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Abstract

What is the physical significance of entropy? What is the physical
origin of irreversibility? Do entropy and irreversibility exist only for complex
and macroscopic systems? The bulk of the physics community accepts and
teaches that all these fundamental questions are rationalized within statistical
mechanics. Indeed, for everyday laboratory physics, the mathematical
formalism of statistical mechanics (canonical and grand-canonical, Boltzmann,
Bose-Einstein and Fermi-Dirac distributions) allows a successful description
of the thermodynamic equilibrium properties of matter, including entropy
values. But an ever growing handful of physicists (Schrodinger among the
first) have realized that, even in its explanation of the meaning of entropy,
statistical mechanics is impaired by ambiguities and logical inconsistencies.
They have started to search for a better theory to eliminate these stumbling
blocks while maintaining the mathematical formalism that has been so
successful in so many applications. This handful of upstreamers must not
be confused with the many schools of physicists that have thrived on the
more renowned incompleteness of statistical mechanics, namely, the lack of
a quantitative (and the weakness of the qualitative) explanation of the origin
of irreversibility. In these studies the thrust is provided by the discovery
that the macroscopic dynamics of certain complex systems may be modeled
using a few-degrees-of-freedom nonlinear Hamiltonian with singularities that
give rise to bifurcations and chaotic behavior. These results have generated
successful ways to describe irreversible behavior, but their link to the origin
of irreversibility is still only heuristic (what is the connection between the
nonlinear model Hamiltonian and the true full Hamiltonian?) and does not
provide yet a rigorous resolution of the century-old paradox of the conflict
between the irreversibility of macroscopic behavior and the reversibility of
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the laws of mechanics. To resolve both the problem of the meaning of
entropy and that of the origin of irreversibility we have built entropy and
irreversibility into the laws of mechanics. The result is a theory that we call
quantum thermodynamics that has all the necessary properties to combine
mechanics and thermodynamics uniting all the successful results of both
theories, eliminating the logical inconsistencies of statistical mechanics and
the paradox on irreversibility, and providing an entirely new perspective on
the microscopic origin of irreversibility, nonlinearity and therefore chaotic
behavior. The mathematical formalism of quantum thermodynamics differs
from that of statistical mechanics mainly in the equation of motion which is
nonlinear but has solutions identical to those of the Schrédinger equation for
all the states for which statistical mechanics reduces to quantum mechanics.
The physical meaning of the formalism of quantum thermodynamics differs
more drastically from that of statistical mechanics. The significance of the
state operator of quantum thermodynamics is entirely different from that
of the density operator of statistical mechanics, even though the two are
mathematically equivalent. Indeed they obey different equations of motion.
In particular, quantum thermodynamics is concerned only with those systems
for which quantum mechanics would describe the states with vectors in
Hilbert space or, equivalently, projection operators. Using a well known
jargon, we can say that quantum thermodynamics like quantum mechanics
Is concerned only with pure quantum states. However, it postulates that the
set of pure quantum states of a system is much broader than contemplated
by quantum mechanics. Pure quantum states must be described by operators
defined by all the features of projection operators except the condition of
idempotence. As a result, an operator that within statistical mechanics would
describe a mixed quantum state (that is, the average state of a statistical
mixture of identical systems in different pure quantum states) in quantum
thermodynamics describes a pure guantum state, a state that neither quantum
mechanics nor statistical mechanics would contemplate. Conceptually, the
increased richness of pure quantum states is a new revolutionary postulate
of quantum physics. But from the point of view of the statistical mechanics
practitioners the new theory is not as traumatic as it seems. Whenever
one uses a nonidempotent density operator to describe a thermodynamic
equilibrium state one simply has to reinterpret it as one of the new pure
quantum states. One even saves the usual ad hoc arguments on thermal
baths and reservoirs that are usually required in statistical mechanics to
justify the use of a nonidempotent density operator to describe the state
of a system. In this paper we discuss the background and formalism of
quantum thermodynamics including its nonlinear equation of motion and
the main general results. Qur objective is to show in a not-too-technical
manner that this theory provides indeed a complete and coherent resolution
of the century-old dilemma on the meaning of entropy and the origin of
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ureversibility. As a byproduct, we discuss a long set of criteria that a
theory should meet in order to afford the same claim.

1. Introduction.

There is no dispute about the results, the mathematical
formalism, and the practical consequences of the theories of
Mechanics and Equilibrium Thermodynamics, even though their
presentations and derivations still differ essentially from author
to author in logical structure and emphasis. Both Mechanics
(Classical and Quantum) and Equilibrium Thermodynamics have
been developed independently of one another for different
applications and have enjoyed innumerable great successes. There
are no doubts that the results of these theories will remain as
milestones of the development of Science.

But as soon as they are confronted, Mechanics and Equilibrium
Thermodynamics give rise to an apparent incompatibility of results:
a dilemma, a paradox that has concerned generations of scientists
during the last century and still remains unresolved. The problem
arises when the general features of kinematics and dynamics in
Mechanics are confronted with the general features of kinematics
and dynamics implied by Equilibrium Thermodynamics. These
features are in striking conflict in the two theories. The conflict
concerns the notions of reversibility, availability of energy to
adiabatic extraction, and existence of stable equilibrium states.[1-2]
Though perhaps presented with emphasis on other related conflicting
aspects, the apparent incompatibility of the theories of Mechanics
and Equilibrium Thermodynamics is universally recognized by all
scientists that have tackled the problem.[3] What is not universally
recognized is how to rationalize the unconfortable paradoxical
situation.[1]

The attempt of rationalization better accepted within the
physical community is offered by the theory of Statistical
Mechanics. Like several other minor attempts of rationalization,[1]
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Statistical Mechanics stems from the premise that Mechanics
and Equilibrium Thermodynamics occupy different levels in the
hierarchy of physical theories: they both describe the same physical
reality, but Mechanics (Quantum) is concerned with the true
fundamental description, whereas Equilibrium Thermodynamics
copes with the phenomenological description — in terms of a
limited set of state variables — of systems with so many degrees
of freedom that the fundamental quantum mechanical description
would be overwhelmingly complicated and hardly reproducible.

When scrutinized in depth, this almost universally accepted
premise and, therefore, the conceptual foundations of Statistical
Mechanics are found to be shaky and unsound. For example,
they seem to require that we abandon the concept of state of
a system,[4] a keystone of traditional physical thought. In spite
of the lack of a sound conceptual framework, the mathematical
formalism and the results of Statistical Mechanics have enjoyed
such great successes that the power of its methods have deeply
convinced almost the entire physical community that the conceptual
problems can be safely ignored.

The formalism of Statistical Mechanics has also provided
mathematical tools to attempt the extension of the results beyond the
realm of thermodynamic equilibrium. In this area, the results have
been successful in a variety of specific nonequilibrium problems.
The many attempts to synthetize and generalize the results have
generated important conclusions such as the Boltzmann equation, the
Onsager reciprocity relations, the fluctuation-dissipation relations,
and the Master equations. But, again, the weakness of the
conceptual foundations has forbidden so far the development of
a sound unified theory of nonequilibrium.

