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ABSTRACT

Solidi�cation of an iron-carbon alloy is investigated through numerical simulations performed with a general-

purpose CFD code. Only one set of conservation equations for binary solid-liquid phase change systems is solved

throughout the entire domain, thus allowing the use of a �xed grid. The solidifying alloy is represented as a

porous matrix (solid phase) at rest, �lled with the liquid phase. Porosity, which is equal to 0 and 1 for fully

solid and fully liquid material, respectively, is taken linearly dependent on temperature in the mush. Release

of latent heat during phase change is accounted for by use of an e�ective speci�c heat, but solute transport is

neglected. The e�ects of two di�erent relations between porosity and permeability are compared by solving a case

of solidi�cation in a small rectangular cavity cooled from the sidewalls. It is found that for Rayleigh number up to

2.3 �106 there is not appreciable in
uence of the permeability model on the overall heat transfer process, however,

signi�cant di�erences between the velocity �elds near the liquidus line suggest important e�ects on solute transport.

1. INTRODUCTION

Solidi�cation of metals as occurs in industrial
ingot casting is a complex process a�ected by several
phenomena. Appearance, properties, and quality of the
ingot | the �nal product of the process | depend on
many factors: mass, surface-to-volume ratio, and shape of
the ingot; size and shape of the feedhead; material, mass,
and wall thickness of the mold; forced convection e�ects
during the mold-�lling stage; natural convection e�ects
during the ingot-solidi�cation stage; use of insulating
materials coupled to exothermic reactions at the ingot
upper surface to delay solidi�cation of the feedhead;
presence of an insulating gap, partially �lled with dust
and gases, between the ingot and the mold etc.

Today's availability of general-purpose CFD packages
with capabilities of modelling a large variety of physical
phenomena in complex geometries, serves as a stimulus to
attempt a heat transfer analysis of an industrial process
in order to verify the extent to which numerical results
are reliable and useful to the process engineer and the
designer. With this spirit, we started numerical research
work on ingot casting with the long-term goal of improving
mold design for large-size steel ingots.

Phase transition between liquid and solid for metal
alloys takes place over a �nite temperature range. During
ingot solidi�cation this causes the formation of a two-
phase region, referred to as the mushy region, which
separates the solidus from the liquidus. In the liquid
and in the mushy regions, temperature di�erences and
constituent concentration di�erences may induce free
convection 
ows. These motions have signi�cant e�ects on
the evolution of the mushy region itself, and are considered
the cause of macrosegregation [1, 2].

Numerical methods to solve solidi�cation problems can

be classi�ed into two classes. The �rst type subdivides
the solution domain in regions (solid region, liquid region,
etc.). Di�erent conservation equations are solved in
each region and the solutions are coupled by imposing
proper conditions at the boundaries between regions.
A deforming grid is necessary for each region. These
methods are more suited for modelling solidi�cation of
a pure substance, since in this case a single moving
boundary separates the liquid from the solid, rather than
a mushy region of �nite width.

In the second class of methods, only one set of
conservation equations is solved throughout the entire
domain. This allows the use of a �xed grid and avoids the
di�culties associated with moving-boundary problems.
The solidifying material is treated as a pseudo-porous
medium (the solid phase) �lled with a 
uid (the liquid
phase). The porosity of the medium varies both in time
and in space, being equal to zero in the fully solid region,
equal to unity in the fully liquid region and ranging
between zero and unity in the mush.

Conservation equations for the pseudo-porous medium
are obtained either through classical mixture theory [3, 4]
or by use of volume averaging techniques. They can be
cast in a form identical to the Navier-Stokes equations
with the addition of source terms. This fact, together with
the use of a single, �xed numerical grid makes numerical
treatment of the solidi�cation problem feasible with most
general-purpose CFD codes.

The source term in the energy equation accounts for
the gradual release of the latent heat of fusion in the
mushy region. Upon introduction of an e�ective speci�c
heat, the equation can be recast in a form that does not
contain any source term.

The source term in the momentum equation models the
momentum exchange between the two phases in the mushy



region. The models currently available are designed
so that, in the mushy region, the momentum equation
reduces to Darcy's law. In the fully liquid region, instead,
the source term vanishes.

