 0

∗Lars Onsager (1931): additional assumptions to prove reciprocal relations.
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Near equilibrium: Pierre Curie's �great� principle

Pierre Curie (1894): the symmetry of the cause is preserved in its e�ects.
Therefore, in isotropic conditions, �uxes and forces of di�erent tensorial character
do not couple.

XXX Yk − 1

T
∇∇∇ · vvv ∇∇∇ 1

T
∇∇∇µn − µi

T
−∇∇∇ϕel

T
− 1

T
(∇∇∇vvv)sym

JJJ � × × ··· ··· ··· :::
rk × � �
p × � �
JJJE ··· � � �
JJJni ··· � � �
JJJZ ··· � � �

(JJJmvvv )dev ::: �
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Not-too-high non-eq: nonlinear SEA force-�ux relations
Flux picture constitutive relation:

XXX = XXX (JJJ, Γ)

SEA principle: given JJJ and Γ there
is metric GGG

X
(JJJ, Γ) that makes the

direction of XXX be that of steepest
entropy ascent:

max
XXX

∣∣∣∣
JJJ,Γ

: JJJ�XXX −λX XXX �GGG
X
�XXX

(∂/∂XXX )JJJ,Γ = 0 ⇒ JJJ − 2λX GGG
X
�XXX = 0

RRR ≡ GGG
X

(JJJ, Γ)−1/2λX (JJJ, Γ)

XXX = RRR(JJJ, Γ)� JJJ

Near eq.: RRR(JJJ, Γ)→ RRR
0
(Γ)

is nonnegative and symmetric
since GGG

X
is a metric.

Force picture constitutive relation:

JJJ = JJJ(XXX , Γ)

SEA principle: given XXX and Γ the-
re is metric GGG

J
(XXX , Γ) that ma-

kes the direction of JJJ be that of
steepest entropy ascent:

max
JJJ

∣∣∣∣
XXX ,Γ

: XXX � JJJ − λJ JJJ �GGG
J
� JJJ

(∂/∂JJJ)XXX,Γ = 0 ⇒ XXX − 2λJ GGGJ
� JJJ = 0

LLL ≡ GGG
J

(XXX, Γ)−1/2λJ (XXX, Γ)

JJJ = LLL(XXX , Γ)�XXX

Near eq.: LLL(XXX , Γ)→ LLL
0
(Γ)

is nonnegative and symmetric
since GGG

J
is a metric.

Note: λX = 1/2 makes GGG
X

= LLL
0
. RRR−1

0
= LLL

0
Note: λJ = 1/2 makes GGG

J
= RRR

0
.
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max
JJJ

∣∣∣∣
XXX ,Γ

: XXX � JJJ − λJ JJJ �GGG
J
� JJJ

(∂/∂JJJ)XXX,Γ = 0 ⇒ XXX − 2λJ GGGJ
� JJJ = 0

LLL ≡ GGG
J

(XXX, Γ)−1/2λJ (XXX, Γ)

JJJ = LLL(XXX , Γ)�XXX

Near eq.: LLL(XXX , Γ)→ LLL
0
(Γ)

is nonnegative and symmetric
since GGG

J
is a metric.

Note: λX = 1/2 makes GGG
X

= LLL
0
. RRR−1

0
= LLL

0
Note: λJ = 1/2 makes GGG

J
= RRR

0
.
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Onsager's variational principle, Ṡgen − Φ = max, is SEA

Near equilibrium, the SEA principle in the �ux picture, with λJ = 1/2 and GGG
J

= RRR
0

max
JJJ

∣∣∣∣
XXX ,Γ

: XXX � JJJ − 1

2
JJJ �RRR

0
� JJJ

is equivalent to Onsager's variational principle: the spatial pattern of �uxes JJJ(x) selected
by Nature maximizes Ṡgen−Φ subject to the instantaneous pattern of local-equilibrium en-
tropic potentials Γ(x) = {1/T (x),−µ1(x)/T (x), . . . ,−µn(x)/T (x),−ϕel(x)/T (x)} and
hence for given forces XXX (x) =∇∇∇Γ(x), i.e.,

max
JJJ(x)

∣∣∣∣
Γ(x),XXX (x)=∇∇∇Γ(x)

: Ṡgen − Φ

where: Ṡgen =
∫∫∫

XXX (x)� JJJ(x) dV Φ =
1

2

∫∫∫
JJJ(x)�RRR

0
(Γ(x)) · JJJ(x) dV

The Euler-Lagrange equations yield the linear laws

JJJ(x) = LLL
0
(Γ(x))�XXX (x) where LLL

0
(Γ(x)) = RRR

0
(Γ(x))−1

The convective nonlinearity of the conservation laws may lead to instabilities and multiple solutions (e.g., conduction vs convective
rolls, laminar vs turbulent �ow, phase inversion, change of hydrodynamic pattern). In such cases, the principle

Ṡgen = max
Now equivalent to Ṡgen − Φ = max,

since Φ = Ṡgen/2 when XXX = RRR
0
� JJJ

identi�es which hydrodynamic pattern is stable and hence actually selected.
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Far non-eq: more detailed levels of description
The entropy of non-equilibrium states de-
pends on many more properties than just the
conserved properties û and n̂

ŝ = ŝ(û, n̂, . . . )

Di�erent approaches di�er in how the . . . are
�lled.