The situation can be summarized as follows. On the one
hand, the successes of Mechanics, Equilibrium Thermodynamics,
and the formalism of Statistical Mechanics for both equilibrium
and nonequilibrium leave no doubts on the validity of their results.
On the other hand, the need remains of a coherent physical
theory capable of encompassing these same results within a sound
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unified conceptual framework.

Of course, the vaste majority of physicists would argue that
there is no such need because there is no experimental observation
that Statistical Mechanics cannot rationalize. But the problem at
hand is not that there is a body of experimental evidence that
cannot be regularized by current theories. Rather, it is that current
theories have been developed and can be used only as ad-hoc
working tools, successful to regularize the experimental evidence,
but incapable to resolve conclusively the century-old fundamental
questions on the physical roots of entropy and irreversibility, and
on the general description of nonequilibrium. These fundamental
questions have kept the scientific community in a state of tension
for longer than a century and cannot be safely ignored.

In short, the irreversibility paradox, the dilemma on the meaning
of entropy, and the questions on the nature of nonequilibrium
phenomena remain unresolved problems. The resolution of each
of these problems requires consideration of all of them at once,
because they are all intimately interrelated.

The notion of stability of equilibrium has played and will
play a central role in the efforts to fill the gap. Of the two main
schools of thought that during the past few decades have attacked
the problem, the Brussels school has emphasized the role of
instability and bifurcations in self-organization of chemical and
biological systems, and the MIT school has emphasized that the
essence of the second law of Thermodynamics is a statement of
existence and uniqueness of the stable equilibrium states of a
system.

The recognition of the central role that stability plays in
Thermodynamics[5] is perhaps ome of the most fundamental
discoveries of the physics of the last three decades, for it
has provided the key to a coherent resolution of the entropy-
irreversibility-nonequilibrium dilemma. In this article: first, we
review the conceptual and mathematical framework of the problem;
then, we discuss the role played by stability in guiding towards
a coherent resolution; and, finally, we discuss the resolution
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offered by the new theory — Quantum Thermodynamics ~ recently
proposed by the MIT school.

Even though Quantum Thermodynamics is based on conceptual
premises that are indeed quite revolutionary and entirely different
from those of Statistical Mechanics, we cannot overemphasize
that the new theory retains the whole mathematical formalism of
Statistical Mechanics — the formalism used by physics practitioners
every day — but reinterprets it within a unified conceptual and
mathematical structure in an entirely new way which resolves
the open questions and opens new vistas on the fundamental
description of nonequilibrium.

2. The common basic conceptual framework of mechanics
and thermodynamics.

In this section, we establish the basic conceptual framework
in which both Mechanics and Equilibrium Thermodynamics are
embedded. To this end, we define the basic terms that are
traditional keystones of the kinematic and dynamic description
in all physical theories, and are essential in the discussion
that follows. Specifically, we review the concepts of constituent,
system, property, state, equation of motion, process, reversibility,
equilibrium, and stability of equilibrium.[6]

The idea of a constituent of matter denotes a specific
molecule, atom, ion, elementary particle, or field, that for a
given description is considered as indivisible. Within a given
level of description, the constituents are the elementary building
blocks. Clearly, a specific molecule may be a constituent for the
description of a certain class of phenomena, but not for other
phenomena in which its internal structure may not be ignored
and, therefore, a different level of description must be chosen.

The kind of physical laws we are concerned with here are
the most fundamental, i.e., those equally applicable at every
level of description, such as the great conservation principles of
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Mechanics.

2.1 Kinematics.

A system is a collection of constituents defined by the
following specifications: (a) the type and the range of values
of the amount of each constituent; (b) the type and the range
of values of each of the parameters which fully characterize
the external forces exerted on the constituents by bodies other
than the constituents, for example, the parameters that describe
the geometrical shape of a container; and (c) the internal forces
between constituents such as the forces between molecules, the
forces that promote or inhibit a chemical reaction, the partitions
that separate constituents in one region of space from constituents
in another region, or the interconnections between separated
parts. Everything that is not included in the system is called the
environment or the surroundings of the system.

At any instant of time, the values of the amounts of each
type of constituent and the parameters of each external force do
not suffice to characterize completely the condition of the system
at that time. We need, in addition, the values of all the properties
at the same instant of time. A property is an attribute that can
be evaluated by means of a set of measurements and operations
which are performed on the system at a given instant of time and
result in a value — the value of the property — independent of
the measuring devices, of other systems in the environment, and
of other instants of time. For example, the instantaneous position
of a particular constituent is a property.

Some properties in a given set are independent if the value
of each such property can be varied without affecting the value of
any other property in the set. Other properties are not independent.
For example, speed and kinetic energy of a molecule are not
independent properties.

The values of the amounts of all the constituents, the values of
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all the parameters, and the values of a complete set of independent
properties encompass all that can be said at an instant of time
about a system and about the results of any measurement Orf
observation that may be performed on the system at that instant
of time. As such, the collection of all these values constitutes a
complete characterization of the system at that instant of time.
We call this characterization at an instant of time the state of the
system.

2.2 Dynamics.

The state of a system may change with time either
spontaneously due to the internal dynamics of the system or as a
result of interactions with other systems, or both. Systems that
cannot induce any effects on each other’s state are called isolated.
Systems that are not isolated can influence each other in a number
of different ways.

The relation that describes the evolution of the state of a
system as a function of time is called the equation of motion.

In classical thermodynamics, the complete equation of motion
is not known. For this reason, the description of a change of
state is done in terms of the end states, i.e., the initial and the
final states of the system, and the modes of interaction that are
active during the change of state. Each mode of interaction is
characterized by means of well-specified net flows of properties
across the boundaries of the interacting systems. Even though
the complete equation of motion is not known, we know that it
must entail some important conclusions traditionally stated as the
laws of thermodynamics. These laws reflect some general and
important facets of the equation of motion such as the conditions
that energy is conserved and entropy cannot be destroyed.

The end states and the modes of interaction associated with a
change of state of a system are said to specify a process. Processes
may be classified on the basis of the modes of interaction they
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involve. For example, a process that involves no influence from
other systems is called a spontaneous process. Again, a process
that involves interactions resulting in no external effects other than
the change in elevation of a weight (or an equivalent mechanical
effect) is called a weight process.

Processes may also be classified on the basis of whether it is
physically possible to annull all their effects. A process is either
reversible or irreversible. A process is reversible if there is a way
to restore both the system and its environment to their respective
initial states, i.e., if all the effects of the process can be annulled.
A process is irreversible if there is no way to restore both the
system and its environment t0 their respective initial states.

2.3 Types of States.

Because the number of independent properties of a system
is very large even for a system consisting of a single particle,
and because most properties can vary over a large range of
values, the number of possible states of a system is very large.
To facilitate the discussion, we classify the states of a system on
the basis of their time evolution, i.e., according to the way they
change as a function of time. We classify states into four types:
unsteady, steady, nonequilibrium, and equilibrium. We further
classify equilibrium states into three types: unstable, metastable,
and stable.