Darcy's law prescribes a linear relation between
velocity and pressure gradient with a coe�cient depending
on the permeability of the porous medium. Di�erent
forms of the porosity-permeability relationship have been
proposed in the literature for some solidifying materials.
However, due to the paucity of data | especially for liquid
fraction close to unity | there is no general agreement on
any one of these forms.

In this paper we present the �rst results of a numerical
study on steel ingot solidi�cation. In particular, two
di�erent porosity-permeability relations are compared by
solving a simple model of ingot solidi�cation with the CFD
code Fluent/UNS. The ingot is represented as a 2:1 aspect
ratio rectangular cavity with prescribed heat 
ux at the
sidewalls, and insulated upper and lower walls. In this
preliminary work attention is focused on the e�ects of
di�erent permeability models on important aspects of the
solidi�cation process such as the rate of solid formation
and the shape of the mushy region. For this reason and
for the sake of simplicity, solute concentration is assumed
uniform even if advective solute redistribution is known
for being a critical issue in ingot casting [2].

2. MATHEMATICAL FORMULATION

In this work steel is treated rather simply as a binary
alloy. Following the approach developed by Incropera
and coworkers [3, 4], both phases of the solidifying
material are viewed as continuum mixtures of iron and
carbon coexisting in any region of space with varying
volume fractions. Separate conservation equations of
mass, momentum, energy, and species, are written for the
liquid and the solid phase. These equations are summed
up to obtain the following conservation equations for the
alloy, which are valid in the mushy region as well as in the
liquid and solid regions,
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Equations (1){(4) contain quantities relative to a single
phase | denoted by subscript k | such as, for example,
gk and uk which are the volume fraction and the velocity
of phase k, and quantities relative to the alloy such as �
and u.

Alloy properties are de�ned as either mass or volume
averages of phase variables. If �k is the actual density of
phase k, upon introduction of the phase partial density

��k = gk �k (5)

the alloy density is de�ned as

� =
X
k

��k: (6)

The mass fraction of phase k is

fk =
��k
�
: (7)

The alloy velocity is the mass average of the velocities of
the individual phases
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Similarly, the alloy body force, enthalpy, and
concentration of species � are de�ned as
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where in the last expression f�k is the mass fraction of
species � in phase k.

The thermal conductivity of the alloy is de�ned as
the volume average of the corresponding properties of
individual phases

k =
X
k

gk kk: (10)

Equation (3) is based on the assumption | referred
to in the following as assumption (A.1) | of local
thermodynamic equilibrium among the phases, so that
Tk = T for all k. In addition, in Eqs. (2){(4) the advective
term is decomposed into the contribution due to the mean
alloy motion, on the left hand side of the equations, and
the contributions due to the relative phase motion which
is the last term on the right hand side.

For a two-phase solid-liquid system, such as solidifying
steel, upon making some simplifying hypothesis, Eqs. (2)
and (3) reduce to a form which is amenable of solution
with most general-purpose CFD codes. Following Refs.[1,
2, 4, 5], here we take the following assumptions.

(A.2) The solid phase behaves like a rigid body at rest,

us = 0 (11)

(A.3) The liquid phase behaves as a Newtonian 
uid.

(A.4) Density, viscosity, thermal conductivity, and speci�c
heat are uniform and constant for each phase.

(A.5) Buoyancy e�ects due to density variations are
accounted for using the Boussinesq approximation.



(A.6) Density and speci�c heat are equal for the phases,
i.e.,

�s = �l = � (12)

cs = cl = c: (13)

Therefore,
gk = fk for k = s; l: (14)

(A.7) Gravity is the only body force.

(A.8) Solute concentration f� is uniform and constant.

As a consequence of assumptions (A.2) and (A.6) the
continuity equation reduces to

r � (flul) = 0: (15)

For a uniform and constant solute concentration, Eq.
(4) is automatically satis�ed. In addition, the closure of
the system of conservation equations requires a relation
between liquid fraction and temperature in the mushy
region which we take linear | assumption (A.9) | as
in Ref. [5],

fl = gl =
T � Tsol
Tliq � Tsol

(16)

where Tliq and Tsol are the liquidus and the solidus
temperatures of the binary alloy for the prescribed solute
concentration.