û

1
A

1
û

)ˆ,ˆ( 1eq nuA

T

far non-equilibrium 

state near-equilibrium 

state

stable equilibrium 

state

2
A

May 4, 2011 Gian Paolo Beretta - UniRoma - Summer School on Termodynamics 23

ŝ
0ˆ =s

)ˆ(ˆ
min

nu

1̂
s )ˆ,ˆ(ˆ

1eq nus

)ˆ,ˆ(ˆ
1eq nsu

min
E

A

T
)ˆ,ˆ(ˆˆ

)ˆ,ˆ(ˆˆ

eq

eq

n

n

suu

uss

=

=

)ˆ,ˆ( 1eq nsA
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Far non-eq: RCCE Rate-Controlled Constrained Equilibrium/Quasi Equilibrium

The entropy of non-equilibrium states de-
pends on many more properties than just the
conserved densities û and n̂

ŝ = ŝ(û, n̂, ε, α)

Here, we identify many fast variables α and
few slow variables ε.
Keck (1978): On the time scale of the fast
variables, the slow variables act as additio-
nal conserved properties. So, the state quic-
kly relaxes to a constrained equilibrium state
with maximal ŝ for the given instantaneous
values of û, n̂, ε.

û

1̂s

1ε 2ε )ˆ(eq uε

2ŝ )ˆ(ˆeq us

Need an equation of motion only for the rate-
controlling slow variables εf 's

dεf
dt

= Kf (û, n̂, ε, αce(û, n̂, ε))

obtained from a detailed kinetic scheme.
Then, solve for û(t), n̂(t) and ε(t).

Keck, Prog. Ener. Comb. Sci., Vol. 16, 125 (1990). www.JamesKeckCollectedWorks.org

G.P. Beretta (U. Brescia) Steepest entropy ascent JETC, Nancy, May 20, 2015 12 / 24



Why �great�? σ = JJJ �XXX XXX = RRR � JJJ XXX = RRRSEA � JJJ Far non-eq XXX � JJJ ⇒ (Φ|Πγ ) SEA geom Concl

Far non-eq: RCCE Rate-Controlled Constrained Equilibrium/Quasi Equilibrium

The entropy of non-equilibrium states de-
pends on many more properties than just the
conserved densities û and n̂
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Far non-eq: GENERIC steepest entropy ascent
The entropy of non-equilibrium states de-
pends on many more properties than just the
conserved densities û and n̂

ŝ = ŝ(û, n̂, ε, α)

Here, we identify many fast variables α and
few slow variables ε.
Kaufman,1 Morrison,2 and Grmela3 (1984)
independently propose a similar approach,
that Öttinger and Grmela1 (1997) fur-
ther systematize and call GENERIC (Ge-
neral Equation for the Non-Equilibrium
Reversible-Irreversible Coupling).
The dissipative part of the GENERIC
equation is essentially SEA.2

û

1̂s

1ε 2ε )ˆ(eq uε

2ŝ )ˆ(ˆeq us

Their proposed GENERIC equation is

dεf
dt

= G rev
fg

δE

δεg
+ Lirrfg (ε)

δS

δεg

where E and S are the overall energy and
entropy functionals of the state variables.

1. Kaufman, Phys. Lett. A, Vol. 100, 419 (1984).
2. Morrison, Phys. Lett. A, Vol. 100, 423 (1984).
3. Grmela, Phys. Lett. A, Vol.102, 355 (1984).

4. Grmela, Öttinger, Phys. Rev. E, Vol. 56, 6620 (1997).
5. Montefusco, Consonni, Beretta, Phys. Rev. E, Vol. 91, 042138 (2015).
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Far non-eq: kinetic theory of gases, Boltzmann eq.
The entropy of non-equilibrium states de-
pends on many more properties than just the
conserved densities û and n̂

ŝ = ŝ(n̂, f̂1(ccc), . . . , f̂n(ccc))

the local state described by pdf of particles
of type i with velocity between ccc and ccc +dccc.

ŝ = −R
∑

i
n̂i
∫∫∫ +∞
−∞ f̂i (ccc) ln f̂i (ccc) dccc

û =
1

2

∑
i
Mi n̂i

∫∫∫ +∞
−∞ |ccc − vvv |2 f̂i (ccc) dccc

Local equilibrium, i.e., max ŝ for given û, n̂,
and vvv , obtains for the Maxwellian

f̂ MB
i (ccc) =

[
Mi

2πRT

]
3/2

exp

[
− Mi

2RT
|ccc − vvv |2

]
Fluxes are represented by moments of the
velocity distribution

qqq′′ =
1

2

∑
i

Mi n̂i
∫∫∫ +∞
−∞ |ccc − vvv |2cccf̂i (ccc) dccc

JJJmi = Mi n̂i
∫∫∫ +∞
−∞ (ccc − vvv)f̂i (ccc) dccc

τττ = −
∑
i

Mi n̂i
∫∫∫ +∞
−∞ccc ⊗ cccf̂i (ccc) dccc

JJJs = −R
∑
i

n̂i
∫∫∫ +∞
−∞ (ccc −vvv)f̂i (ccc) ln f̂i (ccc) dccc
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Why �great�? σ = JJJ �XXX XXX = RRR � JJJ XXX = RRRSEA � JJJ Far non-eq XXX � JJJ ⇒ (Φ|Πγ ) SEA geom Concl

