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Entropy defined for non-equilibrium states

Hatsopoulos, Gyftopoulos, Found.Phys. Energy vs Entropy diagram

6, 15, 127, 439, 561 (1976). . . .
( ) for a fluid or solid element of a continuum:

Beretta, J.Math.Phys. 25, 1507 (1984). N .
0 = pu, energy density
Gyftopoulos, Beretta, Thermodynamics. § = ps, entropy density
Foundations and Applications, n=i,..., 0N, concentrations
Macmillan 1991, reprint Dover 2005. Project all states with given f onto the i vs §
plane:
THEE”[E?J]:ISAMICS far non-equilibrium stable equilibrium
o mlieations 0 A state near-equilibrium st/ate
. state ,a' T
' 4 A Aeq(u,,n)
§=5.,@,n)
See also (>1998): T dmi (A
Lieb, Yngvason, Proc.R.Soc.A 470, 192  i,(5,A) A GoR) A
e 12
(2014) and refs. therein. o (R) ¢ 7 !
Zanchini, Beretta, Entropy 16, 1547 iso ; 5 G ) :

(2014) and refs. therein.
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Non-equilibrium states require MOre independent Variables

From the second law follows: far non-equilibrium stable equilibrium
— maximum entropy principle: Y state near-equilibrium state
among all the states with given values of state [\T 7
the energy density, 4, and the concen- R \ \ /
trations, A, the stable equilibrium states t 4 N NG
has maX|ma| entropy density /
§ =5, (i1, 1)
8ne < & T s G
ne < eq ﬁeq(fpfl) A;q(ﬁpﬂ) u Mcq(S,n)
— fundamental relation for the stable = A
equilibrium states: iz0 5 5., 7) z

Seq = §6q(ﬁ7ﬁ)

— a non-equilibrium fundamental relation requires more independent variables:

a A

§ = Sne(’y) u= ﬁne('y) = ﬁne(’Y) Wlth §ne (’qu) = §eQ(ane(7eq)7ﬁne (’yeq))

=%

the values 7., = Y., (, fi) at stable equilibrium are fixed by the values of & and A.
The variables vy characterize the different approaches/models/levels of description/theories.
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Far non-eq: States depend on many variables

Framework

Entropy

IT
SM

Information Theory
Statistical Mechanics

§=—ks) ;pjlnp;

RGD
SSH

Rarefied Gases Dynamics
Small-Scale Hydrodynamics

§=—ks [[[ finfdc

RET
C NET
CK

Rational Extended Thermodynamics
Non-Equilibrium Thermodynamics

Chemical Kinetics

D MNET

Mesoscopic NE Thermodynamics

QSM

MNEQT

Quantum Statistical Mechanics

Quantum Thermodynamics
Mesoscopic NE QT

QSM

MNEQT

Cahn-Hilliard models
Diffuse Interface methods
Non-local NE models
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Reformulate in terms of square-root-probabilities

Framework State Redefine Dynamics
IT . dy
AT (o1} ¥ = ding{/7} 9 _n,

RGD Y
B f = Vf D . Vey+a-Vey=n
SSH (c,x, t) v=VFf 5 te Vay+a-Vey=n,
RET
= di : 0
C ONET  {pGep) ) diasln) T4V dy =1,
dimensionless ot
CK
0
D MNET  P({y}.x1) v=vP{ylx1) Sy vV =
QSM
d
E QT p p=7" dZ“LhH =,
MNEQT

Tangent [ITy)

In each framework, I, may be viewed as the TANGENT VECTOR

to the time-dependent trajectory of « in state space as viewed from an
appropriate local material frame, streaming frame, or Heisenberg picture.

Beretta, Phys. Rev. E 90,

G.P. Beretta (U. Brescia)

042113 (2014).

