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INTRODUCTION 

The problem of understanding entropy and irreversibility has 
been tackled by thousands of physicists during the past century. 
Schools of thought have formed and flourished around different 
perspectives of the problem. But a definitive solution has yet to be 
found. 1 

We address a mathematical problem very relevant to the question 
of nonequilibrium and irreversibility, namely, that of "designing" a 
general evolution equation capable of describing irreversible but 
conservative relaxation towards equilibrium. Our objective is to 
present an interesting mathematical solution to this "design" 
problem, namely, a new nonlinear evolution equation that satisfies a 
set of very stringent relevant requirements. 

In this lecture, we do not claim any physical meaning for the 
proposed nonlinear evolution equation. Indeed, we define three 
essentially different frameworks within which the new equation could 
be adopted, with entirely different interpretations. We purposely 
devoid this presentation of our school's quite unorthodox perspective 
on the physical meaning of entropy and irreversibility, because we 
feel that the proposed nonlinear equation constitutes an important 
advance in itself, independently of the physical conte~t for which it 
was designed and developed. 2- 4 

The lecture is organized as follows. First, we define three 
familiar mathematical frameworks within which the subsequent results 
may be interpreted. Then, we list the "design specifications" that 
we intend to impose on the desired evolution equation. We review 
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some useful well-known mathematics involving Gram determinants and, 
finally, present our nonlinear evolution equation which meets the 
stringent design specifications. 

Our views and hypotheses on entropy, nonequilibrium and 
irreversibility will be discussed in our second lecture in this 
volume • 

FRAMEWORK A: QUANTUM STATISTICAL MECHANICS AND QUANTUM THERMODYNAMICS 

Let Ie be a Hilbert space (dim Jt ~ ",5), and J... the set of all 
linear operators A, B, ••• on Je, equipped with the real inner 
product ('1') defined by 

(AlB) = ~Tr(AtB + BtA) (1a) 

where At denotes the adjoint of operator A and Tr the trace 
functional. We denote by ~ the subset of all self-adjoint, 
nonnegative-definite, unit-trace operators p in .t, i.e., 

p, p ~ 0, Trp = 1} 

We will then consider a set 

(2a) 

(3a) 

of self-adjoint operators in ~, where each Ni commutes with H, i.e., 
is such that HN. = N.H, for i = 1, •.• , r. 

1 1 

In Quantum Statistical Mechanics,1 p is the von Neumann 
statistical or density operator which represents the index of 
statistics from a generally heterogeneous ensemble of identical 
systems (with associated Hilbert space ~) distributed over a range 
of possible quantum mechanical states. 

In Quantum ThermodynamiCS,3 p is the state operator which 
represents the individual quantum state of a strictly isolated system 
with associated Hilbert space Je, in the same sense as in Quantum 
Mechanics a vector ~ in ~ represents the individual quantum state. 

In both theories, H is the Hamiltonian operator, and operator 
Ni' for i = 1, •.• , r, is the number operator for particles of type i 
in the system (if the system has a fixed number ni of particles of 
type i, then Ni = nil, where I is the identity operator on ~). 
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FRAMEWORK B: CLASSICAL STATISTICAL MECHANICS 

Let 0 be a phase space, and ,e the set of real, square
integrable functions A, B, •.• on 0, equipped with the inner product 
('1') defined by 

(AlB) = TrAB = foABdO (1b) 

where Tr in this framework denotes fndo. We denote by ~ the subset 
of all nonnegative-definite, normalized functions p in~, i.e., 

We will then consider a set 

{H, N1 , ... , Nr } 

of functions in ~. 

(2b) 

(3b) 

In Classical Statistical Mechanics, p is the Gibbs density-of
phase function which represents the index of statistics from a 
generally heterogeneous ensemble of identical systems (with 
associated phase space 0) distributed over a range of possible 
classical mechanical states. H is the Hamiltonian function, and Ni 
the number function for particles of type i. 