Unsteady is a state that changes with time as a result
of influences of other systems in its environment. Steady is a
state that does not change with time despite the influences of
other systems in the environment. Nonequilibrium is a state that
changes spontaneously as a function of time, i.e., a state that
evolves as time goes on even when the system is isolated from
its environment. Equilibrium is a state that does not change as a
function of time if the system is isolated, i.e., a state that does not
change spontaneously. Unstable equilibrium is an equilibrium state
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which, upon experiencing a minute and short lived influence by a
system in the environment, proceeds from then on spontaneously
to a sequence of entirely different states. Metastable equilibrium is
an equilibrium state that may be changed to an entirely different
state without leaving net effects in the environment of the system,
but this can be done only by means of interactions which have
a finite temporary effect on the state of the environment. Stable
equilibrium is an equilibrium state that can be altered to a different
state only by interactions that leave net effects in the environment
of the system.

Starting either from a nonequilibrium or from an equilibrium
state that is not stable, a system can be made to cause in its
environment a change of state consisting solely in the raise of
a weight. In contrast, if we start from a stable equilibrium state
such a raise of a weight is impossible. This impossibility 1s
one of the consequences of the first law and the second law of
thermodynamics.[6]

3. The basic mathematical framework of quantum theory.

The traditional structure of a physical theory is in terms
of mathematical entities associated with each basic concept, and
interrelations among such mathematical entities. In general, with
the concept of system is associated a metric space, and with the
concept of state an element of a subset of the metric space called
the state domain. The different elements of the state domain
represent all the different possible states of the system. With the
concept of property is associated a real functional defined on
the state domain. Different properties are represented by different
real functionals, and the value of each property at a given state
is given by the value of the corresponding functional evaluated
at the element in the state domain representing the state. Some
of the functionals representing properties of the system may
depend also on the amounts of constituents of the system and
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the parameters characterizing the external forces.

3.1 Quantum Mechanics.

The metric space in Quantum Mechanics is a Hilbert space
H(dimH < o), the states are the elements v of 7, the properties
are the real functionals of the form (v, A¢) where (,.) is the
scalar product on % and A some linear operator on 7. The
composition of the system is embedded in the structure of the
Hilbert space. Specifically,

¢)) He=H'oH*'® - @HY

means that the system is composed of Af distinguishable
subsystems which may, for example, correspond to the different
constituents. If the system is composed of a type of particle
with amount that varies over a range, then a functional on the
Hilbert space represents the number of particles of that kind.
The parameters characterizing the external forces may appear as
external parameters in some property functionals. For example,
the shape of a container is embedded in the position functionals as
the contour outside which the functionals are identically null. The
internal forces among constituents are embedded in the explicit
form of the Hamiltonian operator H which gjves rise to the
energy functional (y, H¢) and determines the dynamics of the
system by means of the Schrédinger equation of motion

@ 2 iy

Because the solution of the Schrédinger equation can be
written as

3 »(@) = U(0)
where U@) is the unitary operator

) U() = exp(—itH/h)
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it is standard jargon to say that the dynamics in Quantum
Mechanics is unitary.

3.2 Statistical Mechanics.

The formalism of Statistical Mechanics requires as metric
space the space of all selfadjoint linear operators on , where X
is the same Hilbert space that Quantum Mechanics associates with
the system. The "states" are the elements p in this metric space that
are nonnegative-definite and unit-trace. We use quotation marks
because in Statistical Mechanics these elements p, called density
operators or statistical operators, are interpreted as statistical
indicators. Each density operator is associated with a statistical
mixture of different "pure states” each of which is represented
by an idempotent density operator p (? = p) so that p is a
projection operator, p = Py, onto the one-dimensional linear span
of some element ¢ in % and, as such, identifies a precise state
of Quantum Mechanics. The interpretation of density operators as
statistical indicators associated with statistical mixtures of different
quantum mechanical states, summarizes the almost universally
accepted interpretation of Statistical Mechanics,[7] but is fraught
with conceptual inconsistencies. For example, it stems from the
premise that a system is always in one (possibly unknown) state,
but implies as a logical consequence that a system may be
at once in two or even more states.[4] This self-inconsistency
mines the very essence of a keystone of traditional physical
thought: the notion of state of a system. We review the seldom
repeated origin of this conceptual inconsistency in the Appendix,
but the most vivid discussion of this point is to be found in
Ref. 4. For lack of better, the inconsistency is almost universally
ignored, probably with the implicit motivation that "perhaps the
interpretation has some fundamental faults but the formalism is
undoubtedly successful" at regularizing physical phenomena. So,
let us summarize a few more points of the successful mathematical
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formalism.

The ‘states", "mixed" (p*#p) or "pure" (o* =p), are the
self-adjoint, nonnegative-definite, unit-trace linear operators on
H . The "properties" are the real functionals defined on the "state"
domain, for example, the functionals of the form TrAp where A
is some linear operator on H and Tr denotes the trace over .

The density operators that are so successful in modeling the
stable -equilibrium states of Thermodynamics have a mathematical
expression that depends on the structure of the system. For a
system with no structure such as a single-particle system, the
expression is

__exp(—BH)

P = Trexp(—BH)
where H is the Hamiltonian operator giving rise to the energy
functional TrHp and B is a positive scalar. For a system with a
variable amount of a single type of particle, the expression is

exp(—BH — vN)
© P = Trexp(—BH — vN)

p vl

where N is the number operator giving rise to the number-of-particle
functional TrNp and v is a scalar. For a system with n types
of particles each with variable amount, the expression is

©)

exp(—BH — ) uily)
(7) p — i=1n
Trexp(—-BH — 2 v; Ny)

i=1

If the system is composed of M distinguishable subsystems,
each consisting of = types of particles with variable amounts,
the structure is embedded in that of the Hilbert space (Equation
1) and in that of the Hamiltonian and the number operators

]

® H HNDQIW)+V

M= 27

® N; NIy fori=1,2,...,n

I

L.
'|_I.



74 GIAN PAOLO BERETTA

where H(J) denotes the Hamiltonian of the J -th subsystem when
isolated, V denotes the interaction Hamiltonian among the M
subsystems, N;(J) denotes the number-of-particles-of-1-th-type
operator of the J-th subsystem, and I(J) denotes the identity
operator on the Hilbert space #7 composed by the direct product
of the Hilbert spaces of all subsystems except the J-th one, so
that the Hilbert space of the overall system * =H’ @K’ and the
identity operator I=I(J)® I(J).

Of course the richness of this mathematical formalism goes
well beyond the brief summary just reported. The results of
Equilibrium Thermodynamics are all recovered with success and
much greater detail if the thermodynamic entropy is represented
by the functional

(10) —kTrplnp

where & is Boltzmann’s constant. The arguments that lead to
this expression and its interpretation within Statistical Mechanics
will not be reported because they obviously suffer the same
incurable conceptual desease as the whole accepted interpretation
of Statistical Mechanics. But the formalism works, and this is
what counts to address our problem.

