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ABSTRACT

The thesis of this article is that thermodynamics is
a rigorous science, and that the first law and the second
law can be stated in an unambiguous and general way so
that their implications are concrete and valid for both
equilibrium and nonequilibrium states. In this light, we
summarize the principles of thermodynamics, and
introduce a graphical tool, the energy versus entropy
diagram, that is very helpful to explain and grasp the
general implications of these principles, especially in the
nonequilibrium domain.

PREMISE

in a recent thermodynamics text, Truesdelll!]
identifies several different "second laws”. In areview in
1986, the physicist-philosopher Bungel2] compiles a list
of about twenty ostensibly inequivalent but equally vague
formulations of the “second law". In a manuscript
published 1n 1983, Lindbladl3] gives a large number of
different expressions for entropy. No wonder scientists
and engineers are puzzled about the foundations of

thermodynamics in general, and the second law in
particular.
The thesis of this presentation f{s that

thermodynamics 15 a rigorous science, that its principles
can be stated in an unambiguous and general way, and that
the implications of these principles are concrete and valid
for both equilibrium and nonequilibrium states.

In this article, we present a concise summary of the
principles of thermodynamics. The summary provides
evidence in support of our thesis.

Most of the definitions, statements, angd
opbservations presented here, as well as the graphical

representation by means of the energy versus entropy
diagram, are well familiar to the M.1.T. alumni who took
the graduate course taught by the first author during the
last twenty years (jointly with the second author during
the last six), but are published here for the first time, and
cannot be found in any of the textbooks on thermodynamics
published to date.

INTRODUCTION

Thermodynamics  is  concerned  with  the
instantaneous condition that any material may assume, and
the time-dependent evolution of this condition that may
occur either spontaneously or as result of Interactions
with other materials, or both. It 1s a science with the
same objective as the whole of physics and, therefore,
subsumes each special branch of physics, such as the
theory of mechanics, electromagnetism, and classical
thermodynamics, as a special case.

Because of the breadth and depth of its scope, the
exposition of  thermodynamics  requires rigorous
consideration of many basic concepts. Some of these
concepts are very well known from introductory courses in
physics and, for this reason, we assume that ideas such as
space, time, velocity, acceleration, mass, force, kinetic
energy, and potential energy are well understood and need
not be reemphasized. On the other hand, other concepts
such as those represented by the terms system, property,
state, process, energy, and entropy are sometimes not
clearly defined and need special emphasis. We begin our
discussion with a brief summary of these concepts
Results derived from the laws of the theory are stated
without proofs.



SYSTEMS, PROPERTIES AND STATES

A system is a collection of constituents which is
defined by the following specifications: (a) the type and
the range of values of the amount of each constituent; for
example, | water molecule, or between S and 10 kg of
atmospneric air; (b) the type and the range of values of
the parameters which fully characterize the external
forces that are exerted on the constituents by bodies other
than the constituents,(4! for example, the parameters that
describe the geometrical shape of an airtight container;
and (c) the internal forces between constituents such as
the forces between water molecules, the forces that
promote or 1inphibit a chemical reaction, the partitions
separating constituents in one region of space from
constituents in another region, or the interconnections
between separated parts. Everything that is not included
in the system is called the environment or the
surroundings of the system.

For a system consisting of r different types of
constituents, we denote their amounts by the vector
0 = [ny,ng,..,NrJ, where ny stands for the amount of the first
type of constituent, np for the amount of the second, and
so on. For example, the different types of constituents
could be: three specific molecules, such as the Hp, 0o, and
H20 molecules, with amounts denoted, respectively, by ny,
n2, and n3; two specific atoms, such as the H and O atoms,
with amounts denoted, respectively, by n; and np; four
specific fons, such as the H*, O-, HzO*, and OH- ions, with
amounts denoted, respectively, by ny, ng, n3, and ng; three
specific elementary particles such as the electron, proton,
and neutron particles, with amounts denoted by ny, np, and
n3; or a single specific field such as the electromagnetic
radiation field, with amount denoted by n and equal to
unity, n=1.

It is clear that for each set of different types of
constituents there may be different arrangements of
internal forces between constituents. For example, if only
H20 molecules are considered then the only internal force
is that between the Ho0 molecules. Again, If H.0, Hp and
Oz molecules are considered, and the chemical reaction
Hz + ¥202 = Hp0 occurs, the intermolecular forces between
all types of molecules must be specified as well as the
forces that control the chemical reaction.

For a system with external forces described by s
parameters, we denote the parameters by the vector
8 = (B1,B2,-,Bs), where By stands for the first parameter,
B2 for the second, and so on. For example, one of the
parameters could be the side L or the volume v of a three-
dimensional cubic container which encloses the
constituents that belong to the system, and separates
them from all the others that do not and are outside the
enclosure. Again, another parameter could be the potential
» of a uniform gravitational field in which the
constituents are immersed, the potential ¢ of an
electromagnetic field in which the constituents are
floating, or the area g of a two-dimensional surface in
space on which the constituents are constrained.

Do

Al any Instant of time, the amount of each type of
constituent and the parameters of each external force have
specific values within the corresponding ranges of the
system. By themselves, these values do not suffice to
Characterize completely the condition of the system at
that time. We need, in addition, the values of all the
properties at the same instant of time.S! Each property
IS an attribute that can be evaluated by means of a set of
measurements and operations which are performed on the
system and resuit in a value -- the value of the
property . This value is independent of the measuring
devices, other systems in the environment, and the history
of the system. For example, the instantaneous position of
each molecule of a constituent s a property of a system.

Some properties 1n a given set are independent if
the value of each such property can be varied without
affecting the value of any other property in the set. Other
properties are not independent. For example, speed and
kinetic energy of a molecule are not independent
properties.

The values of the amounts of all the constituents,
the values of all the parameters, and the values of a
complete set of independent properties encompass all that
Can be said at an instant of time about a system and about
the results of any measurements or observations that may
be performed on the system at that instant of time. As
such, the collection of all these values constitutes a
complete characterization of the system at that instant of
time. We call this characterization at an Instant of time
the state of the system.

CHANGES OF STATE WITH TIME

The state of a system may change with time either
spontaneously due to the internal dynamics of the system
or as aresult of interactions with other systems, or both.
A system that can experience only spontaneous changes of
state, i.e, a system that cannot induce any effects on the
state of the environment, is called isolated. Systems
that are not isolated can interact with each other in a
number of different ways, some of which may result in net
flows of properties from one system to another. For
example, an interaction by means of elastic collisions
results in the flow or transfer of momentum from one
system to the other.