Far non-eq: states variables in various frameworks

Framework State Variables Entropy density

A IT Information Theory {pj (x, t)} ŝ = ŝ({pj})

B
RGD
SSH

Rare�ed Gases Dynamics
Small-Scale Hydrodynamics

f (c, x, t) ŝ = ŝ(f )

C
RET
NET
CK

Rational Extended Thermodynamics
Non-Equilibrium Thermodynamics
Chemical Kinetics

{αj (x, t)} ŝ = ŝ({αj})

D MNET Mesoscopic NE Thermodynamics P({αj}, x, t) ŝ = ŝ(P({αj}))

E
QSM
QT
MNEQT

Quantum Statistical Mechanics
Quantum Thermodynamics
Mesoscopic NE QT

ρ(x, t)
αj = TrρAj

ŝ = ŝ(ρ)
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Focus on the dissipative part of the dynamics

Framework State variables Rede�ne Dynamics

A IT {pj} γ = diag{√pj}
dγ

dt
= Πγ

B
RGD
SSH

f (c, x, t) γ =
√
f

∂γ

∂t
+ c · ∇xγ + a · ∇cγ = Πγ

C
RET
NET
CK

{αj (x, t)} γ = diag{αj}
∂γ

∂t
+∇x · Jγ = Πγ

D MNET P({αj}, x, t) γ =
√
P({αj}, x, t)

∂γ

∂t
+ v · ∇xγ = Πγ

E
QSM
QT
MNEQT

ρ ρ = γγ†
dγ

dt
+

i

~
H γ = Πγ

Πγ is the TANGENT VECTOR to the time-dependent trajectory of γ
in state space when time evolution is determined only by the dissipative
component, i.e., as viewed from an appropriate local material frame,
streaming frame, or Heisenberg picture.

Beretta, Phys. Rev. E, Vol. 90, 042113 (2014).
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Balance/Transport Equation for Ci Balance/Transport Equation for S

A
d (γ2|Ci )

dt
= ΠCi

= 0 −kB
d (γ2| ln γ2)

dt
= σ

B
∂(γ2|Ci )

∂t
+∇x · (γ2|c Ci ) = ΠCi

= 0 −kB
∂(γ2| ln γ2)

∂t
+ kB∇x · (γ2|c ln γ2) = σ

C
∂Ci

∂t
+∇x · JCi

= ΠCi
= 0

∂S

∂t
+∇x · JS = σ

D
∂Ci

∂t
+∇x · JCi

= ΠCi
= 0

∂S

∂t
+∇x · JS = σ

E
d (γ|Ci γ)

dt
−

i

~
(γ|[H,Ci ]γ) = ΠCi

= 0 −kB
d (γ|(ln γγ†) γ)

dt
= σ

In each framework, the production terms can be written as scalar
products of Πγ with other vectors in the same space

ΠCi = (Ψi |Πγ) = 0 σ = (Φ|Πγ)

Framework Ψi Φ

A, B, D 2Ci γ −2kB(ln γ2) γ

C vect{Ψiαj
} vect{Φαj

}

E 2Ci γ −2kB(ln γγ†) γ

Beretta, Phys. Rev. E, Vol. 90, 042113 (2014).
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Steepest Entropy Ascent construction

the corresponding SEA evolution equation is

|ΠSEA
γ ) = Ĝ−1 |Φ−

∑
i

βi Ψi )

Beretta, Phys. Rev. E, Vol. 90, 042113 (2014).
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Conclusions? �Great� principles from NET?

Power of symmetry and geometry considerations

Curie principle

Steepest Entropy Ascent principle?

Near equilibrium it entails (equivalent to?)
Onsager's reciprocity principle
Far from equilibrium it generalizes
Onsager's principle:

A metric is positive and symmetric
Boltzmann equation can be cast as SEA
Fokker-Planck equation can be cast as SEA
Chemical kinetics (standard model) can be cast as SEA
Quantum thermodynamic models have been based on SEA

Deep connections with recent hot topics in mathematics:a

Information geometry1

Gradient �ows in metric spaces2

L
2-Wasserstein metric3 and evolution PDE's of di�usive type

a1 Amari, Nagaoka, Methods of information geometry, Oxford UP, 1993.
2 Jordan, Kinderlehrer, Otto, SIAM J. Math. Anal., Vol. 29, 1 (1998).
2 Ambrosio, Gigli, Savaré, Gradient �ows in metric and in the Wasserstein spaces, Birkhäuser, 2005.
3 Wasserstein distance in probability space: Kantorovich-Rubinstein (1958) and Vasershtein (1969).
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If: steady state, no convection, no reactions, linear regime, constant conductivities