FRAMEWORK C: INFORMATION THEORY 

Let ~ be the set of all n x n real, diagonal matrixes 
A = diag(aj), B = diag(bj), .•• (n ~ m), equipped with the 
inner product ('1') defined by 

n 
(AlB) = TrAB = I ajbj 

j=1 
(1 c) 

We denote by i? the subset of all nonnegative-definite, unit-trace 
matrixes p in~, i.e., 

We will then consider a set 

{H, N l' ••• , Nr } 

of diagonal matrixes H diag(eJo ), N1 
N = diag(n 0) in L. 

r rJ 

(2c) 

(3c) 

d iag ( n1 j ), ••• , 
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In Information TheOry,6 p = diag(Pj) represents the probability 
assignment to a set of n events, Pj being the probability of 
occurrence of the j-th event. H, N1' ... , Nr are characteristic 
features of the events in the set, taking on the values e., n1 ., •.• , 

.. p tl·vely fo" the J·-th event. J J nrj , ,es ec " 

MEAN VALUE FUNCTIONALS AND S-FUNCTIONAL 

From here on, our notation allows us to treat at once the three 
frameworks just defined. For reasons to become apparent below, we 
call the elements H, N1, ••• , Nr in Equations 3 the generators of the 
motion. We will assume that such sets always contain at least 
element H, that we call the Hamiltonian generator of the motion. 

For each generator of the motion, we then define a mean value 
functional on ~ as follows 

TrpH 

TrpN. 
1 

(/p I/PH) 

(1PIIPN i ) 

Moreover, we define the S~functional on ~ as 

S(p) = -kTrplnp = -k(/PI/Plnp) 

(4) 

(5) 

Depending on the context, the S-functional represents the 
thermodynamic entropy, the statistical uncertainty as to the actual 
state of a system, or the information carried by the occurrence of 
one of the possible events. 

For each given set of values <H>, <N1>' ••• , <Nr >, in the range 
of the mean value functionals (Equations 4) corresponding to the 
generators of the motion, we consider the subset of all elements p in 
~ that share the given mean values, i.e., 

~«H>,<N1>,···,<Nr» = 

{p in CP Im(p;H) = <H>, m(p;Ni ) = <Ni > for i = 1, ... ,rl (6) 

On each such subset, i.e., for fixed mean values <H>, <N1>' •.• , <Nr > 
of the generators of the motion, the S-functional (Equation 5) 
achieves a unique maximum at the point 

r 
p + Lv.N.) 

i=1 1 1 
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where 

a = In Tr exp(-8H 
r 

+ Iv.N.) 
i=1 1 1 

v.«H>.(N1>·····(N » 
1 r 

(8) 

(9) 

(10) 

It is noteworthy that the maximum-S pOints satisfy the condition 

{plnp = -alP - 8IPH 
r 

+ I v.IPN. 
i=1 1 1 

( 11) 

where a. 8 and Vi' for i = 1 ••••• r. are real numbers. In words, 
the maximum-S element p is euch that /plnp lies on the linear 
manifold generated by elements /P. /PH. /PN1' •••• /PNr • This 
observation will prove useful in what follows. In particular. it is 
noteworthy that Condition 11 is satisfied not only by the maximum-S 
elements given by Equation> 7. but also by the elements given by 

p 

where 

a 

b 

e-a B exp(-bH 
r 

+ I c.N.) 
i=1 1 1 

r 
In Tr B exp (-bH + I c.N.) 

i=1 1 1 

(12 ) 

(13 ) 

(14) 

(15 ) 

and B is any idempotent element in ~ (i.e., B2 = B) commuting with p 
(this last condition is trivally satisfied within Frameworks band 
c). An element p satisfying Equation 12 maximizes S on 
~«H>,(N1>' ••• ,(Nr» and satisfies Equation 7 only if B = I (I = 
identity operator on ~ in Framework a; I = constant function equal 
to 1 on the whole n in Framework b; I = diag(1) in Framework c). 
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DESIGN SPECIFICATIONS 