The relation that describes the evolution of the
state of a system as a function of time is the equation of
motfon. In thermodynamics, the complete equation of
motion is not known. For this reason, the description of a
change of state 1s done In terms of the end states, 1.e, the
initial and the final states of the system, the modes of
Interactions that are active during the change of state, and
conditions that have been established even without the
complete knowledge of the equation of motion. Each mode
of interaction is characterized by means of well-specified
net fiows of properties across the boundaries of the
Interacting systems. The conditions are conseguences of
the taws of thermodynamics which reflect facets of the



equation of motion. For example, the conditions that
energy Is conserved and entropy cannot be destroyed are
time-dependent.  Yet, they will be derived without
knowledge of the complete equation of motion.

The end states and the modes of interactions
associated with a change of state of a system are said to
specify a process. Processes may be classified on the
basis of the modes of interactions they involve. For
example, a process that involves no interactions is called
a spontaneous process. Again, a process that involves
interactions that result in no external effects other than
the change in elevation of a weight (or an equivalent
mechanical effect) is called a weight process.

Another important classification of processes is in
terms of the possibility of annulling all their effects. A
process may be either reversible or irreversible. A
process is reversible if there is a way to restore both
the system and 1ts environment to their respective nitial
states, ie, if all the effects of the process can be
annulled. A process is Irreversible if there 1s no way to
restore both the system and its environment to their
respective initial states.

It is noteworthy that, in general, a system A that
undergoes a process from state Ay at time t; to state A,
at time tp is well-defined at these two times but 15 not
necessarily well-defined during the lapse of time between
ty and t2. The reason is that the interactions which induce
the change of state may Involve such temporary
alterations of internal and external forces that no system
A Can be defined during the period t; to tp. Said more
formally, in the course of interactions a system may not
be either separable, or uncorrelated, or both from the
systems with which it interacts.

ENERGY, AND ENERGY BALANCE

The main consequence of the first law of
thermodynamics is that every system A in any state A has
a property calied energy and denoted by the symbol Ey. In
particular, the first law asserts that any two states
of a system can always be interconnected by
means of a weight process and, for a given weight
subject to a constant gravitational acceleration,
the change in elevation during such process Is
fixed uniquely by the two states of the system.

The energy E; of any state A; can be evaluated by
means of an auxiliary weight process that interconnects
state Ay and a reference state A, to which is assigned a
fixed reference value E,, and the expression

E]'Eo='mg(21'20) (1

where m 1s the mass of the weight, g the gravitational
constant, and z the elevation of the welgnt.

Energy is an additive property. Moreover, energy
remains constant in time whenever the system
experiences a zero-net-effect weight process or a
spontaneous process. Because of additivity, and because

any process or a system can always be thought of as part
of a zero-net-effect weight process of an overall system
consisting of all the Interacting systems, the conclusion
that as time proceeds energy can neither be created nor
destroyed, is of great generality and practical importance,
and Is known as the principle of energy conservation,

Energy can be transferred between systems by
means of interactions. Denoting by EA« the net amount of
energy transferred from the environment to system A as a
result of ali the interactions involved In a process that
changes the state of A from A; to Ay, we derive an
extremely important analytical tool that is used in all
physics and engineering applications -- the energy
balance equation. This equation is based on the additivity
of property energy and on the principle of energy
conservation. It requires that, as a result of a process,
the change in the energy of the system from E; to E; must
be equal to the net amount of energy EA« transferred into
the system, i.e,

B2 -E| = EAC (2)

TYPES OF STATES

Because the number of independent properties of a
system is very large even for a system consisting of a
single particle with a single degree of freedom, and
because most properties can vary over a large range of
values, the number of possible states of a system is very
large. To facilitate the discussion of these states, we
find it useful to classify them into different categories
with common features based on some criterion. In
particular, we find that a classification of states
according to their time evolutions, i.e., according to the
way each state changes as a function of time, brings forth
many important aspects of physics.

We classify the states of a system into four types:
unsteady, steady, nonequilibrium, and equilibrium.
Moreover, we further classify equilibrium states into
three types: unstable, metastable, and stable.

Unsteady 1s a state that changes as a function of
time because of interactions of the system with other
systems. Steady Is a state that does not change as a
function of time despite interactions of the system with
other systems in the environment. Nonequilibrium is a
state that changes spontaneousiy as a function of time,
l.e, a state that evolves as time goes on without any
effects on or Interactions with any other systems.
Equilibrium 1s a state that does not change as a function
of time while the system is isolated -~ a state that does
not change spontaneously. Unstable equilibrium 1s an
equilibrium state which, upon experiencing a minute and
short lived influence by a system in the environment,
proceeds from then on spontaneously to a sequence of
entirely different states. Metastable equilibrium is an
equilibrium state that may be changed to an entirely
different state without leaving net effects in the



environment of the system, but this can be done only by
means of Interactions which have a finite temporary
effect on the state of the environment. Stable
equilibrium is an equilibrium state that can be altered to
a different state only by interactions that leave net
effects in the environment of the system.

Starting either from a nonequilibrium state or from
an equilibrium state that i1s not stable, a system can be
made to raise a weight without leaving any other net
changes In the state of the environment. In contrast, if we
start from a stable equilibrium state such a raise of a
weight is impossible. This impossibility is one of the
most  striking consequences of the laws  of
thermodynamics.

ADIABATIC AVAILABILITY AND AVAILABLE ENERGY

The main consequence of the second law of
thermodynamics is that not all states of a system can be
changed to a ground state by means of a weight process,
l.e, in general, not all the energy above the ground-state
energy can be transferred to the weight 1n a weignt
process. In particular, the second law asserts that
among all the states of a system with given values
of the energy, the amounts of constituents and the
parameters, there exists one and only one stable
equilibrium state.  Moreover, starting from any
state of a system it is always possible to reach a
stable equilibrium state with arbitrarily specified
values of amounts of constituents and parameters
by means of a reversible weight process.!6] It aiso
implies that from any stable equillbrium state, no energy
Can be transferred to the weight in a weight process If the
given values of amounts of constituents and parameters
experience no net changes?] A slightly modified version
of the law is discussed later.