Then: local MEP (SEA) implies min global EP
Glansdor�-Prigogine (1954) noted that assuming

stationary boundary conditions, dΓ/dt|Ω = 0

no convection and no reactions, so that XXX = ∇Γ

linear regime, JJJ = LLL�XXX , σ = XXX � LLL�XXX

constant Onsager conductivities, dLLL/dt = 0

Then:

ŝ = ŝ(û) with all û conserved

dû

dt
= −∇∇∇ · JJJ with JJJ = JJJ û

Γ =
∂ŝ

∂û
and

∂Γ

∂û
=

∂2ŝ

∂û∂û
≤ 0

dṠgen

dt
=

∫∫∫
dσ

dt
dV = 2

∫∫∫
JJJ � dXXX

dt
dV = 2

∫∫∫
dû

dt
� ∂2ŝ

∂û∂û
� dû

dt
dV ≤ 0

i.e., the free �uxes and forces adjust until the system reaches a stable stationary state
with minimum Ṡgen. For variable conductivities, dLLL/dt 6= 0, the theorem loses validity.

dṠgen

dt
=

∫∫∫ dσ

dt
dV =

∫∫∫ d

dt
XXX � LLL �XXX dV = 2

∫∫∫
JJJ �

dXXX

dt
dV +

�������∫∫∫
XXX �

dLLL

dt
�XXX dV

∫∫∫
V

JJJ �
dXXX

dt
dV =

∫∫∫
V

JJJ �
d∇Γ

dt
dV =

������∫∫
∂V

JJJ �
dΓ

dt
· nnn dA −

∫∫∫
V

dΓ

dt
�∇ · JJJ dV

−
∫∫∫ dΓ

dt
�∇ · JJJ dV =

∫∫∫ dΓ

dt
�

dû

dt
dV =

∫∫∫ dû

dt
�
∂Γ

∂û
�

dû

dt
dV =

∫∫∫ dû

dt
�

∂2 ŝ

∂û∂û
�

dû

dt
dV ≤ 0
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Ṡgen = max selects hydrodynamic pattern

Rayleigh-Benard 2D rolls in horizontal layer of �uid heated from below as a function of
Rayleigh number R (Woo, 2002). A slow decrease in R is allowed with time.

Ṡgen =
∫∫∫

σ dV

dṠ

dt
5A

d

dt
~JiDXi !<0, ~15!

whereJi5Ji
(2)52Ji

(1) andDXi5Xi
(2)2Xi

(1) . The inequality
reflects the expectation that the magnitude ofJi , and there-
fore DXi , would only decrease in time as the equilibrium is
approached.

Figure 2 summarizes the expected behavior of the overall
nonequilibrium thermodynamics represented by variational
principle ~3!. A RBC system of Fig. 1, initially set up with a
Rayleigh number above the threshold,R.Rc , at t50, is
allowed to relax toward equilibrium. At each timet, S is in a
quasistationary state withR5R(t). For any t, solutions to
the equation of motion~6! correspond to the set of extrema
of Ṡ2F. The maximum would be selected, which should
also be hydrodynamically stable to be physically realizable.
Equation ~14! implies that for a givenR, the overall heat
flux, or the Nusselt numberN, would be maximized. Fort
,tc @where R(tc)5Rc], convective rolls with a band of
wave numbers are stable@13,24#, and the roll with the maxi-
mumN would be realized. At the threshold, the rolls become
unstable, and the conduction becomes the only stable solu-
tion for R,Rc . When we restrict ourselves to the loci of
local maxima of Eq.~3!, or equivalently, make a projection
of the thick lines in Fig. 2 onto thet versusṠ plane~Fig. 3!,

the variational principle now takes the form of Eq.~2!. Equa-
tion ~15! dictates that the slope is negative therein.

V. DISCUSSIONS

It should be noted that the existence and stability of the
stationary solutions are determined not by the variational
principle, but via the full nonlinear dynamics of Eq.~7!. The
entropy production rate isnot a potential or Lyapunov func-
tion to the dynamics. Therefore, it is possible, and in fact has
been noted before@13#, that a solution might remain unstable
and thus physically inaccessible even though it has a larger
overall heat flux.

The plot of entropy production rate as a function of con-
trol parameter, such as Fig. 3, is a close analog of the equi-
librium counterpart, the free energy versus an intensive vari-
able. The threshold in RBC would then be an example of
nonequilibrium phase transition. Unlike the full landscape
shown in Fig. 2, it can be straightforwardly obtained for
cases where one can obtain solutions to the nonlinear hydro-
dynamic equation. Thus the entropy production rate is seen
to play the role of thermodynamic potentials for nonequilib-
rium stationary states.

Onsager’s variational principle, Eq.~3!, depends crucially
on the validity of the linear phenomenological equation of
motion, which justifiesa posteriori the definition of the dis-
sipation function~4!. It remains to be seen whether Eq.~2!,
which appears general, still holds for systems where the ba-
sic dissipative relation is intrinsically nonlinear, as is typical
in chemical reactions.
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FIG. 2. A schematic rendering of the evolution of entropy pro-
duction landscape expected for Fig. 1. A RBC system initially with
R.Rc at t50 evolves toward the equilibrium whereR50 at t
5`. At each t, the systemS is in quasistationary states for the
given R(t). TheJi axis represents the space of macroscopic trajec-

tories satisfying the conservation laws. The dotted lines are theṠ
2F profiles at eacht. The thick solid lines are the loci of trajecto-

ries, given by Eq.~6!, maximizingṠ2F. The convective roll state
is replaced by conduction at the instability threshold whereR(t)
5Rc .