Our "architectural" problem is to design a function F(·) such 
that every solution pet) of the autonomous differential equation 

d d'tP(t) = F(p(t» (16) 

with p(O) in ~(F) C cp 7 satisfies the following conditions for all 
t ;;;: 0: 

(1) pet) lies entirely in 2)(F); 

(ii) m(p(~);H' = m(p(O);H). and m(p(t);Ni ) 
for 1 = 1 ••••• 1"; 

(iii) S(p(t+u» ~ S(p(t» for all u > 0; 

m(p(O);N.) 
1 

(iv) among all the elements p in ~ with given mean values <H>. 
<N1> ••••• <Nr > of the generators of the motion. the unique 

1" 
-a ~ maximum-S element p = e exp(-~H + L viN.) 

i=1 1 
(Equations 7 to 

10) is the only equilibrium solution that is stable according 
to Liapunoff. 8 

It is noteworthy that requirement (iv) is most restrictive. For 
example. within Framework a. it rules out the von Neumann evolution 
equation (F(p) = -i(Hp-pH)/~) because all the equilibrium solutions 
(p such that Hp = pH) are stable according to Liapunoff and. in 
general. there are many such solutions for each given set of mean 
values of the generators of the motion. 

SOME NECESSARY MATHEMATICAL BACKGROUND 

Given a subset of elements A. B. 
M(A.B ••••• Z) the Gram matrix 

M(A.B ••••• Z) 
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(AlA) 

(BIA) 

(AlB) 

(BIB) 

(ZIA) (ZIB) 

. .. , Z in ~. we denote by 

(AIZ) 

(BiZ) 

(ZIZ) 

(17) 



where (01 0) is the real symmetric inner product defined on~. We 
denote by G(A,B, ••• ,Z) the Gram determinant of A,B, ••• ,Z with respect 
to the inner product (01 0), i.e., G(A,B, ••• ,Z) ; det[M(A,B, ••. ,Z)]. 
Matrix M(A,B, ••• ,Z) is nonnegative definite and, therefore, its 
determinant G(A,B, •.• ,Z) is also nonnegative. A necessary and 
sufficient condition for elements A,B, .•• ,Z to be linearly 
independent is that their Gram determinant G(A,B, ••• ,Z) be nonzero 
and, hence, strictly positive. 

Given a subset of elements A, B, ••• , Z in~, we denote by 
L(A,B, ••• ,Z) the linear manifold spanned by all linear combinations 
with real coefficients of the elements A, B, ••• , Z. With respect to 
the inner product (,1 0 ) defined on .t, we denote the projection of a 
given element V in ~ onto a linear manifold L by the symbol (V)L' 
(V)L is the unique element in L such that «V)LIX) ; (VIX) for all X 
in L. 

The theory of Gram determinants, very seldom used in the physics 
literature, offers a useful explicit way of writing the projection 
(V)L of V onto a given linear manifold L. 

Let a linear manifold L be given, e.g., by specifying it as the 
set of all real linear combinations of given elements A, B, ' ••• , Z in 
ct, not necessarily linearly independent, i.e., L ; L(A,B, ••• ,Z). 
Let us select any subset of linearly independent elements E1, E2, 
••• , Em spanning L, i.e., such that G(E1 ,E2, ••• ,Em) > 0 and' 
L(E1,E2, •.. ,Ej ) ; L. By the definition of (V)L' m 
«V)LIEj); (V Ej) for every j ; 1, 2, ... , m, and (V)L; I viEi, 
where vi are real scalars. Thus, i;1 

m 
I v.(E·IE.); (ViE.) for j; 1,2, ... , m 

i;1 1 1 J J 
(18) 

Because (EiIEj) ; [M(E1 ,E2, ••• ,Em)]ij and the elements E1, E2, ••• , 
Em are linearly independent, Equations 18 are linearly independent 
and can be solved for the v. 's to yield 