Close examination of the question “how much energy
Can be transferred to a weight in a weight process of a
system?” discloses that every system A in any state A,
has a property called adiabatic availability, denoted by
the symbol w1, equal to the energy transferred to a weight
In the course of a reversible weight process that
interconnects state Ay and a stable equilibrium state Asy
with the same values of amounts of constituents and
parameters as state A;. It also discloses the existence of
another  property called generalized adiabatic
availability which is determined in the same manner as
the adiabatic availability except that the values of the
amounts of constituents and parameters of the final stable
equilibrium state differ from those of state A;. Adfabatic
availability is not an additive property.

The adiabatic availability of a composite system
consisting of a system A in state Ay and a given reservoir
R fixed once and for all 1s an additive property catied
available energy with respect to reservoir R, and
denoted by the symbol QiR A reservoir Is an idealized
kind of system with a behavior that approaches the
following three limiting conditions: (1) it passes through

stable equilibrium states only; (2) in the course of finite
changes of state it remains in mutual stable equilibrium
with a duplicate of itself that experiences no such
changes; and (3) at constant values of amounts of
constituents and parameters of each of two reservoirs
initially in mutual stable equilibrium, energy can be
transferred reversibly from one reservoir to the other
with no net effects on any other system. Two systems are
inmutual stable equilibrium if their combination is in
a stable equilibrium state.

The available energy QR of a system A in any state
Ar with respect to a reservoir R is the largest amount of
energy that can be transferred to a weight in a weight
process for the combination of system A and the reservoir
R without changing the values of the amounts of
constituents and the parameters of the system and the
reservolr.

A generalized available energy may also be
defined as a property of a system A in any state A; with
respect to areservoir R. It differs from available energy
only in that the final state of system A does not
correspond to the same values of the amounts of
constituents and parameters as state Ay

A distinguishing feature of both adiabatic
availability and available energy iIs that neither of these
two properties 1s necessarily conserved in weight
processes. Each cannot be created but is destroyed in any
process that is irreversible. Said differently, in the
course of an irreversibie weight process a system loses
some of its potential ability to transfer energy to a
weight.  Whereas energy 1s conserved, the amount of
energy that can be transferred to a weight in a weight
process -- the potential of a system to perform useful
tasks -- is not conserved. This potential cannot be
created but may be dissipated to a lesser or larger degree
depending on whether the process is a little or a lot
irreversible. A quantitative measure of irreversibility can
be expressed in terms of the property entropy discussed in
the next section.

A noteworthy feature of energy, adiabatic
avallability, and available energy is that these properties
are defined for any state of any system, regardless of
whether the state is steady, unsteady, equilibrium,
nonequillorium, or stable equilibrium, and regardiess of
whether the system has many or few degrees of freedom,
or whether its size {s large or small.

ENTROPY, AND ENTROPY BALANCE

An Important consequence of the laws of
thermodynamics Is that every system A in any state Ay has
a property called entropy , and denoted by the symbol S;.
Entropy fs a property in the same sense as energy is a
property. It can be evaluated by means of an auxiliary
reservoir R, a reference state A, to which is assigned a
fixed reference value 5o, and the expression



S1=Se+ cpt [(E) ~Eo ) = (QR - QR (3)
where cp Is a well-defined constant -- for the given
auxiliary reservoir R -- selected in such a way that the
values of entropy found by means of Equation 3 are
independent of the reservoir. In other words, despite the
dependence of the value QR - QR in Equation 3 on the
selection of the reservoir R, we can show that there is a
constant property cp of reservoir R that makes the right-
hand side of Equation 3 independent of R, s0 that S is a
property of system A only, in the same sense that energy E
is a property of system A only. Later on, when
temperature is defined as a property of stable equilibrium
states, we can show that cp equals the constant
temperature of reservoir R.

Entropy -- like energy -- is an additive property.
whereas energy remains constant in time whenever the
system experiences a zero-net-effect weight process,
entropy remains constant in time only when the weight
process is reversible. in the course of any irreversible
weight process, the system destroys part of its potential
abllity to transfer energy to a welght, and i1ts entropy
increases with time. Because of additivity, and because
any process of a system can always be thought of as part
of a welght process of an overall system consisting of all
the interacting systems, the conclusions that as time
proceeds entropy can either be created, if the process is
irreversible, or remain constant, if the process s
reversible, but can never be destroyed, are of great
generality and practical importance, and are known as the
principle of entropy nondecrease. The entropy
created as time proceeds during an irreversibie process is
called entropy generated by irreversibility or
entropy production due to irreversibility

Entropy -- like energy -- can be transferred
between systems by means of Interactions. Denoting by
SA<  the net amount of entropy transferred from the
environment to system A as aresult of all the interactions
involved in a process that changes the state of A from A,
to Az, we derive another extremely important analytical
tool that -- together with the entropy balance -- is used
in all physics and engineering applications -- the entropy
balance equation. This equation is based on the additivity
of property entropy and on the principle of entropy
nondecrease. |t requires that, as aresult of a process, the
change in the entropy of the system from S; to S must be
equal to the net amount of entropy SA« transferred into
the system, plus the amount of entropy S, generated
inside A due to the irreversibility of the process, i e,

S2 =51 =5AC + Sy (4

It is worth repeating that S is defined for any state
of any system because £ and QR are defined for any state
of any system.

w

STABLE EQUILIBRIUM STATES

Another important conseguence of the laws of
thermodynamics Is that any stable equilibrium state ang,
therefore, the value of any property of the system in a
stable equilibrium state is uniquely determined by the
values of the energy E, the amounts of constituents ny, no,
- N, @and the parametrs By, By, .., Bs, 1.e., any property P
can be written as a function of the forml[8

P = P(E,ny,02,..,00,B 1,B2,...,Bs) (5)

This result, known as the stable-equilibrium-state
principle or, simply, the state principle, expresses a
fundamental physical feature of the stable equilibrium
states of any system, and implies the existence of
fundamental interrelations among the properties of these
states. in general, a system admits an indefinite number
of states that have qiven values of the energy E, the
amounts of constituents ny, ng, .., Ny, and the parameters
B1, B2, ... Bs. TMost of these states are nonequilibrium,
some are equilibrium, and only one is stable equilibrium.