FIG. 3. A projection of the maximal path in Fig. 2 onto thet-Ṡ
plane. They axis shown is the the entropy production rate normal-
ized by the pure conduction value, equal to the Nusselt numberN.
The solid line forR.Rc51708 is from Ref.@24# for the rolls with
Prandtl numberP57.0 and wave numbera53.117. The solid and
dashed lines atN51 represent the stable and unstable branches of
the conduction mode.
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of the critical Rayleigh numbers R, for the onset of oscillations the strong de- 
pendence of R, on the wavenumber a has to be taken into account. A plot of the 
experimentally observed wavenumber dependence on the Rayleigh number for 
an air layer is given in the paper by Willis et al. (1972). When this is plotted on 
the stability diagram given in figure 6 a value of R, 1: 6000 is obtained which 
compares well with the value R, 21 5800 observed by Willis & Deardorff (1970). 

41  F L M  65 

dṠ
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dt
~JiDXi !<0, ~15!
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(2)52Ji

(1) andDXi5Xi
(2)2Xi

(1) . The inequality
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Why �great�? σ = JJJ �XXX XXX = RRR � JJJ XXX = RRRSEA � JJJ Far non-eq XXX � JJJ ⇒ (Φ|Πγ ) SEA geom Concl

Onsager reciprocity from microscopic reversibility (standard proof)

At local stable equilibrium states,

ŝ = ŝeq(û, n̂)

In general, for non-equilibrium states,

ŝ = ŝ(û, n̂, α1, . . . , αm)

thus ŝeq(û, n̂) = ŝ
(
û, n̂, αeq(û, n̂)

)
Since ŝeq maximizes ŝ for given û and n̂,

∂ŝ/∂αj |eq = 0

ŝ(α) = ŝeq−gij (αi−αeqi )(αj−αeqj )+. . .

where gij = − 1
2∂

2ŝ/∂αi∂αj |eq ≥ 0.
De�ne the non-equilibrium forces driving
relaxation towards equilibrium

Xk = −∂(ŝeq − ŝ(α))

∂αk

= −gkj (αj −αeqj )

Onsager (1931) assumes:
(1): linear regression towards equilibrium

α̇i = LikXk = −Mij (αj − αeqj )

with Mij = Likgkj .
(2): Boltzmann's probability distribution

pB(α) = C exp[−(ŝeq − ŝ(α))/kB ]

with C such that
∫∞
−∞ pB(α) dα = 1.

(3): microscopic reversibility on the average

〈αi (t)αj (t + τ)〉pB = 〈αi (t + τ)αj (t)〉pB

that is 〈αi α̇j 〉pB = 〈α̇iαj 〉pB
Proof of reciprocal relations:
(2)+(3) imply: 〈αiXk〉pB = −kBδik
Then, (1)+(3) yield

kBLji = −〈αi α̇j 〉pB = −〈α̇iαj 〉pB = kBLij
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MEP principle claimed to have facets in wide range of �elds and scales

For example:

Juretic and Zupanovic (2003) model steady state bacterial photosynthesis
and �nd that the MEP state has optimal yield and power e�ciency, and is
stable with respect to a wide range of initial values for forward rate constants.

Shizawa and Zbib (1999) model gradient elastoplasticity and kinematic

hardening. They introduce the plastic strain tensor and the dislocation
density tensor as internal variables (e�ective stress and microstress are the
conjugate potentials). Assuming MEP, they obtain constitutive equations of
plastic deformation rate and dislocation drift rate as �ow rules.

Bejan (1996) �nds applications of his constructal theory (For a �nite size
�ow system to persist in time (to live), its con�guration must evolve such
that it provides easier and easier access to its currents) in design and
explaining evolution across the board, animate and inanimate, from physics
to biology and social organization.

Martyushev and Seleznev (2006) review paper.
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MEP principle selects global atmospheric patterns

Paltridge (1975), Ozawa et al. (1997,2001): the global
�uid system (atmosphere and ocean) seems to be in a
state with the maximum rate of entropy generation by the
turbulent heat transport process.

some irreversible processes in the fluid system is then given
by the sum of the contributions from each system@see Ap-
pendix Eq.~A7! as well as Ref.@17## as

Ṡturb5E 1

T F]~rcT!