1 

m -1 
v.; I (VIE.)[M(E1 ,E2 , ... ,E) ] .. 
~ j;1 J m J 1 

for i;',2, .•• ,m (19) 

and, therefore, 

(20) 
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An alternative, completely equivalent, but more elegant expression 
for (V)L is given by 

0 E, E2 E m 
(E, I V) (E, IE,) (E,IE2) (E, I Em) 

(V)L G(E, ,E2,.·· ,Em) 
det (E2 Iv ) (E2 IE, ) (E2 IE2) (E2 IEm) 

(Emlv) (ErniE,) (Eml E2) (E IE) m m 

(21) 

We next consider an important example that we shall use directly 
in what follows. For a given element p in the set ~, we will need 
to consider the projection of /Elnp onto the linear manifold 
L ( /P ,/PH, /PNl ' ... ,I pNr ) where I p, /PH, /PN1, •.. , /PNr are not 
necessarily linearly independent. Using Equation 2' and Definitions 
, of the inner product (01 0), we find 

odet 

0 

TrpROlnp 

TrpR,lnp 

TrpR lnp 
z 

/PRO 

2 TrpRO 

, 
2Trp {R, ,RO} 

/PR, 

, 
2Trp {Ro,R, } 

TrpR, 

/PR z , 
2Trp{Ro,Rz} 

, 
2Trp {R, ,Rz } 

2 TrpR 
z 

(22) 

With this background, we can present in a quite compact form an 
evolution equation meeting our very restrictive design 
spec ifications. 
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NEW NONLINEAR EVOLUTION EQUATION 

The author designed and proposed the following evolution 
equation: 2,3 

d 
dt pet) F(p(t» 

F(p) ,i 1 1 r t r 
- fi[H,p] - 72(v pD(P) + D (p)vp) 

D(p) /plnp - (/Plnp)L( r r H rN rN ) vp,vp ,vp 1 , .•• ,vp r 

(23a) 

(23b) 

(23c) 

where [H,p] = Hp - pH (= 0 within Frameworks b and c), ~ is the 
reduced Planck constant (playing a role only within Framework a), L 

is a characteristic time constant, H, N1, ••• , Nr are fixed 
generators of the motion and, for each p, -L(/P,/PH,/PN1, ••• ,/PNr ) is 
the linear manifold generated by elements /p, /PH, /PN1 , ••• , /PN . 
Function F(p) is clearly nonlinear in p. r 

It is noteworthy that along any solution pet) D(p(t» is the 
"instantaneous distance" element between element /P(t)lnp(t) and the 
linear manifold spanned by /p(t), /P(t)H, /PCt)N" •.• , /P(t)Nr • 
At each instanf in time along a solution, the inner product of i[H,p] 
and !PD(p) + D (p)!P is equal to zero and, therefore, the unitary 
contribution to dp/dt due to the first linear term in Equation 23b is 
orthogonal to the nonunitary contribution to dp/dt due to the second 
nonlinear term in Equation 23b. 

The original motivation for the design of this new evolution 
equation, together with the physical justification of the design 
specifications, is discussed in our second lecture of this series, 
and in References 2 to 4. Here we are mainly concerned with the 
mathematical properties of the new evolution equation and its 
solutions. The properties that we list below emerge from our 
analysis of Equation 23 in References 3 and 9. In Reference 3, we 
adopt Equation 23 as the general quantum thermodynamic equation of 
motion for a single strictly isolated constituent of matter. Much 
technical mathematical work remains to be done on our conjectures in 
Reference 3. In Reference 9, by specializing the analysis to a 
single strictly isolated two-level system, we prove rigorously all 
the properties of the equation, including the existence and uniqueness 
of solutions to the initial value problem both in forward and in 
backward time. 
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For all t in the range (-~,+~), i.e., both in forward and 
backward time, if p(O) is in :D(F) C <P then: 

(i) pet) remains in ~(F), i.e., there are no forward nor backward 
escape times; 

(ii) the mean value of any linear combination of I, H, N1, .•• , Nr 
is time-invariant, i.e., for every set of real scalars a, b, 
c1 " ••• , cr ' 