Relation 5, when written for property entropy, l.e.,

S = S(E,ny,n2,...,00,B1,B2,...,Bs) (6)
1s known as the fundamental stable-equilibrium-
state relation for  entropy or, simply, the
fundamental relation. The function S(E,p,3) admits
partial derivatives of all orders and, therefore, any
difference between the entropies of two stable
equilibrium states may be expressed in the form of a
Taylor series in terms of differences in the values of the
energy, amounts of constituents and parameters of the two
stable equilibrium states. In addition, the function
S{E,n,@) is concave in each of the variables E, ny, Ny, ..., Nr,
in the sense that (325/3E2)yq < 0, and (325/3n12)g 5,8 $ O for
each 1. 1t is also concave in each of the parameters By, Ba,
.. Bs which are additive, again in the sense that
(025/8B 2k 0p < O. It is noteworthy that the entropy of
each unique stable equitibrium state is larger than that of
any other state with the same values of E, n, and 8. This
latter assertion 15 known as the highest entropy
principle .

Equation & may be solved for E as a function of S, ny,
N2, .., Nr, B, B2, .., Bs S0 that

E=ES,n,n2,.000,B1,B2,..,85) (7)
The function E(S,n,B) admits partial derivatives of all
orders and, therefore, any difference between the energies
of two stabie equilibrium states may be expressed in the
form of a Taylor series In terms of differences in the
values of the entropy, amounts of constituents and
parameters of the two stable equilibrium states.



Each first order partial derivative of either the
function S(E,n,3) or the function E(S,n.B) represents a
feature of the family of stable equilibrium states of a
System, and plays an important role in establishing
conditions for mutual stable equilibrium with other
systems. Each such derivative is a property defined only
for the stable equilibrium states of the system.

The absolute temperature or, simply, the
temperature T is defined as the inverse of the partial
derivative of S(E,n.B) with respect to energy, or the
partial derivative of E(S,n,8) with respect to entropy, te.,

T = (35/3E) g = (3E/3S) g (8)

The total potential of the i-th constituent y,
is defined by either of the two relattons

Wy = (E]E/am)s_&a =-T (aS/an.)g,,w_ (9)

The generalized force conjugated to the j-th
parameter f;is defined by either of the two relations

)= (3E/3B s, = -T (35/3B k.0 g (10)

When volume V 1s a parameter, the negative of the
generalized force conjugated to V is called pressure,
denoted by p, and given by either of the two relations

p=-(0E/aV)s 0,3 =T (3S/3VIe pg an

Equality of temperatures of two systems is a
necessary condition for the two systems to be in mutual
stable equilibrium. Equality of total potentials of a
constituent common in two systems 1S a necessary
condition for the two systems to be in mutual stable
equilibrium If that constituent in each of the two systems
can be changed over a range of values. Equality of
pressures of two systems, each having volume as a
parameter, is another necessary condition for the two
systems to be in mutual stable equilibrium if the volume
of each system can be changed over a range of values.

In terms of T. p, fj's and uy's, the differences in
energy, dt, entropy, dS, volume, dV, parameters, dps, ...,
dBs, and amounts of constituents, dnj, dny, ..., dn., between
two neighboring stabie equilibrium states are related by

S r
dE=TdS-pdVv+ T fidBj+ 2 wdn (12)
=2 i=1

WORK AND HEAT INTERACTIONS

Interactions result In the exchange of properties
across the boundaries of the interacting systems. Various
combinations of exchanges are used to classify
interactions into different categories.

An interaction between two systems that results in
a transfer of energy between the two systems without any

transfer of entropy is classified as a work interaction,
and the amount of energy exchanged as a result of such an
interaction as work. All interactions that result in the
exchange of entropy between the interacting systems are
called nonwork interactions.

A process of a system experiencing only work
interactions is called an adiabatic process. Any process
that  involves nonwork  interactions 1s  called
nonadiabatic .

tn the course of an adlabatic process, system A
changes from state A; to state Ap, the energy exchange
EA“ equals the negative of the work done on the
environment WA=, ie, EAc = -WA> and the entropy
exchange SA~ = 0 Therefore, the energy and entropy
balances are

]

Er-Ey= -WA= (3
5251 = Sier (1)

A special example of a nonwork interaction that is
entirely distinguishable from work 1is an interaction
between two systems, initially differing infinitesimally
In temperature, that results in a transfer of energy and a
transfer of entropy between the two systems such that the
ratio of the amount of energy transferred to the amount of
entropy  transferred equals the almost common
temperature of the interacting systems. It is called a
heat interaction , and the amount of energy transferred
as a result of such an interaction heat.

Often, n applications, a system A consists of many
subsystems, one of which A’ 1s I1n a stable equilibrium
state at a temperature Tq. Similarly, a system B consists
of many subsystems, one of which B' is in a stable
equilibrium state at temperature aimost equal to Tq. If
the two subsystems A" and B' experience a heat
interaction, then we say that systems A and B experience a
heat interaction at temperature Tq, even though A and B
are not necessarily in stable equilibrium states.

In the course of a process that tnvolves only a heat
interaction at temperature Tq, system A changes from
state Ay to state A, the energy exchange 1s EA< = QA+, and
the entropy exchange SA+ = QA</Tq. Therefore, the energy
and entropy balances are

Er - Ey = QA- (15)
S2 =51 = QA/Tq * Sirr (16)

If a process of a system A involves both work and
heat but no other Interactions, the energy and entropy
balances for A are

Es-Ey = QA - WA (17)

S‘Z—S] = QAQ_/TQ +S|rr (18)

or, for differential changes,



dE = 8QA« - WA~ (19)
dS = SOAQ—/TQ + Ss]rr (20)

Equations 19 and 20 can be combined with Equation
I2 to find relations between interaction transfers of
energy and entropy and changes in properties.

work and heat interactions are most frequently
encountered In engineering applications.

Otnher interactions, involving transfers of energy,
entropy, and amounts of constituents, can be defined but
will not be discussed here.

GRAPHICAL REPRESENTATIONS ON
THE ENERGY VERSUS ENTROPY DIAGRAM

Because they are defined in terms of the values of
the amounts of constituents, the parameters, and a
complete set of independent properties, states can in
principle be represented by points in a multidimensional
geometrical space with one axis for each amount,
parameter and independent property. Such a
representation, however, would not be enlightening
because the number of independent properties of any
system is indefinitely large. Nevertheless, useful
information can be summarized by first cutting the
muitidimensional space with a plane corresponding to
given values of each of the amounts of constituents and
each of the parameters, and then projecting the result onto
a two-dimensional plane -- a plane with two property
axes. One such piane that illustrates many of the basic
concepts of thermodynamics Is the energy versus entropy
plane.