]t
1“"~rcTv!1p“"vGdV1E F

T
dA,

~1!

wherer is the density of the fluid,c is the specific heat at
constant volume,T is the absolute temperature,v is the ve-
locity, p is the pressure,V is the volume of the fluid system,
A is the surface bounding the system from the surroundings,
andF is the diabatic heat flux due to turbulence at the bound-
ary, defined as positive outwards. The first volume integral
represents the entropy increase rate of the fluid system, and
the second surface integral represents that of the surrounding
system. If the concerned fluid system is in a steady state in a
statistical sense, as usually the case of laboratory experi-
ments, then the entropy, a state function of the fluid system,
remains unchanged. In this case, Eq.~1! becomes simply

Ṡturb,st5E F

T
dA, ~2!

where the suffix st denotes that the fluid system is in a steady
state. This equation suggests that the entropy produced by
some irreversible processes in the turbulent fluid system is
completely discharged into the surrounding system through
the boundary heat fluxF, so long as the fluid system is in a

steady state. The entropy of the surrounding system is then
increasing by the irreversible processes in the fluid system.1

Previous studies@10–13,15–17# suggest that the increase
rate by the turbulent dissipation processes tends to be a
maximum (Ṡturb,st5Max.) when the long-term mean state of
the global fluid system is concerned~see Fig. 1 and Sec.
III C !.

The general expression, Eq.~1!, can be rewritten in a
different form. It is known@22,23#, and easy to show@Ap-
pendix Eq.~A10!, @17## that

Ṡturb5E F"“S 1

TDdV1E F

T
dV, ~3!

whereF is the diabatic heat flux density due to turbulence
and F is the dissipation function, representing the rate of
dissipation of kinetic energy into heat by viscosity per unit
volume of the fluid. The first term is the rate of entropy
increase by thermal dissipation, and the second term is that
by viscous dissipation. The sum of the two terms represents
the total rate of entropy increase by the turbulent dissipation.
In a steady state, the entropy produced by the turbulent dis-
sipation in the fluid system@Eq. ~3!# is completely dis-
charged into the surrounding system through the boundary
heat flux@Eq. ~2!#. If we assume, by analogy with the case of
the global fluid system, that the turbulent fluid system tends
to maximize the rate of entropy increase in the surrounding
system by the turbulent dissipation, then we will get a propo-
sition written in the following two different expressions:

Ṡturb,st5E F"“S 1

TDdV1E F

T
dV ~4a!

5E F

T
dA5Maximum. ~4b!

By using these two expressions@Eqs. 4~a! and 4~b!#, it is
possible to show that several maximum transport properties
so far suggested for different types of turbulent phenomena
can be explained with this proposition. For instance, the

1In this respect, the surrounding system isnot in a steady state
even though the fluid system is in a steady state~cf. @17#!.

FIG. 1. Global distributions of:
~a! mean air temperature,~b!
cloud cover, and~c! horizontal
heat transport in the earth. Solid

line: predicted withṠturb,st5Max.
and dashed line: observed~after
Paltridge@10#!.

FIG. 2. A schematic representation of an open fluid system and
its surrounding system with which the fluid system exchange heatF
and momentumt.
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Global distributions of:
(a) mean air temperature, (b) cloud cover, (c) horizontal heat transport.

Solid line: predicted with Ṡgen = max.
Dashed line: observed (Paltridge, 1975).

eral circulation). The energy is finally reemitted to space
via longwave radiation. Thus there is a flow of energy
from the hot Sun to cold space through the Earth. In the
Earth�s system the energy is transported from the warm
equatorial region to the cool polar regions by the atmo-
sphere and oceans. Then, according to Carnot, a part of
the heat energy is converted into the potential energy
which is the source of the kinetic energy of the atmo-
sphere and oceans. In this respect, the Earth�s system
can be regarded as a heat engine operating between
thermal reservoirs with different temperatures (equator
and poles). The determination of the strength of the
circulation, and hence the rate of heat transport, consti-
tutes a fundamental problem in thermodynamics of the
general circulation [e.g., Lorenz, 1967].

[4] Lorenz [1960] suspected that the Earth�s atmo-
sphere operates in such a manner as to generate avail-
able potential energy at a possible maximum rate. The
available potential energy is defined as the amount of
potential energy that can be converted into kinetic en-
ergy. Independently, Paltridge [1975, 1978] suggested
that the mean state of the present climate is reproduc-
ible as a state with a maximum rate of entropy produc-
tion due to horizontal heat transport in the atmosphere
and oceans. Figure 2 shows such an example [Paltridge,
1975]. Without considering the detailed dynamics of the
system, the predicted distributions (air temperature,
cloud amount, and meridional heat transport) show re-
markable agreement with observations. Later on, several
researchers investigated Paltridge�s work and obtained
essentially the same result [Grassl, 1981; Shutts, 1981;
Mobbs, 1982; Noda and Tokioka, 1983; Sohn and Smith,
1993, 1994; Ozawa and Ohmura, 1997; Pujol and Llebot,

1999a, 1999b]. His suggestion was criticized by Essex
[1984], however, since a predominant amount of entropy
production is due to direct absorption of solar radiation
at the Earth�s surface, which was a missing factor in
Paltridge�s work. Since then, the radiation problem has
been a central objection to Paltridge�s work [e.g., Lesins,
1990; Stephens and O�Brien, 1993; Li et al., 1994; Li and
Chylek, 1994]. As we shall discuss in section 3, the large
background radiative down-conversion of energy from
solar to terrestrial temperatures is essentially a linear
process which is irrelevant to the maximized process
related to nonlinear turbulence. In fact, Ozawa and
Ohmura [1997] applied the maximum condition specifi-
cally to the entropy production associated with the tur-
bulent heat transport in the atmosphere and reproduced
vertical distributions of air temperature and heat fluxes
that resemble those of the present Earth. Thus it is likely
that the global climate system is regulated at a state with
a maximum rate of entropy production by the turbulent
heat transport, regardless of the entropy production by
the absorption of solar radiation [Shimokawa and
Ozawa, 2001; Paltridge, 2001]. This result is also consis-
tent with a conjecture that entropy of a whole system
connected through a nonlinear system will increase
along a path of evolution, with a maximum rate of
entropy production among a manifold of possible paths
[Sawada, 1981]. We shall resolve this radiation problem
in this paper by providing a complete view of dissipation
processes in the climate system in the framework of an
entropy budget for the globe.