3.3 Unitary Dynamics.

The conceptual framework of Statistical Mechanics becomes
even more unsound when the question of dynamics is brought in.
Given that a density operator p represents the "state" or rather the
"statistical description" at one instant of time, how does it evolve
in time? Starting with the (faulty) statistical interpretation, all
books invariably report the "derivation" of the quantum equivalent
of the Liouville equation, i.e., the von Neumann equation

dp _1_
an —Et_”‘h[H’p]
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where [H,pl= Hp— pH . The argument starts from the equation
induced by the Schrodinger equation (Equation 2) on the projector

P, =lo)yl, e

dPy
dt

1
12 = —;L-[H, Pyl
Then, the argument follows the interpretation of p as
a statistical superposition of one-dimensional projectors such
as p=Y wPy. The projectors Py represent the endogenous

descdptién of the true but unknown state of the system and
the statistical weights w; represent the exogenous input of the
statistical description. Thus, if each term Py, of the endogenous
part of the description follows Equation 12 and the exogenous
part is not changed, ie., the w; are time invariant, then the
resulting overall descriptor p follows Equation 11.

Because the solutions of the von Neumann equation are just
superpositions of solutions of the Schrodinger equation written in
terms of the projectors, i.e., Pyw = [$®){v®)]| = [UG$O){U@PO)] =
UDO) (B O[UT ) = Ut)PyoU ™' @), we have

(13) o) = U)pOU ()

where Ul(t) = U-'(@t) is the adjoint of the unitary operator in
Equation 4 which generates the endogenous quantum dynamics.
It is again standard jargon to say that the dynamics of density
operators is unitary.

The von Neumann equation or, equivalently, Equation 13, is
a result almost universally accepted as an indispensable dogma.
But we should recall that it is fraught with the same conceptual
inconsistencies as the whole intepretation of Statistical Mechanics
because its derivation hinges on such interpretation.

Based on the conclusion that the density operators evolve
according to the von Neumann equation, the functional —kTrplnp
and, therefore, the "entropy" is an invariant of the endogenous
dynamics.
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Here the problem becomes delicate. On the one hand, the
"entropy” functional —kTrplnp is the key to the successful
regularization of the results of Equilibrium Thermodynamics within
the Statistical Mechanics formalism. Therefore, any proposal to
represent the entropy by means of some new functional[8] that
increases with time under unitary dynamics is not acceptable
unless it is also shown what relation the new functional bears with
the entropy of Equilibrium Thermodynamics. On the other hand,
the empirical fact that the thermodynamic entropy can increase
spontaneously as a result of an irreversible process, is confronted
with the invariance of the "entropy" functional kTrplnp under
unitary dynamics. This leads to the conclusion (within Statistical
Mechanics) that entropy production by irreversibility cannot be a
result of the endogenous dynamics and, hence, can only result
from changes in time of the exogenous statistical description. We
are left with the unconfortable conclusion that entropy production
by irreversibility is only a kind of statistical illusion.

4. Advances towards a better theory.

For a variety of ad-hoc reasons — statistical, phenomenological,
information-theoretic, quantum-theoretic, conceptual - many
investigators have concluded that the von Neumann equation of
motion (Equation 11) is incomplete, and a number of modification
have been attempted.[9] The attempts have resulted in ad-hoc
tools valid only for the description of specific problems such as,
e.g., the nonequilibrium dynamics of lasers. However, because
the underlying conceptual framework has invariably been that
of Statistical Mechanics, none of these attempts has removed
the conceptual inconsistencies. Indeed, within the framework of
Statistical Mechanics a modification of the von Neumann equation
could be justified only as a way to describe the exogenous
dynamics of the statistical weights, but this does not remove the
conceptual inconsistencies.
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The Brussels school has recently tried a seemingly different
approach:[8] that of constructing a functional for the entropy,
different from —kTrplnp, that would be increasing in time
under the unitary dynamics generated by the von Neumann
equation. The way this is done is by introducing a new "state"”
5 obtained from the usual density operator p by means of a
transformation, = A"'(L)p, where A-!p is a superoperator on
the Hilbert space H of the system defined as a function of
the Liouville superoperator L.=[H,1/h and such that the von
Neumann equation for p,dp/di = —ilp, induces an equation of
motion for 5,dp/dt = —iA"(L)LA(L)p, as @ result of which the new
"entropy" functional —kTrjlnj increases with time. Formally,
once the old "state" p is substituted with the new "state" j,
this approach seems tantamount to an attempt to modify the
von Neumann equation, capable therefore only to describe the
exogenous dynamics of the statistical description but not to unify
Mechanics and Equilibrium Thermodynamics any better than done
by Statistical Mechanics.

However, the language used by the Brussels school in
presenting this recent approach during the last decade has gradually
adopted a new important element with growing conviction: the
idea that entropy is a microscopic quantity and that irreversibility
should be incorporated in the microscopic description. Credit for
this new and revolutionary idea, as well as its first adoption and
coherent implementation, must be given to the pioneers of the
MIT school,[10] even though the Brussels school might have
reached this conclusion through an independent line of thought.
This is shown by the quite different developments the idea has
produced in the two schools.

As we will see, the implementation proposed by the MIT
school has provided for the first time an alternative to Statistical
Mechanics capable of retaining all the successful aspects of
its formalism within a sound conceptual framework free of
inconsistencies and drastic departures from the traditional structure
of a physical theory, in particular, with no need to abandon
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such keystones of traditional physical thought as the concept of
trajectory and the principle of causality.

5. The revolutionary postulate: a new broader quantum
kinematics.

In their effort to implement the idea that entropy is a
microscopic nonstatistical property of matter in the same sense
as energy is a microscopic nonstatistical property, Hatsopoulos
and Gyftopoulos[l()] concluded that the state domain of Quantum
Mechanics is too small to include all the states that a physical
system can assume. Indeed, the entire body of results of Quantum
Mechanics has been soO successful in describing empirical data
that it must be retained as a whole. A theory that includes also
the results of Equilibrium Thermodynamics and the successful
part of the formalism of Statistical Mechanics must necessarily
be an augmentation of Quantum Mechanics, a theory in which
Quantum Mechanics is only a subcase.

Next came the observation that all the successes of the
formalism of Statistical Mechanics based on the density operators
p are indeed independent of their statistical interpretation. In other
words, all that matters is to retain the mathematical formalism,

freeing it from its troublesome statistical interpretation.

@:Q

states of Quantum Mechanics

Figure 1

The great discovery was that all this can be achieved if
we admit that physical systems have access to many more states
than those described by Quantum Mechanics and that the set of
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states is in one-to-one correspondence with the set of self-adjoint,
nonnegative-definite, unit-trace linear operators p on the same
Hilbert space 7 that Quantum Mechanics associates with the
system (mathematically, this set coincides with the set of density
operators of Statistical Mechanics), Figure 1 gives a pictorial
idea of the augmentation of the state domain implied by the
Hatsopoulos—Gyftopoulos kinematics. The states considered in
Quantum Mechanics are only the extreme points of the set of
states a system really admits,

In terms of interpretation, the conceptual inconsistencies
inherent in Statistica] Mechanics are removed. The state operators
p are mathematically identical to the density Operators of Statistical
Mechanics, but now they represent true states, in exactly the
Same way as a state vector ¥ represents a true state in Quantum
Mechanics. Statistics plays no more role, and a linear decomposition
of an operator ;5 has no more physical meaning than a linear
decomposition of a vector ¥ in Quantum Mechanics or a Fourier
€xpansion of a function. Monsters that are simultaneously in two
or more different states are removed together with the €xogenous
statistics. The traditiona] concept of state of a system is saved.