We consider a system with volume, V, as the only
parameter. For given values of the amounts of
constituents and the volume, we project the
muitidimensional state space of the system onto the E
versus S plane. This projection must have the shape of the
cross-hatched area shown in Figure 1, namely, all the
states that share the given characteristics have property
values that project on the area between the vertical line
denoted as the line of the zero-entropy states, and the
curve of the stable equilibrium states.

A point either inside the cross-hatched area or on
the vertical line S = O represents a large number of states.
Each such state has the same values of amounts of
constituents, volume V, energy E,” and entropy S, but
differing values of other properties, and is not a stable
equilibrium state. It can be any type of state except a
stable equilibrium state.

A point on the convex curve of the stable
equilibrium states represents one and only one state. For
each of these states, the value of any property is uniquely
determined only by the values of the amounts of
constituents, the volume, and the pair (E,S) of the point on
the curve.

Line of the zero-
entropy states
T ———

s Curve of the stable
S = S(E,n,V)
or

equilibrium states
£ = E(S,Q,V)

for fixed n and V

Energqy E

Slope = (g—g)n v T

WV

Entropy S

Figure 1

«

This projecttion of states on the E versus S plane is
novel because it includes both stable equilibrium states
and other states that are not stable equilibrium whereas,
usually, graphical representations of thermodynamic
relations are restricted to stable equilibrium states only.

Zero Entropy Line

The line of the zero-entropy states corresponds to
all the states that have the least amount of entropy. This
amount can be assigned the value zero because the laws of
thermodynamics imply that no states exist with lower
entropy. Thus, entropy has absolute values greater than or
equal to zero. it turns out that the zero-entropy hine
represents all the states that are defined in mechanics
(classical or guantum) without concern about the laws of
thermodynamics. So mechanics can be thought of as a
special case of thermodynamics, namely, as zero-
entropy physics.

Lowest EperQy OStates

For the given values of the amounts of constituents
and the volume, the lowest energy of the system is Eq It
corresponds to @ unique stable equilibrium state having
zero entropy and zero temperature. We discuss this
conclusion in more detail in the section on the third law.

The energy Eq is the lowest energy for which the
system can exist with the given types and amounts of
constituents, and for the given value of the volume. For
example, if the system consists of one hydregen molecule
In a small container, Eq would be the smallest value of the
energy of the hydrogen molecule. The smallest energy of
two hydrogen atoms in the same container would clearly



differ from Eq For other values of the amounts of the
constituents and the volume, the lowest energy state is
different from that in Figure 1 but still a stable
equilibrium state with zero entropy and zero temperature.

The Fundamental Relation

The stable-equilibrum-state curve can be regarded
as representing either the convex stable equilibrium state
relation E wversus S or, equivalently, the concave
fundamental relation S versus E, both for the given values
of the amounts of constituents and the volume. |t is a
single-valued relation because for each set of values E, q,
and V there is one and only one stable equilibrium state
and, therefore, a unique value of S.

The shape of the stable-equilibrium-state curve is
convex as shown because this is the only shape consistent
with the results derived from the laws of
thermodynamics, and that we summarize below with
reference to Figure 2.
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Each stable equilibrium state is a state of
lowest energy among all the states with the same
values of S, p, and V. For each set of values Sy, 0, and
'V, the stable equilibrium state Agy on the vertical line S =
* Sy is the state of lowest energy -~ no states exist below
Agy that correspond to the same values of pand V, and that
lie on the iine S = 5y, State Agy can be reached starting
from any state A; on the line S = Sy by means of a
reversible weight process without net changes inp and v
indeed, in such a process the net change in the entropy of
the system Is zero, Ss1 = Sy, and the energy Ey - Egy IS
transferred out from the system to the weight.

tach stable equilibrium state is a state of
highest entropy among ail the states with the
same values of E, n, and V. For each set of values €1,
0, and V, the stable equilibrium state Ag; on the horizontal
line £ = £y is the state of highest entropy -- no states
exist beyond Agy that correspond to the same values of n
and V and that 1te on the 1ine E = Ey. In an isolated system
-- & system experiencing no interactions -- state Agy can
be reached starting from any state Ay on the line £ = E¢ by
means of a spontaneous change of state. Any such
spontaneous process would be Irreversible because it
entails an increase in the entropy of the system without
any effects on the environment.

Temperature is positive and increasing with
energy. Because each stable equilibrium state is unique,
the temperature (3E/3S)yy at each point on the convex
boundary is uniguely defined. Temperature is not defined
for states that are not stable equilibrium because then E
depends on more variables than S, p, and V and, therefore,
more quantities should be kept fixed while finding the
partial derivative of E with respect to S. More
importantly, however, even if the variables in addition to
S, D, and V were specified, the partial derivative of £ with
respect to S would not be the guantity that enters the
temperature equality requirement for systems in mutual
stable equilibrium and, therefore, such a derivative would
not be measurable by the techniques of temperature
measurements..

Perpetual Motion of the Second Kind

Starting from a stable equilibrium state Asy on the
convex boundary EgAsiAgy, the system cannot transfer
energy to a weight without net changes in the values of
the amounts of constituents and the volume because no
state of lower energy exists that has an entropy equal to
or larger than the entropy of state As;. Indeed, if energy
were transferred to a weight, the energy of the system
would be reduced. But starting from state Asy all states
with smaller energy have also smaller entropy. Because
the weight receives only energy, and entropy cannot
decrease by itself, it follows that no such transfer can
occur under the conditions specified. This feature of the
graph represents the Impossibility of perpetual motion
machines of the second kind. This impossibility is
sometimes expressed as the nonexistence of a Maxwellian
demon, the nonexistence of a superbeing that would be
capable of extracting energy but no entropy from a stable
equilibrium state without affectingpand V.

Classlcal Thermodynamics

For each set of given values of amounts of
constituents and volume, the convex boundary EgAsiAgi
represents the corresponding stable equilibrium states.

These are the states considered fn  equilibrium
thermodynamics, which 1s sometimes also called
“Classical thermodynamics" or “thermostatics”. These



states are often referred to in the literature as the
thermodynamic equilibrium states.  So, equilibrium
thermodynamics can be thought of as another special
case of thermodynamics, namely, as highest-entropy
physics.