State |y)

Barcelona, May 22, 2019
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Quantum description of a QuDit (when [H, /] =0)

For a D level system, we take

© v =3, \/PiPn
The density operator is
®p= Z,L?:l PnPn

and for the special class of states with
[H, p] = 0, the Hamiltonian operator is

e H=Y" eP,
the energy
e E= 25:1 Pn&n€n
the entropy,
© S=—ks 32" pagnlnps

@ p, represents the degree of involvement of
energy level e, in sharing the energy load of
the system

@ p,e,/E fraction of energy carried by level e,

@ S measures the overall degree of sharing

Energy, E/hv

15 2 25 3
Entropy, Sk
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Quantum description (pictorial) of a single Qubit
i §=—kTr(plnp)

B=z=
!

(0[p|0) = (Llp|1)

(01p[0) = (1]p[1)

(B) =(2)

()=
X = i(0lp[1) = i(1]pl0)
(Olp[1) + (1|p|0)
1Z2) = 10)

12:) =)

DA

G.P. Beretta (U. Brescia) Four rules of thermodynamics Barcelona, May 22, 2019 10/28



Different laws of evolution, but same structure
They can all be written in

the same general form: @ the term R accounts for reversible dynamics,
dvy inertia, convective and diffusive transport between
dar - Ry 4Ny adjacent elements of the continuum

as a result we have the @ theterm I, is responsible for entropy generation,
BALANCE EQUATIONS: while it conserves all constants of the motion
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A da od od
0=0.0) < 5= (FEIR) (G5 =0
A dn 5nne 5nne
n=n — — = R n
() T = (5EIR) (e =
A ds 05, 05, 55
=) o =GR (GEM) o= () =
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Different laws of evolution, but same structure
They can all be written in

the same general form: @ the term R accounts for reversible dynamics,
d’y inertia, convective and diffusive transport between
dt =Ry + My adjacent elements of the continuum
as a result we have the @ theterm I, is responsible for entropy generation,
BALANCE EQUATIONS: while it conserves all constants of the motion
n N di o ol
0=due(v) = =05 — |R”/) (5, — |”v) =0
~ ~ di\" 5"1’16 5nne
n=n — — = R —\Nn,)=0
nc(’y) dt ( (5’)/ | ’Y) ( (5’}/ | ’Y)
A ds 05, 05, 05,
=) o =GR (GEM) o= () =

Moreover, there exists a
metric G with which the
system “perceives’ the
distance between
neighbouring states,
d(y,7+dv)? = (dv|G|dy)
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with respect to which the term M., has the direction
of steepest entropy ascent compatible with the
conservation laws:

Ofipe




SEA Quantum Thermodynamics version 1984 assumed G, = |

p=7"7 = p=4"v++"4
dy IyH:FL, =

dt h
dp
Py *[H,p] =niy+4'n,
S=—kTrplnp, E =TrpH
AH=H-EI
AS=—klnp—S51
(AHAH) = Trp(AH)? = TrpH? — E?
(ASAH) = TrpASAH = —kTrpHIn p—E S

S = (29AM, |G [2vAM,)

As stable equilibrium is approached

exp(—H/kT(E))
PealB) = Ty o o= HKT(E))

See Refs. [12-23] and [27-32] in Montefusco et al, Phys.Rev.E, 91, 042138 (2015) and Beretta, Rep.Math.Phys., 64, 139

Four rules of thermodynamics

(2009)
G.P. Beretta (U. Brescia)

SEA dynamics with respect to metric G,

1108
I—I _ ne )
| 'Y) "/ (S'}/ ‘

ylnp ¥ yH

Trplnp 1 TrpH

TrpHinp  TrpH  TrpH?

5§ne
oy

= —2k

}C - 1 TrpH

TrpH  TrpH?

=29AS — ——~vyAH =2vAM,
On ( ) '

(AHAH)
(ASAH)

nonequilibrium
d s cal

temperature

where QH(/)) =

nonequilibrium
Massieu

and M, = —klnp — ——
g p QH(/)) operator
E
TrpM, = Seq(E) — @

0n(p) = T(E) 2yAM, = 0

Barcelona, May 22, 2019
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Steepest Entropy Ascent for a single Qubit

(B)=(2)= §=—Ilplns)

(0[p[0) = (Llp|1)

(0lp[0) = (1]p[1)

(B) =(2)

Sy =

X = i(0lp[1) = i(1]pl0)
(Olp[1) + (1|p|0)
12,) =

12-) =11)




© o000

Four rules of thermodynamic modeling
reveal four general Laws of Nature

ENERGY must be defined for all states of the SYSTEM.