Of course, one of the most revolutionary ideas introduced by
Quantum Mechanics has been the existence, within the individual
state of any system, of an indeterminacy resulting in irreducible
dispersions of measurement results. This indeterminacy (usually
expressed as the Heisenberg uncertainty principle) is embedded
in the mathematical structure of Quantum Mechanics and is fully
contained in the description of states by means of vectors )
in a Hilbert space. The indeterminacy is not removed by the
augmentation of the state domain to include all the state operators
p- Rather, a second Jeve] of indeterminacy is added for states that
are not mechanical, i.e., states such that 0°%p . Entropy, represented
by the functional ~kTrplnp, can now be interpreted as a measure
of the breadth of this additional indeterminacy, which is exactly
as fundamental and irreducible as the Heisenberg indeterminacy.
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6. Entropy and the second law without statistics.

The richness of the new augmented kinematics guarantees
enough room for the resolution of the many questions that must
be addressed in order to complete the theory and accomplish the
necessary unification. Among the questions, the first is whether
the second law of thermodynamics can be part of the new
theory without having to resort to statistical, phenomenological
or information-theoretic arguments.

The second law is a statement of existence and uniqueness
of the stable equilibrium states for each set of values of the
enérgy functional, the number-of-particle functionals and the
parameters.[5-6] Adjoining this statement to the structure of the
new kinematics leads to identify explicitly the state operators that
represent stable equilibrium states, and to prove that only the
functional —£Trplnp can represent the thermodynamic entropy.[10]
Mathematically, the states of Equilibrium Thermodynamics are
represented by exactly the same operators as in Statistical
Mechanics (Equations 5 to 7). Thus, the theory bridges the gap
between Mechanics and Equilibrium Thermodynamics.

Among all the states that a system can access, those of
Mechanics are represented by the idempotent state operators and
those of Equilibrium Thermodynamics by operators of the form
of Equations 5 to 7 depending on the structure of the system.
Thus, the state domain of Mechanics and the state domain of
Equilibrium Thermodynamics are only two very small subsets of
the entire state domain of the system.

The role of stability goes far beyond the very important
result just cited, namely, the unification of Mechanics and
Thermodynamics within a single uncontradictory structure that
retains without modification all the successful mathematical
results of Mechanics, Equilibrium Thermodynamics, and Statistical
Mechanics. It provides further key guidance in addressing the
question of dynamics.

The question is as follows. According to the new kinematics
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a system can access many more states than contemplated by
Quantum Mechanics. The states of Quantum Mechanics (o = p)
evolve in time according to the Schrodinger equation of motion,
which can be written either as Equation 2 or as Equation 12.
But how do all the other states (p*#p) evolve in time? Such
states are beyond the realm of Quantum Mechanics and, therefore,
we cannot expect to derive their time evolution from that of
Mechanics. We have to find a dynamical law for these states. At
first glance, in view of the breadth of the set of states in the
augmented kinematics, the problem might seem extremely open
to a variety of different approaches. On the contrary, instead, a
careful analysis shows that the problem is very much constrained
by a number of restrictions imposed by the many conditions
that such a general dynamical law must satisfy. Among these
conditions, we will see that the most restrictive are those related
to the stability of the states of Equilibrium Thermodynamics as
required by the second law.

7. Causality and criteria for a general dynamical law.

An underlying premise of our approach is that a new theory
must retain as much as possible of the traditional conceptual
keystones of physical thought. So far we have saved the concept
of state of a system. Here we intend to save the principle of
causality. By this principle, future states of an isolated system
should unfold deterministically from initial states along smooth
unique trajectories in the state domain. Given the state at one
instant of time, the future as well as the past should always be
predictable, at least in principle.

We see no reason to conclude that:[11] "the deterministic
laws of physics, which were at one point the only acceptable
laws, today seem like gross simplifications, nearly a caricature of
evolution." The observation that:[12] "for any dynamical system
we never know the exact initial conditions and therefore the
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trajectory” is not sufficient reason to discard the concept of
trajectory. The principle of causality and the concept of trajectory
can coexist very well with all the interesting observations by
the Brussels school on the relation between organization and
coherent structures in chemical, biological, and fluid systems,
and bifurcations born of singularities and nonlinearities of the
dynamical laws. A clear example is given by the dynamical laws
of fluid mechanics, which are deterministic, obey the principle of
causality, and yet give rise to beautifully organized and coherent
vortex structures.

Coming back to the conditions that must be satisfied by a
general dynamical law, we list below the most important.

7.1 Condition 1.

The states of Quantum Mechanics must evolve according to
the Schrodinger equation of motion. Therefore, the trajectories
passing through any state p such that p* =p must be entirely
contained in the state domain of Quantum Mechanics, i.€., the
condition p*=p must be satisfied along the entire trajectory. This
also means that no trajectory can enter or leave the state domain
of Quantum Mechanics. In view of the fact that the states of
Quantum Mechanics are the extreme points of our augmented
state domain, the trajectories of Quantum Mechanics must be
boundary solutions of the dynamical law. By continuity, there
must be trajectories that approach indefinitely these boundary
solutions either as ¢ — —oco or as t — +oc . Therefore, the periodic
trajectories of Quantum Mechanics should emerge as boundary
limit cycles of the complete dynamics.

7.2 Condition 2.

If the system is isolated, the value of the energy functional
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TrHp must remain invariant along every trajectory. If the isolated
system consists of a variable amount of a single type of particle
with a number operator N that commutes with the Hamiltonian
operator H , then also the value of the number-of-particle functional
TrNp must remain invariant along every trajectory. If the isolated
system consists of n types of particles each with variable amount
and each with a number operator N; that commutes with the
Hamiltonian H, then also the value of each number-of-particle
functional TrN;p must remain invariant along every trajectory.

7.3 Condition 3.

For an isolated system composed of two subsystems A and
B with associated Hilbert spaces #*# and #?, so that the Hilbert
space of the system is M =H*@H?, if the two subsystems are
noninteracting, i.e., the Hamiltonian operator H = H,® Ig+I4® Hp
then the functionals Tr(H, @ Ig)p and Tr(l4 x Hp)p represent the
energies of the two subsystems and must remain invariant along
every trajectory.

7.4 Condition 4.

Two subsystems 4 and B are in independent states if the
state operator p = ps ® pg, where py =Trgp, ps=Trap, Trp
denotes the partial trace over H? and Tr, the partial trace
over H*. For noninteracting subsystems, every trajectory passing
through a state in which the subsystems are in independent
states must maintain the subsystems in independent states along
the entire trajectory. This condition guarantees that when two
uncorrelated systems do not interact with each other, each evolves
in time independently of the other.
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7.5 Condition 5.

A state operator p represents an equilibrium state if dp/dt =0.
For each given set of feasible values of the energy functional
TrHp and the number-of-particle functionals Trvp (ie., the
functionals that must remain invariant according to Condition 2
above), among all the equilibrium states that the dynamical law
may admit there must be.one and only one which is globally stable
(definition below). This stable equilibrium state must represent
the corresponding state of Equilibrium Thermodynamics and,
therefore, must be of the form given by Equations 5 to 7. All
the other equilibrium states that the dynamical law may admit
must not be globally stable.