2.1 Momentum equation

Equation (2) contains the individual phase stress
tensors �k. Under conditions (A.1), (A.3) and (A.4) the
liquid phase stress term takes the following form
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Because of the assumption (A.2) of rigid body behavior,
particular care is required in developing the solid phase
stress term. As proposed in Ref. [4], starting from the
solid phase momentum equation,
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where gs _Gs i = �gl _Gl i represents the momentum
exchange from liquid to solid due to pressure, viscous
shear, and phase change, separating normal from shear
forces, neglecting momentum exchange due to phase
change, one obtains
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where _GD l i is the drag exerted by the solid phase on the
liquid phase. In order to close the system of equations
it is necessary to �nd an explicit expression for the
drag interaction term. In metallurgical studies [5] (see
also [2, 4, 6]) it is common to consider the dendritic
structure that forms and grows during solidi�cation as
a porous matrix �lled with liquid metal, and to assume
| assumption (A.10) | that Darcy's law is applicable to
describe 
ow in the mush

rp� �lBl = �
�l
K
glul: (20)

In Eq. (20) K is the permeability of the porous
medium which is assumed isotropic | assumption (A.11).
According to assumption (A.10), in the mushy region the
dominant terms of the momentum equation reduce to
Darcy's law, therefore comparison of Eqs. (2) and (19)
with Eq. (20) shows that the drag term can be written as

_GD l i = �
�l
K
ui: (21)

Substituting Eq. (21) in (19) and recalling assumption
(A.6), the momentum equation takes the following form
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In Eq. (22) the term gs (rp� �Bl + �lu=K) has been
neglected because it is identically zero in the liquid and
vanishingly small in the mush where Darcy's law applies.

Some authors [2, 5] do not even mention the advective
term due to relative phase motion | the last term on the
right hand side of Eqs. (2) and (22) | which is indeed
negligible. Actually, this term is di�erent from zero only
in the mush where, according to the scaling analysis of
Krane and Incropera [7], its order of magnitude is equal
to that of the mean motion advective term times fs=fl.
Therefore, where convective e�ects are more important,
i.e. for fs � 1, this term is much smaller than the mean
motion advective term. Instead, for fs � 1 both advective
terms are negligible compared to the interphase drag term.
Thus, a non signi�cant error is introduced upon neglecting
this term everywhere in the alloy.

Finally, the momentum equation can be recast in the
following form
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where the Darcian damping term is represented as a
momentum source

Sm = �
�l
K
u: (24)

In writing Eq. (23), use is made of assumptions
(A.7) and (A.5). Thus p0 represents the pressure
without the hydrostatic contribution and T0 is a reference
temperature.

2.2 Porosity-permeability relations

The coe�cient K which appears in Darcy's law
depends on the size and shape of interstices of the solid
matrix. For a given shape it is roughly proportional
to the square of their linear dimension. Therefore, for
a non homogeneous porous medium such as the mush,
permeability is expected to vary in space and time as a
consequence of liquid fraction variations.

Several expressions of K | based on di�erent
conceptual models of the porous medium | are available
in literature [8, chap. 5].

In the simplest approach the porous matrix is modelled
as a bundle of capillary pipes in each of which the 
ow is
of Poiseuille type. The resulting form of K is

K = c0
�3

(1� �)2
1

M2
s

: (25)



Equation (25) is known as Kozeny-Carman equation.
Kozeny's constant c0 depends on channel shape and is
determined by �tting experimental data. The porosity
� of the mushy region of a solidifying alloy is usually
considered equal to the liquid volume fraction. Ms

represents the ratio of wetted solid surface to solid volume.
Most numerical studies on solidi�cation of binary

systems use Eq. (25) setting the ratio C = c0=M
2
s

equal to a constant [1, 5, 7]. The value of the constant
depends on the average dendritic arm spacing: in Ref.
[1], for example, C is taken equal to 1:4 � 10�9 and
2:8 � 10�11 m2 for Al-14.9wt%Mg and Pb-19.2wt%Sn,
respectively. However, assuming Ms constant, does not
seem appropriate. In a bundle of tubes, Ms decreases as
their average distance increases, therefore, one expects at
least a weak dependence of Ms on porosity. As a matter
of fact experiments performed by Piwonka and Flemings
show that K is proportional to �2 rather than to �3 for �
smaller than approximately 1/3 [9].