Adiabati vailabilit

For a given state A, the energy Ei - Esy shown
graphically in Figure 3 1is equal to the adiabatic
availability g of Ay because the change of state from A,
to Ag) represents the change specified in the definition of
1. We see from the figure that, in general, yy is smailer
than the energy of the system above the ground state
energy, £y - B¢ It varies from &y - Eq to zero as the
entropy Sy of the state varies from zero to the highest
value that is possible for the set of values Ey, p and V. So
entropy affects the usefulness of the energy of a system,
i.e., the larger the entropy for given values of E, n and V,
the smaller the adiabatic availabiiity. This limitation on
the amount of energy that can be transferred from a
system to a weight in a weight process without net
changes In the values of n and V 1S a consequence of the
laws of thermodynamics of paramount theoretical
importance and with many practical implications.
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For given values of nand V, we see graphically from
Figure 3 that stable equilibrium states, such as for
example state Asy, have zero adiabatic avatiability, and
that any state with nonzero adiabatic avatlability cannot
be stable equilibrium.

work In an Adiabatic Process

In an adiabatic process without net changes in
amounts and volume, the work done by the system starting
from state Ay and ending in a state different from Ag;
(Figure 3) is always smaller than the adiabatic
avaiiability wy.

If the process is reversible, the final state Ao = Agy
must have entropy Sz = Sy, and energy £z > Es1. Therefore,

(WA_’)revz E\—EQ < EI-'ES‘: ¥ (2])

If the process is irreversible, the final state Az =
Asy must have entropy Sz > Sy. But for Sz > Sy, the graph
shows that Az must have energy E3 > Esy and, therefore,

(WA?) = E1 - E3 < By~ Egy = 4 (22)
Here, the entropy increase Sz - Sy 1S not supplied by

another system because the process is adiabatic and,
therefore, is generated by irreversibility.

~Available Energy

The ER versus SR diagram of a reservoir R is just a
straight line of slope Tgr (Figure 4) because the reservoir
passes through stable equilibrium states only, and can be
shown to have constant temperature. It is noteworthy
that, for very smail values of entropy, no system can
behave as a constant nonzero temperature reservoir
because as entropy approaches zero, the temperature of
any system must also approach zero. Moreover, no system
at zero temperature can be regarded as a reservoir because
its entropy cannot be both decreased and increased, and
because for a finite entropy increase the temperature
becomes greater than zero.
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Given the £ versus S diagram of a system A with
specified values of amounts of constituents and volume,
and a reservoir R at temperature Tg, we can draw a line of
slope Tr tangent to the convex stable-equilibrium-state
curve of system A, le., tangent to the curve EgAsiAo In
Figure 5. The point of tangency Aq represents the state Ag
in which system A {s in mutual stable equilibrium with the
reservoir because In state Ag the system has a
temperature To = (3E/39S)y and, therefore, equal to the
temperature Tg of the reservoir. In state Ap the system
has energy Eo and entropy S
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The tangent Is also useful In providing a way to
represent graphically the available energy of any state of
A. Specifically, for a given state A, the vertical distance
of point Ay from the tangent, ie, the energy £y - E,
represents the available energy QR of Ay with respect to
reservoir R.

Indeed, with respect to reservoir R, the available
energy QiR of state Ay with energy Ey and entropy Sy is
given by the relation

QR=Ey-Ep - Tr(S; - So) (23)
because the avallable energy QoR of state Ay is zero. We
recall that the available energy QR equals the work that
would be done in the course of a reversible weight process
for the combination of systems A and R in which A would
end in state Ao (Figure S) and R would change from state
Ri to state Rp (Figure 4).

The term E; - Eo In the right-hand side of Equation
23 is the length bA; in Figure 5, i.e, the negative of the
change in energy of system A as it goes from state A; to
state Ag. The term -Tr(Sy - Sp) 1s the length ab because
ab = (bAgitans = (So - S1)Tr. Of course ab is also equal to
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the negative of the change in energy E\R - ER of the
reservoir as it goes from state Ry to state Ry (Figure 4).
Thus, the length aA; = bA; + ab is indeed the negative of
the energy change of the combination of A and R and,
therefore, the available energy QR of state A;.

The graphs in Figures 4 and S also account for the
entropy changes that correspond to any reversible process
that yields the available energy. They show that the
change in entropy So - Sy of system A is equal and opposite
the change in entropy SoR - S4R of the reservoir R.

By comparing the graphical representations for
and Q4R (Figures 3 and 5), we see that in general the
avallable energy QR is greater than the adiabatic
avatlability w;. We also see that QR can be greater than
the energy of the system above the ground-state energy,
E1 - Eg For states with energy E;, the available energy
varies from the largest value £y - Es to the lowest vaiue
£y - E4 depending on the entropy Sy of state Ay, ie,
depending on whether the entropy is zero or the largest for
the given Ey, respectively.

It is noteworthy that although the available energy
can be extracted as a result of an adiabatic process for the
combination of systems A and R, the processes
experienced by both A and R are not necessarily adiabatic
because they may Involve exchanges of both energy and
entropy. In fact, it Is precisely the exchange of entropy
between A and R that results In sometimes the available
energy being greater than the energy of A, or in getting
work even when A is In a stable equilibrium state,
provided that A and R are not initially in mutual stable
equilibrium. In this sense, the reservoir acts as a source
or sink of entropy for A. Of course, this entropy exchange
between A and R 1s always accompanied by a definite
energy exchange because the reservoir must change both
its entropy and its energy as It passes from stable
equilibrium state to stable equilibrium state.

One of the many ways of extracting the available
energy of, say, state Ay (Figure 5) is as follows. We first
use machinery that Interacts reversibly and adiabatically
with A only, and extracts the adiabatic availability w.
Thus, system A 15 brought to stable equilibrium state As;.
At this state, the system is in general at a temperature
different from that of the reservoir. Next, we connect the
system to the reservolr via reversible heat engines that
cool or heat the system to temperature Tp while producing
work. Thus, the total work done QiR is greater than .

Examples of Work interactions

Graphical illustrations of work-only interactions
between two systems A and B are provided by Figure 6.
The combination of A and B is isolated and immersed in a
vacuum, so that both A and B can change volume with no
external effects. Moreover, the process for each system is
reversible. Accordingly, the energy change of A is equal
and opposite to the energy change of B, and the entropy
changes of both A and B are zero because a work
interaction does not transfer any entropy and the
processes for both A and B are reversible.