ENTROPY must be defined for all states of the SYSTEM.

maximum entropy states must be STABLE EQUILIBRIA of the dynamical
model, and those of lowest energy must have zero temperature.

each NONEQUILIBRIUM state of each LOCAL subsystem must equipped
with a METRIC IN STATE SPACE with respect to which the irreversible
component of its time evolution is STEEPEST ENTROPY ASCENT.

Constant entropy conto

G.P. Beretta (U. Brescia) Four rules of thermodynamics Barcelona, May 22, 2019
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The principle of local steepest entropy ascent is a
1984 precursor of several modern theories of
non-equilibrium dynamics

Ziegler's attempts to generalize Onsager's principle (1958)

metriplectic formalism (1984: Morrison, Kaufman, Grmela)

least action in chemical kinetics (1987: Sieniutycz)

GENERIC (>1997: Grmela, Ottinger)

gradient flows (>1998: Jordan, Kinderlehrer, Otto, Mielke)

maximum entropy production principle MEPP (2003: Dewar, Martyushev)
large deviation theory (>2004: Evans, Touchette, Peletier)

SEAQT (>2014: von Spakovsky)
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If: steady state, no convection, no reactions, linear regime, constant conductivities

Then: local MEP (SEA) implies min global EP

Glansdorff-Prigogine (1954) noted that assuming

@ stationary boundary conditions, dI'/dt|, =0 @ §=35(4) with all 4 conserved
@ no convection and no reactions, so that X = V[ ° g — _V-Jwithd=J,
@ linearregime, J=LOX,c=XOLOX t
— A y 05 or 9%
@ constant Onsager conductivities, dL/dt = 0 o = and = <0

EH 84 0404 —

2 A
ge" // —dV—Z// JG);dV—2// 0’8 @ng<0
8u8u

i.e., the free fluxes and forces adjust until the system reaches a stable stationary state
with minimum Sgen. For variable conductivities, dL/dt # 0, the theorem loses validity.

dsge“ ///—dvff/ dtxeL@xwfz// J@—dv+/ ‘:L@xav
///J@fdvf///wﬂdvfﬁ/%m—///%ww
ff ev s [ o S [[[ % o R [[[ %0 2o R <o

G.P. Beretta (U. Brescia) Four rules of thermodynamics Barcelona, May 22, 2019 16 / 28
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Local MEP (SEA) implies min global EP

Unsteady Steady
T = T, =

T +AT T +AT \
T, % kdT/d \ T

o = (dT /dx)?k/T?
x=—L 0 x= x =L 0 x=1L

Sgen = A = (AT)?KA/L ‘ Sgen = (AT)?kA/2L (minimum)
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Local MEP (SEA) implies min global EP

Unsteady Steady
T = T, =

TL+AT T +AT \
T, % kdT/d \ T

o = (dT /dx)?k/T?
= = x=-L 0 x=1L

/ odx = (AT)?KA/L ‘ Sgen = (AT)?kA/2L (minimum)

Unsteady Equilibrium
AT AT
| T T = —kdT/d | T T
o= (dT /dx)?k/T?
x=—L 0 x=1L x=—=L 0 x=1L
Seen = 2(AT)*KA/L ‘ Syen =0 (minimum)
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GENERIC merges SEA with symplectic machinery

The entropy of non-equilibrium states de-
pends on many more macroscopic properties

§= S( aslow’ afast)

Neglecting the fast variables, i.e., assuming

s§= S(U n7 aslow)