[5] The hypothesis of the maximum entropy produc-
tion (MEP) thus far seems to have been dismissed by
some as coincidence. The fact that the Earth�s climate
system transports heat to the same extent as a system in
a MEP state does not prove that the Earth�s climate
system is necessarily seeking such a state. However, the
coincidence argument has become harder to sustain now
that Lorenz et al. [2001] have shown that the same
condition can reproduce the observed distributions of
temperatures and meridional heat fluxes in the atmo-
spheres of Mars and Titan, two celestial bodies with
atmospheric conditions and radiative settings very dif-
ferent from those of the Earth. A popular account of this
work is given by Lorenz [2001a] and Lorenz [2003].

[6] Similar suggestions have been proposed in the
general field of fluid dynamics. For thermal convection
of a fluid layer heated from below (i.e., Bénard [1901]
convection), Malkus [1954] suggested that the observed
mean state represents a state of maximum convective
heat transport. For turbulent flow of a fluid layer under
a simple shear, Malkus [1956] and Busse [1970] sug-
gested that the realized state corresponds to a state with
a maximum rate of momentum transport. Their ap-
proach is now called the “optimum theory” or “upper
bound theory” and is well known in the field [e.g.,
Howard, 1972; Busse, 1978]. Their suggestions were re-
cently shown to be unified into a single condition in
which the rate of entropy production by the turbulent

Figure 1. A schematic of energy transport processes in the
planetary system of the Earth, the Sun, and space. The Earth
receives the shortwave radiation from the hot Sun and emits
longwave radiation into space. The atmosphere and oceans act
as a fluid system that transports heat from the hot region to
cold regions via general circulation.
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G is about 10–14 W m�2 [Schulman, 1977; Pauluis and
Held, 2002a], while the viscous dissipation rate Dvis is
estimated to be 2–3 W m�2 from the wind speed [Oort
and Peixóto, 1983]. (To be precise, there is dissipation
due to the drag of falling rain [e.g., Pauluis et al., 2000;
Lorenz and Rennó, 2002]. This contribution can be up to
2–3 W m�2 but cannot fill the gap of 10 W m�2.)
Equation (38) clearly shows that the discrepancy is
caused by the thermal dissipation term (Dtherm). A re-
cent study [Pauluis and Held, 2002a, 2002b] shows that
the thermal dissipation is caused mainly by irreversible
transport of latent heat in the moist atmosphere, and it
can be about 8 W m�2. This thermal dissipation leads to
direct waste of the “available” potential energy, which
was a missing factor in the framework of Lorenz�s treat-
ment of the adiabatic atmosphere [Lorenz, 1955, 1967].
When we consider both two terms (thermal and viscous
dissipation), it is, in fact, possible to show that Lorenz�s
hypothesis of maximum generation of available potential
energy (G � max) is identical to the hypothesis of MEP
by the turbulent dissipation (Ṡturb � max). The two
hypotheses can therefore be unified into the single con-
dition of maximum G.

8.2. A Mechanism for Maximum Entropy Production
[65] Finally, let us discuss a possible mechanism by

which a turbulent fluid system adjusts itself to a state of
maximum generation of available potential energy or,
equivalently, MEP.

[66] As a simplest case, let us consider the Earth
composed of two regions: the tropics and poles. The
average temperature in the tropical region is Tt, and that
in the polar region is Tp (Figure 11a). In the present
state, there is a net gain of radiation in the tropical
region and a net loss in the polar regions. The energy
imbalance is compensated by energy transport F due to
the direct motion of the atmosphere and oceans. Sup-
pose an extreme case with no motion (i.e., static state)
with negligible amount of heat transport (F � 0). Then,
the tropical region will be heated up, and the polar
region will be cooled down. Then, according to the
Stefan-Boltzmann law of radiation (or an equivalent
linear function in section 4), this leads to an increase in
longwave emission from the tropical region and a de-
crease in that from the polar region, thereby compen-
sating the energy imbalance in each region. Thus, in the
static state, the temperature difference will be the larg-
est. With increasing F from zero, the temperature dif-
ference will decrease. At very large F with extreme
mixing, the temperature difference will become negligi-
ble. Thus the temperature difference �T � Tt � Tp is a
decreasing function of F (Figure 11b).