System A

System B

> (b)

Figure 6

As aresult of the interaction depicted in Figure ©a,
the state of A changes from state A; to state Az and that
of B from state B; to state By, none being a stable
equilibrium state. Moreover, the volume of either system
A, or system B or both may or may not change.

As a result of the interaction shown in Figure 6b,
the state of A changes from Az to Ag and that of B from Bz
to B, all being stable equilibrium states. Here the volume
of system A changes from VzA to V4A, and the volume of
system B from V3B to V8.

As a result of the interaction shown in Figure 6c,
the state of A changes from stable equilibrium state As to
state Ag that is not stable equilibrium and may or may not
have a different volume than As, whereas the state of B
changes from state Bs to state Bg both being stable
equilibrium states, but with different volumes VsB and
VeB.

For the conditions specified in Figures 6a and 6c,
the processes for systems A and B could evolve into
irreversible processes because some of the final states of
A and B are not stable equilibrium and, therefore, the
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potential exists for spontaneous entropy creation within
the systems. In the example of Figure 6a, wrreversibility
could occur in either A, or B, or both because state Ap, or
state Bp, or both could evolve spontaneously towards the
corresponding stable equilibrium states. Again, in the
example of Figure 6¢, irreversibility could occur in A but
not in B because only state Ag could evolve spontaneously,
whereas stable equilibrium state Bg could not.

The processes in Figure 6b cannot become
Irreversible because the final states of both A and B are
stable equilibrium states and, therefore, each has the
highest entropy compatible with the corresponding energy.

These simple examples illustrate the well known
fact that spontaneous creation of entropy by
frreversibility can occur If and only if the system
experiences a departure from stable equilibrium.

Examples of Heat Interactions

Graphical illustrations of heat-only interactions
between two systems A and B are provided in Figures 7 and
8. Ineach fllustration we assume that the combination of
A and B is isolated and that the processes for both
systems are reversible. Therefore, the changes in energy
and entropy of system A are equal and opposite to the
changes in energy and entropy of system B, respectively.

System A System B
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E - E -
dEA= SEA‘— ! //s]ope TQ dEB=—8EB‘_ [(7/'

R

B,

7, /Bz
/'slope Ty
54 s®8
dE* = Ty a5t dE® = T daS®
SR L. 5eBY
5547 - -558"
Figure 7

As a result of the heat interaction shown in Figure
7, system A changes from state A; to state Ap, system B
from state By to state Bp, all being stable equilibrium
states, without net changes in values of amounts of
constituents and volumes. The temperatures of A and B
are almost equal to Tg. The two systems exchange energy
and entropy. The ratio of the energy exchanged to the
entropy exchanged Is equal to the common temperature.
Because the final states are stable equilibrium, no
spontaneous changes of state can occur and, therefore, no
entropy can be generated by irreversibility.



As a result of the interaction shown in Figure 8,
system A changes from state A; to state A, system B
from state By to state Bp, none of which is a stable
equilibrium state. However, systems A and B contain
subsystems A" and B', respectively, which change from
stable equilibrium states Ay and By to stable equilibrium
states A; and B, all with temperatures almost equal to Tq.
Thus, the interaction between subsystems A’ and B' is of
the same kind as that sketched in Figure 7. When viewed
as an interaction between systems A and B, however, it is
clear that the interaction may be followed by irreversible
spontaneous rearrangements of energy and entropy
between either A" and other subsystems of A, or B' and
other subsystems of B, or both.

System A

System B

Subsystem A’ Subsystem B’

System A System B

/A'Bl
B,

W

s 58

Subsystem A’ Subsystem B’

Figure 8

Examplies of Other Nonwork interactions

Nonwork interactions that are not heat between two
systems A and B are illustrated in Figure 9 where the
combination of A and B is isolated and ail processes are
assumed to be reversibie.

12

Syslem A System B
~
B
E 52\
B, (a)
SA SB
A
EB
84
- (b)
83
> Y
s# s8
Figure 9

As a result of the Interaction shown in Figure 9a,
the energy of system A decreases but its entropy
increases as A changes from state A; to state Ay andg,
correspondingly, the energy of system B Increases but its
entropy decreases as B changes from state By to state Bo.
1t is clear that this interaction is not heat in the strict
sense of the example In Figure 7 because netther system A
nor system B pass through stable equilibrium states. It is
not heat even in the generalized sense of the example in
Figure 8 because the ratio of the energy exchanged to the
entropy exchanged is negative.

As a result of the interaction shown in Figure 9b,
the energy and the entropy of system A are both decreased
as A changes from nonequilibrium state Az to stable
equilibrium state A4 and, correspondingly, the energy and
entropy of system B are both increased as B changes from
stable equilibrium state Bz to nonequilibrium state Ba.
Assuming that the temperatures T4 and T3z of stable
equilibrium states Aq and Bz are not equal, then the
interaction cannot be heat in the strict sense illustrated
in Figure 7. 1t is not heat even in the generalized sense
represented in Figure 8 because, even if the exchanges
occurred between two subsystems A’ and B' passing
through stable equilibrium states, the temperatures of
these two subsystems are not almost equal to each other.
The reason Is that the temperature of A' must be equal to
Ta, and that of B' to Tg because in state A4 subsystem A’ is
in mutuat stable equilibrium with the other subsystems of
A, and in state Bz subsystem B' is in mutual stable
equilibrium with the other subsystems of B.

All the processes represented in Figure 9 could
evolve into irreversible processes. For example, in Figure
9a, Irreversibility could occur in either system A, or



system B, or both because the final states of both A and B
are not stable equilibrium.
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The need for the distinction between heat and other
types of nonwork interactions is f{ilustrated by the
changes of state shown in Figure 10. System A is initially
in a stable equilibrium state A; at temperature Tq. AS a
result of interactions involving no net changes in values of
amounts of constituents and volume, A decreases its
energy by an amount SEA. As the graph Illustrates, this
change In energy 1s consistent with each of the final
states on the line AAs. Except for stale Aj, every state
on this line corresponds to a transfer of entropy 8§SA-
different from 8EA/Tq Therefore, either we call heat all
the interactions that involve an exchange of both energy
and entropy, but then we cannot use the relation
8EA= = 8QA—+ = To8SA~ for all these interactions, or we
reserve the term heat for interactions for which &§QA= =
TabSA, and then we need the term nonwork for
interactions that involve exchanges of both energy and
entropy, and we must realize that heat is only one special
kind of nonwork interaction. It is the latter choice that
has been made in the present exposition of
thermodynamics.