Ottinger and Grmela (1997) introduce the
GENERIC evolution equation, which in effect
adds the idea of steepest entropy ascent (ir-
reversible dynamics) to the powerful Hamil-
tonian and symplectic machinery of reversi-
ble dynamics. The reversible/irreversible evo-
lutions of the slow variables are generated by

the gradients of an energy functional E(&,,,,,)

and an entropy function S(4,,.,):
d§SIOW rev 0E(4 slow Sirr 55 és ow
d = Lfg (:lcl)w ) + Mfg (sléw )
dt dag dag

Although GENERIC functionals are typical-
ly global while SEA functionals are local, we
have shown their essential equivalence.
In our notation, the dissipative part and
degeneracy condition of GENERIC are

IM,) = M|®) with M|[W;)=0Vi

Thus, in terms of the SEA projection operator

PLv|®) =[oc) = [0 - BiW)

we have the essential equivalence
N T
M=Z=G"'Py
T
provided of course that the chosen state

variable and conserved properties are the
same.

Grmela, Ottinger, Phys. Rev. E 56, 6620 (1997).
Montefusco, Consonni, Beretta, Phys. Rev. E 91, 042138 (2015)-

G.P. Beretta (U. Brescia)
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Gradient flows are SEA-like dynamical systems

Let the states v be points of a Rie-
mannian manifold (M,G) and as-
sume S a (dimensionless) functional
on M. The gradient flow of S on
(M, G) is a dynamical system in M
given by the differential equation (in
dimensionless time)

dry
Td—> ’gradS‘ )

The metric tensor G is an essential
element of the notion. It converts
the differential DS of S, which is a
cotangent vector field, into the gra-
dient of S, which is a tangent vector
field: for all vector fields v on M

(diffSjv) = G(gradS, v)

Therefore, for all vector fields v along ~y

(diffS), [v) = éh(gradSH,U) =6 (T%,’lj)

The rate of change of the entropy is

dS(v) d’y A (dy dv
kB dr (dlﬂ‘SH kB = G»y a, a kB’T
to be compared with the SEA
_ (dy dy
7= (E Gy dt) ko7

The main differences between SEA, the dissipative
part of GENERIC, and gradient flow formulations stem
from the technical nature of the bilinear forms adopted
to define gradients.

Jordan, Kinderlehrer, Otto, SIAM J. Math. Analysis 29, 1 (1998). Otto, Comm. Par. Diff.
Egs. 26, 101 (2001). Mielke, Nonlinearity 24, 1329 (2011). Sieniutycz, Chem. Eng. Sci. 42,

2697 (1987).

G.P. Beretta (U. Brescia)
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Balance/Transport Equation for C;

Balance/Transport Equation for S

d(v*|G) _ d(v*[Iny*) _
A “a e o -
2 ; 210 ~2
B 8(V8lc)+vx'(72‘cci):n& _ka_i_kax.(,yZlc |n’)/2):0'
G _ oS _
C,D ot -I-Vx-.lc,.—nci E—s—vx Js=o0
d(y|Gv) i Ty d(yl(ln7")y)
E dt 3 (7|[H’ C']'V) - nCi ks P =0
In each framework, the production terms can be written as
{|¥)} ) scalar products of |I1,) with other vectors in the same space
Ma, = (M) M¢ = (Viln,)=0 o= (®[MN,) ke
Framework (o7 v; [}
A, B, D 2Ak v 2C; vy —2(|n’yz)’y
) C vect{ouy,} vect{W;y }  vect{®,}
7 E 2Ak 2Ci vy —2(In ’y’yT)fy

G.P. Beretta (U. Brescia)
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Adding SEA dissipation to the dynamics to makeit 'thermo’

To preserve positivity and hermiticity we

Hamiltonian dynamics: von Neumann equa- !
reformulate in terms of the square-root of p

tion J )
p__1!
E_ h[H,p] 'y:U\/ﬁ p:'yfyT
i.e., for density matrix elements pnm = U is irrelevant (we can take U = /)
(€n|plem) with respect to an eigenbasis {|en)}
of H dvy