[67] As we have seen in the previous section, when
heat energy is transported from hot to cold regions, a
part of the energy can be converted into potential energy
that is available for kinetic energy of the fluid. The
generation rate of the available potential energy is given
by equation (34) as

G � �
V

q̇�1 �
Tr

T �dV � Tr

F�T
TtTp

(39)

where Tr is the reference temperature and approximates
the mean temperature of the system. Since G is propor-
tional to a product of F and �T, it should have a
maximum between the two extreme states: the static
state (F � 0) and the extreme mixing (�T � 0), as shown
in Figure 11b.

[68] The basic question is whether there is any reason
why the actual state of such a turbulent system should be
in a state at (or near) its maximum possible value in G or
Ṡturb. One can see a feedback loop in this system: If a
dynamic motion is accelerated, the heat transport (F)

Figure 11. (a) Schematic illustration of the Earth consisting
of two regions: tropics and poles. F denotes horizontal energy
transport by direct motion of the atmosphere and oceans. G  
F�T is the generation rate of available potential energy that is
the source of the kinetic energy of the fluids. When the
dynamic motion is accelerated, F increases, and it leads to an
excess generation of G, resulting in positive feedback to the
dynamic motion. (b) Generation rate of available potential
energy G as a function of F. A positive fluctuation at L leads to
an acceleration of the fluctuation since dG/dF  0, while that
at R leads to a deceleration since dG/dF � 0. The net effect is
therefore toward the maximum M.
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ample, a rigorous analysis based on the dynamic equations
and the continuity equation@5,6# suggests a velocity profile
that is in qualitative agreement with the observed velocity
profile @33#, as shown in Fig. 3~b! with the asterisk. More
detailed work is needed to improve the upper bound esti-
mates for the momentum transport@20#. Here, it should be
noted that the general agreements between the estimates and
the experiments tend to support the proposition that the real-
ized turbulent flow maximizes the shear stress, and therefore
the rate of entropy increase@Eq. ~4a!#, under the fixed rela-
tive velocity condition at the boundary.

C. General circulation of the global fluid

The global fluid system of the earth~the atmosphere and
ocean! is different from the convection system of a Be´nard
type, in the sense that the temperature difference at the
boundary is not fixed but is a function of the heat transport
itself. As a simplest case, let us consider the earth composed
of two regions~the equator and pole!; the average tempera-
ture in the equatorial region isTe and that in the polar region
is Tp @Fig. 6~a!#. In the present state, there is a net input of
radiation ~shortwave absorption–longwave emission! in the
equatorial region, and a net output from the polar region. As
a long-term mean state~steady state!, this energy imbalance
is compensated by energy transportF due to the direct mo-
tion of the atmosphere and ocean, called general circulation.
Suppose an extreme case with no circulation~i.e., static
state! with negligible amount of heat transport (F'0).
Then, the equatorial region will be heated up, and the polar
regions will be cooled down. Because of the Stefan–
Boltzmann law of radiation, this results in an increase in
thermal emission from the equatorial region and a decrease
from the polar region, thereby compensating the energy im-
balance in each region. Thus, in the static state, the tempera-

ture difference will be the largest@Fig. 6~b!#. With increasing
F from zero, the temperature difference will decrease. At
very largeF with extreme mixing, the temperature difference
will become negligible. Thus, the temperature difference
DT(F)5Te2Tp is a monotonic decreasing function ofF
@Fig. 6~b!#.

The rate of entropy increase by the heat transportF due to
the general circulation is, provided that the fluid system is in
a statistically steady state, given by the rate in the surround-
ing system@Eq. ~4b!#. Then, the proposition is

Ṡturb,st5
F

Tp
2

F

Te
5

DT~F !F

TeTp
5Max. ~11!

It should be noted that, unlike Eq.~5!, the temperature dif-
ferenceDT(F) is not fixed but a decreasing function ofF.
SinceṠturb,st is proportional to the product ofF andDT(F),
it should have a maximum between the two extreme cases:
F50 ~no circulation! and DT(F)50 ~extreme mixing!, as
shown by the solid circle in Fig. 6~b!. According to the
proposition, this maximum corresponds to the most appropri-
ate state for the general circulation. A number of attempts
have been made to seek such a maximum in a more realistic
system of the earth composed of 10–20 zones with different
latitude and altitude@10–13,15#. Maxima were found in all
these attempts, and the corresponding distributions of tem-
peratures and heat fluxes show considerable agreements with
the observations~see Fig. 1 as well as@10–13,15#!. Thus, the
general circulation seems to be regulated in a state with the
appropriate rate of heat transport in the atmosphere and
ocean, that produces the maximum rate of entropy increase

FIG. 5. Relation between the nondimensional shear stress,G
[t(mDU/d)21, and the Reynolds number Re. Solid lineM: maxi-
mum estimate with Eq.~10! and dots: laboratory experiment@33#.
Dotted line shows results from Couette–Taylor experiment@34# for
reference.

FIG. 6. ~a! Schematic illustration of the earth consisting of two
regions: equator and pole.F represents the horizontal heat transport
by the circulation of the atmosphere and ocean.~b! Corresponding
entropy increase rate in the surrounding system due to the heat
transport, as a function ofF. A maximum exists between the two
extreme states:F50 ~no circulation! andDT(F)50 ~extreme mix-
ing!.
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