7.6 Condition 6.

The principle of nondecrease of entropy must be satisfied,
Le., the rate of change of the entropy functional £Trplnp along
every trajectory must be nonnegative.

It is clear that with all these conditions the problem of
finding the complete dynamical law is not at all open to much
arbitrariness.

The condition concerning the stability of the thermodynamic
equilibrium states is extremely restrictive and requires further
discussion.

8. Lyapunov stability and thermodynamic stability

In order to implement Condition 5 above, we need to establish
the relation between the notion of stability implied by the second
law of Thermodynamics [5]{10] (and reviewed in Section 2) and
the mathematical concept of stability. An equilibrium state is
stable, in the sense required by the second law, if it can be altered
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to a different state only by interactions that leave net effects in
the state of the enviromment. We call this notion of stability
global stability. The notion of stability according to Lyapunov is
called local stability.

We denote the trajectories generated by the dynamical law on
the state domain by u(t,p), i.€., u(t,p) denotes the state at time ¢
along the trajectory that at time ¢ =0 passes through state p. A
state p, is an equilibrium state if and only if u(t,p.) = p. for all
times t. An equilibrium state p, is locally stable (according to
Lyapunov) if and only if for every e> 0 there is a §(¢) > 0 such
that d(p, pe) < 6(e) implies d(uft, p), p.) < ¢ for all ¢ >0 and every
p, 1.e., such that every trajectory that passes within the distance
8(e) from state p, proceeds in time without ever exceeding the
distance ¢ from p, (Figure 2). Conversely, an equilibrium state
p. is unstable if and only if it is not locally stable, i.e., there is
an e> 0 such that for every ¢ >0 there is a trajectory passing
within distance § from p. and reaching at some later time farther
than the distance ¢ from p. (Figure 3).

The Lyapunov concept of instability of equilibrium is clearly
equivalent to that of instability stated in Thermodynamics according
to which an equilibrium state is unstable if, upon experiencing
a minute and short lived influence by some system in the
environment (i.e., just enough to take it from state p. to a
neighboring state at infinitesimal distance § ), proceeds from then
on spontaneously to a sequence of entirely different states (i.e.,
farther than some finite distance e).

Locally stable equilibrium Unstable equilibrium

Figure 2 Figure 3
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It follows that the concept of stability in Thermodynamics
implies that of Lyapunov local stability. However, it is stronger
because it also excludes the concept of metastability. Namely,
the states of Equilibrium Thermodynamics are global stable
equilibrium states in the sense that not only they are locally stable
but they cannot be altered to entirely different states even by
means of interactions which leave temporary but finite effects in
the environment. Mathematically, the concept of metastability can
be defined as follows. An equilibrium state p, is metastable if and
only if it is locally stable but there is an 1> 0 and an >0 such
that for every § >0 there is a trajectory u(z, p) passing at t=0
between distance 7 and n+é from p, 5< du(0, p),pe) < +6,
and reaching at some later time t >0 a distance farther than
n+e, d(ult, p),pe) > n+e (Figure 4). Thus, the concept of global
stability implied by the secTiblaw is as follows. An equilibrium
state p. is globally stable if for every 7>0 and every ¢>0
there is a 6(e,m) > 0 such that every trajectory u(t,p) with
n < d(w(©,p), pe) < 1+ 6, m, 1.€., passing at time ¢ =0 between
distance 7 and 5+§ from Pe, Temains with d(ult, p), pe) < n+e
for every ¢t >0, ie., proceeds in time without ever exceeding the
distance n+e (Figure 5).

The second law requires that for each set of values of the
invariants TrHp and Tr; ip (as many as required by the structure
of the system), and of the parameters describing the external
forces (such as the size of a container), there is one and only one
globally stable equilibrium state. Thus, the dynamical law may
admit many equilibrium states that all share the same values of
the invariants and the parameters, but among all these only one
is globally stable, i.e., all the other equilibrium states are either
unstable or metastable.

For example, we may use this condition to show that a unitary
(Hamiltonian) dynamical law would be inconsistent with the
second-law stability requirement. A unitary dynamical law in our
augmented kinematics would be expressed by an equation of motion
formally identical to Equation 11 with solutions given by Equation
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13 and trajectories u(t, p) = U®)p(O)U~(t) with U(t) = exp(—itH/h).
Such a dynamical law would admit as equilibrium states all the
states p. such that p.H = Hp, . Of these states there are more than
just one for each set of values of the invariants. With respect to
the metric d(p1, p2) = Tr|p1 — p2}, it is easy to show[13] that every
trajectory u(t,p) would be equidistant from any given equilibrium
state p., 1.€., d(u(t,p),pe) = d(u(0,p), p.) for all ¢ and all p.

Metastable equilibrium Globally stable equilibrium

Figure 4 Figure 5

Therefore, all the equilibrium states would be globally stable
and there would be more than just one for each set of values of
the invariants, thus violating the second-law requirement.

The entropy functional —kTrplnp plays a useful role in
proving the stability of the states of Equilibrium Thermodynamics
(Equations 5 to 7) provided the dynamical law guarantees that
—kTru(t, p)Inu(t, p) > —kTrplnp for every trajectory, i.e., provided
Condition 6 above is satisfied. The proof of this is nontrivial and
is given in Ref. 13 where, however, we also show that the entropy
functional, contrary to what repeatedly emphasized by the Brussels
school, is not a Lyapunov function, even if, in a strict sense[13]
that depends on the continuity and the conditional stability of the
states of Equilibrium Thermodynamics, it does provide a criterion
for the stability of these states. Anyway, the statement that the
second law[14] "can be formulated as a dynamical principle in
terms of the existence of a Lyapunov variable" would be incorrect
even if the entropy were a Lyapunov variable, because it would
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suffice only to guarantee the stability of the states of Equilibrium
Thermodynamics but not to guarantee, as required by the second
law, the instability or metastability of all the other equilibrium
states.

9. The dynamical postulate of the new theory.

The efforts devoted by the MIT group during the last twenty
years to construct a theory that within a single uncontradictory
nonstatistical structure would resolve all the fundamental questions
raised so far in our discussion, have resulted in the formulation
of the theory that we call Quantum Thermodynamics.[15] We
have already discussed the kinematics adopted within Quantum
Thermodynamics, namely, that proposed by Hatsopoulos and
Gyftopoulos to resolve the inconsistencies of Statistical Mechanics
and to achieve a nonstatistical rationalization of Mechanics and
Equilibrium Thermodynamics.

Let us summarize briefly the elements of Quantum
Thermodynamics that we have already discussed. With every
system is associated a Hilbert space #, the same % that is
associated with the system in Quantum Mechanics. The composition
of the system in terms of distinguishable subsystems is reflected
by the structure of the Hilbert space H as a direct product
of subspaces. The subdivision into constituents, considered as
indivisible, is particularly important because it defines the level of
description of the system and specifies its elementary structure.
This will determine also the structure of the dynamical law.