;
nm ] P Hy=n
dgt - 7%(6&, — €m) Prm dt h ! !
N_Iy_origjnal objective (1981), was to add a Operator M, may be Tangent|IT,)
dissipative term viewed as the dissipative
dp ; R component of the TAN- ¥(t)
5 = "7 A+ D) GENT VECTOR to the

time-dependent trajectory  State |y)
"designed’ (postulated) so that the canonical of the state vector ~.
equilibrium states p.q(E) would be the on- T1, should conserve the state functionals
ly stable equilibrium states of the dynamics ;
and, therefore, the Hatsopoulos-Keenan Gi(7) = TrGyy
statement of the second law would. emerge .. Ci =1, G = H, and possibly
as a general theorem of the dynamics. .. .

additional conservations.
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. . w.r.to the uniform Fisher-Rao
SEA nonlinear master equation metric G =/ on the unit
octant Tr(yy') =1

When written for density matrix elements with respect to an eigenbasis {|¢;)} of H

dpnm i 1 . Ne, + Aen
dr ﬁpnm(en em) + E Z Unr U Pr (AS, T)
where uj = (€j|nk), {|nk)} is an eigen- pr :
basis of p, p«'s its eigenvalues, Asy = ‘/"
sk — (S), sk = —kslnp if px # 0, \%
sk = 0 if px = 0, ¢ the eigenvalues of P

H, Aej = ¢j — (H), and '
(AHAH)
(ASAH)

_ et — (X e"p")z

X epilnpi =Y pilnp Y, €p;

On =

Beretta, Reps.Math.Phys. 64, 139 (2009). Beretta, Int.J. Theor.Phys. 24, 119, 1233 (1985).
Tabakin, Ann.Phys. 383, 33 (2017). Militello, Phys.Rev.E 97, 052113 (2018).
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. . w.r.to the uniform Fisher-Rao
SEA nonlinear master equation metric G =/ on the unit
octant Tr(yy') =1

When written for density matrix elements with respect to an eigenbasis {|¢;)} of H

d(/;r;m = _%pnm(en - em) + é Z: Unru;rpr (AS, — 7Aen2—gHAem)
where uj = (€j|nk), {|nk)} is an eigen-
basis of p, p«'s its eigenvalues, Asy =
sk — (S), sk = —kslnp if px # 0,
sk = 0 if px = 0, ¢ the eigenvalues of
H, Aej = ¢j — (H), and

g — (BHAH)
"7 (ASAH)
_ Sedn— (Sen)’ \
Zi e,‘p,-lnp,-fz,-pﬂnpi Zj € pj A

Beretta, Reps.Math.Phys. 64, 139 (2009). Beretta, Int.J. Theor.Phys. 24, 119, 1233 (1985).
Tabakin, Ann.Phys. 383, 33 (2017). Militello, Phys.Rev.E 97, 052113 (2018).
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w.r.to a nonuniform metric based on the

SEAQT master equatlon spectral decomposition |H) = 3" e,|P,)

Li&vonSpakovsky effectively adopt the metric

1~

-6 Z*lp)(Pl 76 = Z*\P )(Pal
and consider only states with [H,p] = 0. Then,
ux = (€jlnk) = Oj, the eigenvalues p, of p are the
“energy level occupation probabilities,” and they get
redistributed according to

dpo _ poy
-

Inp, —a+ Ben

dt
with the nonlinear functionals o and 3 given by
- Zi )\,-e,- Zj /\jej In Pj — Zi A,’ In Pi Zj /\jejz
Zi)‘ieiz - (Z, /\iei)z
Zi)\;e,-ln Pi —Zi Ailn Pi Ej )\jej _ @

= )\i
o YiNie — (Zi)‘fef)z Ti

Beretta, Phys.Rev.E 73, 026113 (2006). Beretta, Reps.Math.Phys. 64, 139 (2009).
Li, von Spakovsky, Phys.Rev.E 93, 012137 (2016); E 94, 032117:(2016); B 97, 024308 (2018).
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w.r.to a nonuniform metric based on the
spectral decomposition |H) = 3" e,|P,)