Tr p(t)[aI + bH 
r 

+ I c.N.] 
i=1 1 1 

const. (24) 

(iii) S(p(t+u» ~ S(p(t» for all u > 0, because 

d G(/Plnp,/PRo,/PR1,··· ,/PRz ) 
dtS(P) (D(p)!D(p» = ~ 0 (25) 

G(/PRO,/PR1,··· ,/PRz ) 

Moreover, the strict equality applies, i.e., dS(p)/dt 
and only if p satisfies the condition 

/plnp = -alP - b/PH 
r 

+ I c./PN. 
i=1 1 1 

0, if 

(26) 

for some real scalars a, b, C1, ... , cr ' in which case p is 
said to be nondissipative, and can'be written according to 
Equation 12; 

(iv) every nondissipative p is either an equilibrium solution of 
Equation 23 or it belongs to a limit cycle. An equilibrium 
solution is unstable if p can be written according to Equation 
12 with B ~ I, whereas it is stable if p can be written 
according to Equation 7. 

In Reference 10, by specializing the analysis to a single 
strictly isolated N level system, we prove that Equation 23 implies a 
generalization of Onsager's reciprocal relations valid for all 
nonequilibrium states, close and far from stable equilibrium. 
Onsager's coefficients emerge as well-defined nonlinear functionals 
of the quantum thermodynamic state operator. 
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ADDITIONAL DESIGN SPECIFICATIONS 

A generalization of Equation 23, consistent with additional 
design specifications required for the description of composite 
systems is proposed in References 1 and 11. There, we conjecture 
that the nonlinear term in the new evolution equation implies an 
intrinsic mechanism of loss of correlations between component 
sUbsystems. 

A SIMPLEST EXAMPLE 

As an illustrative example, let us select Framework c, with 
n = 2, p = diag(x,1-x), 0 ~ x ~ 1, H = diag(1,1) and r = O. 
We discuss only the mathematical aspects of this simplest example, 
not its possible information-theoretic applications. Equation 23 
becomes 

x = {O 
1 x 

- ~ x( 1-x)ln;:x 

if x = 0 or x = 1 

ifO<x<1 

There are three equilibrium solutions, x = 0, x = 1, and x 1/2. 
The nonequilibrium solutions are 

x(t) 
[x 1(1-x )]exp(-t/T) 

o 0 (28a) 
+ [x 1(1-x )]exp(-t/T) 

o 0 

or, equivalently, 

x(t) _ -t/T l x(O) 
In1- x(t) - e n1_x(0) (28b) 

We easily verify that x(t) is either always greater or always smaller 
than 1/2, for -~ <.t < +00. The solutions are defined both in forward 
and backward time, with no finite escape times. If Xo > 1/2, then 
x(t) ~ 1 as t ~ -00. If Xo < 1/2, then x(t) ~ 0 as t ~ -~. In either 
case, x(t) ~ 1/2 as t ~ +00. The only equilibrium solution which is 
stable is the maximum-S x = 1/2, whereas equilibrium solutions x = 0 
and x = 1 are unstable. 

203 



CONCLUSIONS 

We presented a nonlinear evolution equation new to physics. The 
new equation is applicable within the frameworks of Quantum 
Thermodynamics, Classical and Quantum Statistical Mechanics, and 
Information Theory. The nonlinear equation (and its generalization 
discussed in Reference 11) yields a unique deterministic description 
of irreversible, but conservative relaxation from nonequilibrium 
towards equili9rium, and satisfies a very restrictive stability 
requirement. 

We believe that the new evolution equation will constitute an 
important mathematical "tool" for several, radically different 
nonequilibrium problems. Different schools of thought, with 
contrasting perspectives on the physical meaning of entropy and 
irreversibility, could all extract important insights from the 
richness of structure implied by this relevant nonlinear equation. 
Applications could also be found beyond the domain of physics, e.g., 
to time-dependent problems in Information Theory. 
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