With the state of the system is associated a state operator p,
Le., a self-adjoint, nonnegative-definite, unit-trace linear operator
on H. If the state operator is idempotent, i.e., 0> =p, then
p is a one-dimensional projector onto the linear span of some
vector ¢ in H, i.e., p=P, and corresponds to a mechanical
state, i.e., a state of Quantum Mechanics. If p 1s not idempotent
then it corresponds to a nonmechanical state, i.e., a state not
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contemplated by Quantum Mechanics. Again, we emphasize that
a unique and key premise of Quantum Thermodynamics is that in
addition to the states of Quantum Mechanics a system (even if
strictly uncorrelated and isolated from the rest of the universe) has
access also to states that must be described by nonidempotent state
operators. Among these nonmechanical states are, for example,
those expressed in terms of functions of the Hamiltonian and the
number-of-particle operators in Equations 5 to 7.

The functional representing the entropy is —kTrplnp. It
represents a property of matter in the same sense as the energy
functional Tr Hp represents a property of matter. Entropy can
be interpreted as a measure for the breadth for the irreducible
indeterminacy inherent in the states represented by nonidempotent
state operators. This indeterminacy is added on top of that implied
by the Heisenberg uncertainty principle, and is responsible, for
example, for the impossibility of adiabatic extraction of energy
from the states of Equilibrium Thermodynamics (impossibility of
perpetual motion of the second kind).

If a constituent is part of a system with other constituents,
its state may be correlated or uncorrelated from the rest of the
system. Considering a system composed of A distinguishable
constituents, the Hilbert space X =H’ @ K’ where ' is the
Hilbert space that would be associated with the J-th constituent
were it the only constituent of the system, and #! that associated
with the rest of the system. We say that constituent J is
uncorrelated from the rest of the system if the state operator
p=p;®p; where p; =Trjp and p;=Tr;p, Try denotes the
partial trace over %’ and Tr; the partial trace over H’.

The most general way to represent a constituent is in terms
of a field consisting of variable amounts of all the n types of
particles present in the overall system. For the J-th constituent
considered as isolated, we denote the Hamiltonian operator on
H’/ by H(J), the number-of-particles-of-i-th-type operator by
Ni(J) and the identity operator by I(J). The Hamiltonian H
of the overall system, including the interaction term, is given
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by Equation 8 and the overall-number-of-particles-of- i -th-type
operator N;. by Equation 9. To simplify the notation, and without
loss of generality, we assume that all the constituents of the
system are of this general kind. Then, for example, we can
specify that, say, the K -th constituent consists of only the 4-th
type of particle with variable amount by imposing that Ny(X) is
the null operator for every i#4. Again, if the K -th constituent
consists of only the 2-nd type of particle with a fixed amount,
say, 5 particles, then N;(K)=0 for 122 and Ni(K)=SI(K).

The dynamical law proposed by the present author to complete
Quantum Thermodynamics is given by the following general
equation of motion, which satisfies all the Conditions 1 to 6 listed
above,

dp 1 M 1
14 == =——[H, 0]~ ; 5 (WpiDs + WpiDNH ® ps

where 7; is a positive internal-dissipation time for constituent
J, X' denotes the adjoint of operator X, and the operators Dj
are defined as follows

where

(16) (BInp) =Tr;[(I(J)® p)BInp]

(17 (H) =Tr;[UJ) ® pp)H]

and

(18) (V/p1(B1n gy’ DLLBT BT BTN BT Na (D)

denotes the orthogonal projection of operator /p7(B1np)’ onto the
linear span of operators |/p7, /57 (H) , VPINIW), ..., /BT Na(J])
with respect to the scalar product on the set of linear operators
on H’ defined by (F,G)=(1/2Tr;(FiG+GtF). Operator B is
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the idempotent operator obtained from p by substituting each
nonzero eigenvalue of p with unity, so that TrB equals the
number of nonzero eigenvalues of p and Blnp is a well-defined
operator with eigenvalues that equal either zero or the logarithm
of the nonzero eigenvalues of p.

Equation 14 is well-defined over the entire state domain.
More explicit expressions of the operators D; are given in Ref.
15 where, among many other results, it is shown that indeed
Conditions 1 to 6 are satisfied. The mathematics may seem
involved and ad-hoc, but its geometrical and physical interpretation
shows that this is not the case (Figure 6).

Constant entropy contours ond "plane”

Dissipative term fixed values of the invariants

Hamiltonian term

C™Stable equilibrium
state

Trajectory

Figure 6

We call the first term in the right-hand side of Equation 14
the Hamiltonian term and the second term the dissipative term.
The Hamiltonian term of the equation of motion tends to generate
a reversible unitary evolution which, as we know, would maintain
the trajectory on a constant entropy surface in the state domain.
The dissipative term tends to generate an irreversible evolution
by "pulling" the state operator towards the local direction of
steepest entropy ascent compatible with the conditions on the

time invariants and the structure of the system. In view of
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its nonlinearity in the state operator s, the “strength" of the
dissipative term depends not only on the internal-dissipation times
7; but most importantly on the instantaneous location of the state
operator in the state domain. The actual evolution results from
the competition of the Hamiltonian and the dissipative terms.

For a system consisting of a single constituent, the equation
of motion is clearly simplified. Then, the dissipative term pulls
the state p exactly in the direction of steepest ascent of —kTrplnp
compatible with the invariance of Trp, TrN;p and TrHp.

For a system with many constituents, the structure of the
dissipative term is such that each constituent contributes its own
internal attraction towards its own “perception” of the direction of
steepest entropy ascent, namely, the direction of highest increase of
the functional —&Tr;p;(B1np)’ compatible with the conditions of
invariance of the functionals Trjpr, Tr;N;(J)ps , and Tr;(HY p; .
In this sense, the functionals Tr;(H) p; and —kTr;p;(B1np)’
represent a sort of "internal perception" by the J-th constituent
of the overall energy and entropy of the system.

The explicit form of the equation for a single constituent
consisting of a single two-level atom or spin is discussed in Ref.
16. In Ref. 17 we attempt to establish corrections implied by our
equation of motion onto the basic quantum-electrodynamic results
on resonance fluorescence and stimulated emission. Despite its
apparent complexity, the form of the equation of motion has been
proved to be geometrically simple and in an interesting sense
unique in Ref. 18.

The nonlinearity of the dissipative term and the singularity of
operator Blnp guarantee at the level of the individual dynamics
of each constituent of matter a great richness of dynamical features
which, together with the complexity of structure for a system
with many distinguishable constituents, can certainly produce the
wealth of nonequilibrum conditions and self-organization behavior
sought by the Brussels school.
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10. Origin and generalization of Onsager’s reciprocal relations.

Another important question that is resolved by Quantum
Thermodynamics is related to the general description of
nonequilibrium states and their time cvolution. We have seen
that the states of Quantum Mechanics and those of Equilibrium
Thermodynamics constitute very small subsets of the state domain
of Quantum Thermodynamics. With the exception of a relatively
small number of equilibrium states that are not globally stable,[15]
all the other states are nonequilibrium.