SEAQT master equation

Li&vonSpakovsky effectively adopt the metric

14 1 R Tn 0.6 energy‘lg\{el
7_G = ; . |Pn)(P,,| TG = zn: = ‘P,,)(Pn‘ y probabilities
and consider only states with [H,p] = 0. Then,
ux = (€jlnk) = Ojk, the eigenvalues p, of p are the
“energy level occupation probabilities,” and they get
redistributed according to

0.2

1INl

0
dpn _p 1.4
dtn = ?" [_ In Pn—a+ ﬁ e,,] &entropy
. . . . 1.2 0.3
with the nonlinear functionals o and 3 given by
Yo hie Yo e Inp = 30 Aiinpi 30, Ajef ! 0%
o= 5 > entropy >
Zi Aie? — (Z, /\,-e,-) 0.8\ generation 10.1
ﬂ— zi)\;e,-lnp;—zi)\;lnp; Ej)\jej N— 8&ipi 0.6_2 - - 0
Soaet— (X Ne)® o ttau

Beretta, Phys.Rev.E 73, 026113 (2006). Beretta, Reps.Math.Phys. 64, 139 (2009).
Li, von Spakovsky, Phys.Rev.E 93, 012137 (2016); E 94, 032117:(2016); B 97, 024308 (2018).
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0.6
1.4 energy level
-G Zf|P )(P | TG Z 7“3 (Pn‘ probabilities
.
0.4
and consider only states with [H,p] = 0. Then, P;
ux = (€jlnk) = Oj, the eigenvalues p, of p are the ., g3
“energy level occupation probabilities,” and they get p4
redistributed according to 6
dp,, _ Pn 1.4
dt ? [_ In Pn—a+ ﬁ e,,] &entropy
. . . . 1.2 0.3
with the nonlinear functionals o and 3 given by
N Y AeInpy = 30, Niln pi 30, \jef ! .
= > > entropy >
Zi Aie? — (Z, Aie,') 0.8 generation 10.1
8= S Aieilnp =3 Ailnp; 22:,' Aj€j = gipi 06 T e — 0
et — (L ve) o

Beretta, Phys.Rev.E 73, 026113 (2006). Beretta, Reps.Math.Phys. 64, 139 (2009).
Li, von Spakovsky, Phys.Rev.E 93, 012137 (2016); E 94, 032117:(2016); B 97, 024308 (2018).
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If [H,p] = 0, then Uj = (ej|17k> = Ojk and
the eigenvalues of p are interpreted as “occu-
pation probabilities”. =~ The SEAQT nonlinear
master equation with nonuniform metric 6 =
mboxdiag{Ta/T} redistributes them according to

dpn _ 1 pn(As,,—Ae">

dt keTn On
= %[—Inpn—a—&—ﬂen]

with the nonlinear functionals o and 3 given by
e Y epiinp =3 pilnpi Yo, € ps
- Yietpi— (X eip)’
doiepilnpi =32 pilnpi 37 ep
- > etpi— (Zie"pf)2

p1(£), pa(t), pa(t), pal(t)

entropy, S/ke

0.6

0.4

0.2

-

0.8

0.6

w.r.to uniform Fisher-Rao

SEAQT nonlinear master equation or simplest nonuniform

metric

-6 -4 -2 0 2

dimensionless time, ¢/7

© ° °
- o w
entropy generation rate, 7.5/ kg

=3

Beretta, Phys. Rev. E 73, 026113 (2006). Beretta, Reps. Math. Phys. 64, 139 (2009).
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n

with respect to the G( )
systems’ metric tensor field Y

Steepest Entropy Ascent

{I¥i)}

¥(t)
State |7)
¢, = (¥i|TTy) =0

Tangent |IT;)

O = I(B (¢)|Hy)

Beretta, Lecture Notes in Physics 278, 441 (1986). See also: Beretta, Reps. Math. Phys.
64, 139 (2009) presented in Torun, Poland for Kossakowski's 70th birthday.
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Steepest Entropy Ascent

Tangent |H]S,EA) o« G~ de

/

Ic, = (Wi[Tl,) =0

\ 0 = ky(Pc(I1y)

The corresponding SEA evolution equation is

[y

NSER) =~ 67 joc) =

= é—l RN

with respect to the é( )
systems’ metric tensor field Y

The geometric construction is
simply summarized by defining
the SEA projection operator

Plu|®) = |bc)

=[®-) BV

where the nonequilibrium po-
tentials 3; of the conserved
generators of the motion are
nonlinearly related to v by the
orthogonality conditions

(V)]G oc) =0

where |®¢) is the dimen-
sionless constrained variational
derivative of the entropy.