THE THIRD LAW

Wwe recall that the second law has been stated with
the proviso that starting from any state of a system
it is always possible to reach a stable equilibrium
state with arbitrarily specified values of amounts
of constituents and parameters by means of a
reversible weight process.
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With this proviso, the second law results in the
conclusions that: (1) among all the stable equilibrium
states with given values of the amounts of constituents p
and the parameters @, the ground-energy (lowest-energy)
stable equilibrium state has the lowest entropy and the
lowest temperature; (2) the value Sq of this lowest
entropy is the same for all values of p and B of a system
and, hence, it is the same for all ground-energy states of
all systems; and (3) no other state of the system has
entropy lower than Sg. Because it is common to all the

ground-energy states of all systems, we can assign to Sq
the value zero, l.e.,

Sg=0 for all values of pand g (24)

It is noteworthy that, in mechanics, each ground-
energy state is stable equtlibrium, and all mechanical
states can be interconnected by means of reversible
weight processes. It follows that all the states
contemplated In mechanics have the same entropy as that
of the ground-energy states, i.e, it follows that mechanics
is the physics of zero-entropy states.

The statement of the second law implies that the
temperature Tq of a ground-energy stable equilibrium
states is lowest for the given values of n and @, but the
value of Tg remains unspecified. To resolve this question
without resorting to the formalism of quantum theory, the
third law asserts that for each given set of values
of the amounts of constituents and the
parameters, the lowest-energy stable equilibrium
state has zero temperature.

within the mathematical framework of quantum
theory, the third law assertion just stated follows as a
theorem of the explicit expression of the stable
equilibrium states obtained by applying the highest
entropy principle to the explicit expressions of the enerqy,
the amounts of constituents, and the entropy. For
example, when the stable-equilibrium energy is given by
the well-known canonical formula

TrH(n,g) e HQRI/KT
Tre-HOL.E/KT

Epp) = (25)

then for any set of values n of the amounts and @ of the
parameters the lowest-energy stable equilibrium state
has temperature equal to zero, Le, Tg(n,B) = 0. The same
follows from the well-known grand-canonical formula.
However, the quantum theoretical formalism also
implies that, in general, the value of the entropy of the
lowest-energy stable equilibrium state is given by
S¢(nB) = KInDy(n,B) where Dyg(n,B) is sometimes called the
degeneracy of the lowest-energy value for the given
values of n and B. WIth the proviso recalled at the
beginning of this section, the second law implles Relation
24 and, therefore, requires that for any system every
lowest-energy value be nondegenerate, i.e, that
(26)

Dgtn.@) = 1 for all values of p and g
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Many authorsl 8] have arqued that Condition 26 is too
restrictive because there are systems In nature for which
the entropy of the lowest-energy stable equilibrium state
is nonzero and a function of p and B, i.e,, Dg(n,@) > 1.

To account for the existence of such systems, the
proviso in the second law should be modified to read:
starting from any state of a system it is always
possibie to reach either a stable equilibrium state
or _a ground-energy state with  arbitrarily
specified values of amounts of constituents and
parameters by means of a reversible weight
process. Then the second law would be consistent with
the possibility that for a given set of values of amounts of
constituents and parameters a system admits more than a
single ground-energy state, e, consistent with the
possibility that a ground-energy value be degenerate. The
third law as stated above would remain unmodified and
still imply that each ground-energy stable equilibrium
state has zero temperature.

indeed, with the modified statement and for given
values of the amounts of constituents and parameters of a
system A, we would conclude that the curved boundary of
the projection onto the E versus S plane could take the
shape shown in Figure 11, rather than the shape shown In
Figure I. Specifically, the horizontal line EqAq represents
the £ versus S relation for all the states that are not
stable equilibrium but have the ground-state energy Eq, and
the curve AgAgr the E versus S relation for the stable
equilibrium states. Each point on the line EgAq, except Aq,
is the projection of states none of which can be stable
equilibrium, whereas each point on the curve AgAg; is a
unique stable equilibrium state.

A
A| As £1
Ground-energy
Stable Equilibrium X
State fixed values
of pand B
Ay Ay A,
>
s, S; S .

Figure 11

To verify the last assertion, we note that given a
set of values of amounts of constituents and parameters
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for which Ag Is the ground-energy stable equillbrium
state, a reversible welight process starting from a state
Ay of system A would reach a stable equilibrium state if
the entropy of Ay is greater than or equal to that of Ay,
otherwise it would reach a ground-energy state that is not
stable equilibrium. Not being stable equilibrium, none of
the states with £ = Eg and 0 < S < S4 can be assigned a
temperature.

whether Condition 26 Is satisfied by all systems or
not, 1.e., whether the modified statement of the second law
must be adopted or not, can only be decided experimentally
on systems in stable equilibrium states at very low
temperatures and with very small values of the amounts of
constituents. Indeed, for large values of the amounts of
constituents, 1t turns out that even at relatively low
temperatures the stable equilibrium states have entropy
that grows linearly with the amounts of constituents,
whereas the entropy Sq of the ground-energy stable
equilibrium states -- if not zero -- would grow only
logarithmically with the amounts of constituents. Under
such conditions, the value of Sy would give a negligible
contribution to the entropy and, hence, could hardly be
detected. For systems for which the forgoing comment
applies, the modified proviso in the second law would have
nonnegligible practical implications only for very low-
temperatures and very-few-particle states.

The modified proviso, would also result in an
interesting exception to our general understanding of
irreversibility. Starting from any state A; with entropy
Sy <S¢ and using a reversible weight process, we can reach
a ground-energy state Ap that is not stabie equilibrium
(Figure 11). The adiabatic availability wy is represented
by the length AjAp. Similarly, starting from any state Az
with energy Ez = Ey and entropy S; < Sz < S, and using a
reversible weight process, we can reach a state A4 that is
not stable equilibrium. Now, the adiabatic availability
¥3 = wy and is represented by the length AzA4. But state
A1 can evolve spontaneously into Az, and the increase in
entropy 53 - Sy would be created by irreversibility. Then
we would conclude that irreversibility does not affect the
values of adiabatic availabilities for states with entropy
Detween zero and Sq, a conclusion that is an exception to
our general understanding of the adverse effects of
irreversibiiity.
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