An interesting way to represent a general state operator,
equilibrium or nonequilibrium, is in terms of a fixed set of
operators Xi, Xz2,...,X;,... that span the real space of selfadjoint
linear operators on H. We can write any state operator as [19]

19 p = Bexp <“zfixi>

where fi,f»,..., fi,... are real scalars and B is an idempotent
self-adjoint operator. The main and most important difference
between Equation 19 and Equations 5 to 7 is that the list of
operators X; must be complete in the sense that any other
self-adjoint operator on H can be expressed as a linear combination
of the X,;’s. For example, if dimH =occ then the list of X;’s is
also infinite. However, it may be possible to judiciuosly select
the set of X;’s so that, for states that are close enough to the
stable equilibrium states of Equations 5 to 7, most of the scalars
# are practically zero. Then, for such a special set of states,
the summation in Equation 19 can be approximated by a finite
summation over a limited set of relevant X;’s.

In terms of Equation 19, the entropy functional becomes a
linear combination of the functionals TrX;p, i.e.,

(20) ~kTrplnp=k Y fTrXip

so that the scalar #; can be interpreted as a generalized "affinity”
or "force" representing the marginal dependence of the entropy
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functional on the change in value of the property represented by
functional TrX;p, in the neighborhood of the given state p.

It is then interesting to evaluate the rate of change of TrX;p
as due to the equation of motion (Equation 14), specifically, to
the dissipative term of the equation of motion. We know that the
Hamiltonian term cannot alter the value of the entropy.

Therefore, we focus our attention on the contribution of
the dissipative term, that we denote by DX;/Dt and call the
disipative rate of change of the property represented by the
functional TrX;p.

Substituting the explicit expression of the dissipative term,[19]
we find

DX;
@D el Z fiLis(p)
and
d DX;
22) —k—Trplnp= kai“‘D_t = K};;fif;‘faf(ﬁ)
where
M

q ‘
Ly@=)" Pl (VEHC S (r X)) Wpr(X) -
(23) J=1

— (VPr(X)NLD = L)

Q4) (X! = Tr () ® pp)Xi

(,-) denotes the scalar product on the set of linear operators on %’
defined by (F,&)=1/)Tr;(FIG+GtF), and (/p;(X:)7), denotes
the orthogonal projection of operator ,/p7(X;)’ onto the linear
span L of operators /o7, /B;(H) s /prNi(J),...,/PINa(]).
In view of Equation 21, the functional L;;(p) can be interpreted
as a generalized "conductivity” expressing the linear dependence
of the dissipative rate of change of the i-th functional TrX;p on
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the j-th affinity f;. The conclusion that Li;(p) = Lji(p), implies
that at every state p, the marginal dependence of the dissipative
rate of change of the i-th functional TrX;p on changes in value
of the j-th affinity f; is equal to the marginal dependence of the
dissipative rate of change of the j -th functional TrX;p on changes
in value of the i-th affinity 7. This conclusion represents a
proof of Onsager’s reciprocity relations expressing the reciprocity
of the mutual interrelations between different irreversible rate
phenomena simultaneously occurring at a nonequilibrium state.

Onsager’s result[20] was obtained from empirical observations
on nonequilibrium phenomena very close to stable thermodynamic
equilibrium, so that the list of X;’s was indeed very short, and
the result valid only for a limited class of states. Our result[19]
generalizes the validity of Onsager’s reciprocity relations to all
nonequilibrium states, close and far from stable thermodynamic
equilibrium. Of-course, the price we have to pay to describe
nonequilibrium states far from stable equilibrium is that we must
use a much larger, possibly infinite list of X;’s.

11. Conclusion.

All the results summarized in this article unfold from the
recognition of the role played by stability in Thermodynamics. [5-6]
[10] [13] [15] In our view, Quantum Thermodynamics constitutes
the first self-consistent and conceptually-sound resolution of the
century-old dilemma on the nature of entropy and irreversibility.
While encompassing all the successful results of Quantum
Mechanics, Equilibrium Thermodynamics, and the formalism of
Statistical Mechanics, it opens new vistas towards a unifying
reexamination of nonequilibrium phenomena.
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Appendix - A conceptual inconsistency of statistical
mechanics.

We emphasized throughout the paper that the basic inconsistency
of Statistical Mechanics is only in its conceptual foundation, i.e.,
not in its mathematical formalism but in its physical interpretation.
Indeed, the mathematical formalism is used with great successes
by physics practitioners in all fields regardless of the underlying
conceptual problems that have remained almost ignored since when
they were first raised in an almost forgotten paper by Schrddinger.
(4] It is our thesis in this paper that, although they may be safely
ignored in applications of the formalism of Statistical Mechanics,
such conceptual problems must be faced and overcome in any
sound attempt to resolve the dilemma on the roots of entropy and
irreversibility. Indeed, we hold that the failure to recognize such
problems has so far prevented the development of a sound unified
theory of equilibrium and nonequilibrium phenomena. Here, we
review the conceptual problem first raised by Schrédinger in
reaction to von Neumann’s development of the foundations of
Statistical Mechanics.

We begin with the premise, a traditional keystone of the
entire conceptual edifice in physics, that every system is always
in some definite (possibly unknown) state. To implement this
premise, a physical theory must entail the impossibility to conceive
of a system that at a given instant of time is simultaneuosly in
two or more states. As Park[4] has put it, the existence of such
a monster would require that we abandon the concept of state of
a system.

Statistical Mechanics stems from the same premise. The
states of a system are as described by Quantum Mechanics,
i.e., in one-to-one correspondence[21] with the one-dimensional
projection operators Py on the Hilbert space # of the system,
each of which identifies the one-dimensional linear span of some
vector ¢ in H called a state vector.

The objective of Statistical Mechanics is to deal with situations
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in which the state of the system is not known with certainty and,
therefore, each of the possible states of the system is assigned an
appropriate statistical weight representing the probability that the
system actually be in that state. Denoting by P, | Pyyyoot Py, ... the
list of possible states and by wy,, wy,,.. -y Wy, .- the corresponding
list of statistical weights, the formalism requires that we form
the statistical or density operator p=Zw/|.P¢,., which is to be

taken as the statistical indicator of the situation just described.
With probability wy, the system is in state Py, .

Schrodinger [4] noted that for the same system we can
always find a different statistical situation with the following
features: (1) the list of possible states Foy Py, Py, .. s entirely
different from the list Py, Py,,...,Py,,... considered above, i.e.,
Fs,#Py, for all i and k; (2) the list of statistical weights is
s and (3) the statistical indicator p=zw¢,kP¢k

k
is equal to the indicator p= Zw,;.,,P,,,,‘, for the preceding statistical

w¢,,w¢2,...,w¢.,...

i

situation, i.e., p= wg, Py, = wy, Py, . With probability w, the
P (=P R id Ty p Y [
% i

system is in state pP,, .

Now, we face the question: are statistical situations of the
kind just discussed described completely and unambiguosly by the
statistical indicators ,? A glance at the two preceding paragraphs
would yield a negative answer: the description by means of the
statistical or density operators , is ambiguous. On the other
hand, such description has lead to Innumerable successes and
no questions of ambiguity have been reported. But if we ignore
the existence of this ambiguity and insist that the two statistical
situations cited above are indeed the same, then we are forced to
conclude that for such situation the system is in state P, with
probability wy, and at the same time it is also in state Py, with
probability ws, . Thus, we would conclude that with probability
ws, the "monster" is ar once in state Py, and in the different
state P, .
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Again we emphasize that a complete and thorough discussion
of this and other conceptual inconsistencies of Statistical Mechanics
is to be found in Ref. 4.
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