Beretta, Lecture Notes in Physics 278, 441 (1986). See also: Beretta, Reps. Math. Phys.
64, 139 (2009) presented in Torun, Poland for Kossakowski's 70th birthday.
e e oy
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T ) | They emerge from the
Multipliers 3; are not preset! 7 *meee wo

The Bj's are defined by SEA orthogonality condition (V;|G7tdc) =0, ie., by the system
of equations >_,;(W;|GHW;) Bi(7) = (W,|G!|®), which solved with Cramer's rule, yields
the constrained variational derivative as a ratio of determinants

|®) V1) W)

(O[GTH 1) (Wa|GTHWa) e (WG W)

(¢|é41|wn) (\v1|GA'*1|wn) . (\l’n\@'*ll‘lin)
dc)=|d — (Vi) = = A
e =102 ) (W6 W) o (]G W)

Wil67Hw,) e (WG W)

where é1,...,6, is a subset of the conserved properties &'s such that the variational
derivatives Wy, ..., WV, are linearly independent. By virtue of this choice, the determinant
at the denominator is always a positive definite Gram determinant.

see, e.g., Beretta, Phys.Rev.E, 73, 026113 (2006) and Beretta, Rep.Math.Phys., 64, 139(2009)
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with respect to the é( )
systems’ metric tensor field Y

Steepest Entropy Ascent

The nonequilibrium potentials 3;(+y)'s are the
solution of the system of equations

Z("’j|@71|‘|’i) Bi(y) = (V|G o)

Defining the overall nonequilibrium affinity
or overall degree of disequilibrium

INEN TN

(1) Tangent [TI;5) o< G~ |dc)

The SEA evolution equation takes various

equivalent forms the entropy production rate takes the forms
1 ~_
N5 = 267 o =3~ 8(y) w,-) o = Ms = (®|N,) ks = (dc|M,) ks = My
i k a .
1 A4 1 A oM - 7B(¢C‘G 1|¢C):(H'V‘G|nv)kBT
=26 o)=-—6G1 7> )
T keT o7y _ E( | )_E de
where M is our nonequilibrium Massieu o - d(t/T)

operator [§M/57) = ks|®c) Where the speed of evolution along the SEA
trajectory in state space is

M(y) = S(7y) — ks Z/Bi G(v) de A
R dr = (nw‘ G |n'v)

Beretta, Phys.Rev. E 90, 042113 (2014).
G.P. Beretta (U. Brescia) Barcelona, May 22, 2019 27 /28




SEA Variational Statement

Let G(v) be the tensor field defining the
internal metric used by the system to sen-
se distances between states and length of
trajectories in state space. Then,

1M1l dt = /(M| G |N,) dt = dt = £ dt

is the distance traveled during dt.

(H7|G|H7) =& /= |Iy)

Variational Statement: For a given distance
traveled, the tangent vector |I1,) maximizes
the (local) entropy production rate

o=Is= (¢|n’y)
subject to the conservation constraints

Mg, = (wiln,) =0

G.P. Beretta (U. Brescia)

Four rules of thermodynamics

Introducing Lagrange multipliers (indepen-
dent of M., but will be functions of 7), we
need to find the unconstrained maximum of

Zﬁ, (Will,)

= (M) (”wlélﬂw)

Setting

0T

o =19 - Zﬂ/ Vi) —7G|M,) =0

yields the SEA general evolution equation

n,) = 1é2)n
:

e NN A )

and substitution back into' the constraints
yields the Lagrange multipliers through the
system of equations

> (WG Bi(y) =

i

where
IA) =

(V|G |®)
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