This behavior is predicted by the so-called resistance-
to-
ow models. In this approach, the porous medium
is represented as a densely packed, regular or random
array of small bodies. From a knowledge of the drag
exerted by a creeping 
ow on a single particle, it
is possible to obtain expressions for the permeability.
For example, permeability for an assemblage of roughly
spherical particles can be written as

K = c1
�2

1� �
d2 (26)

where d is the diameter of the particles and c1 is a constant
that depends on the particles shape and their average
distance.

In a numerical computation of solute redistribution
in an iron-carbon alloy, Amberg [2] uses a porosity-
permeability relation due to West [6] that reduces to Eq.
(26) for small values of �. The relation proposed by
West is based on the experimental evidence of two distinct
trends in permeability behavior of metal mush [6, 9].
At low values of liquid fraction (gl < 0:3) permeability
increases as �2, but at larger values of gl, it increases
much more rapidly. The mushy zone, therefore, cannot be
described through a single model, but at least two models
are necessary to describe the transition from interstices in
a solid body (low liquid fraction) to particles in a liquid
(low solid fraction).

The relation proposed by West is the following,
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where H(��1=3) is the Heaviside function which vanishes
for � < 1=3 and is identically 1 for � > 1=3. The �rst term
on the right hand side of Eq. (27) is similar to Eq. (26)
and represents permeability of a compact assemblage of
small particles, the second term gives the permeability of
an array of separated spheres. C1 and C2 are empirically
determined constants.

In this work we investigate the e�ects of di�erent
permeability expressions on numerical computation of
steel solidi�cation. The equations to be compared are
the West equation (27) and the Kozeny-Carman equation
(25).
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Figure 1: Permeability vs porosity: Kozeny-Carman
equation (solid line) and West equation (dashed line).
Squares represent experimental data in Ref. [9].

Following Amberg, who studies a mixture of iron and
carbon, we take for constants C1 and C2 in Eq. (27) the
values 6:4� 10�13 and 8:8� 10�11 m2, respectively. They
have been determined by using the experimental data in
Ref. [9], even if data refer to a Al-4.5wt%Cu alloy.

For consistency, we have estimated the ratio C =
c0=M

2
s that appears in the Kozeny-Carman equation, by

best �tting the data in Ref. [9] to Eq. (25). The
value obtained in this way is C = 3:84 � 10�12 m2.
Both porosity-permeability relations are plotted in Fig.
1, together with the experimental data of Piwonka and
Flemings.

2.3 Energy equation

As for the momentum equation, also for the energy
equation the advective term due to relative phase motion
| last term on the right hand side of Eq. (3) | can
be neglected. Indeed, the order of magnitude of this
term is equal to that of the advective term due to mean
motion times fs. Therefore, for fs ! 0, where convective
e�ects are dominant, it is smaller than the mean motion
advective term.

Most general-purpose CFD codes solve the energy
equation using temperature as an independent variable,
thus it is necessary to express the alloy enthalpy as a
function of T . If phase enthalpy is written as

Hk = Hk ref +

Z T

Tref

ck dT (28)

and assumptions (A.4) and (A.6) are adopted, the alloy
total enthalpy can be written as

H = Hs ref +

Z T

Tref

c dT + glL (29)

where L = Hl ref � Hs ref is the heat of fusion which is
gradually released during solidi�cation.

By separating the sensible heat

h = Hs ref +

Z T

Tref

c dT (30)



from the latent heat

�H =
T � Tsol
Tliq � Tsol

L (31)

where use is made of the lever rule (16), the energy
equation becomes
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This approach is that used in Refs. [2] and [5].
An alternative approach is the introduction of an

e�ective speci�c heat which takes into account the latent
heat,

ce = c+H(T � Tsol)H(Tliq � T )
L

Tliq � Tsol
(34)

which is equal to c + L=(Tliq � Tsol) for T between the
solidus and the liquidus temperature, and coincides with
c otherwise. In this case the energy equation is simply
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with the total enthalpy calculated as

H = Hs ref +

Z T

Tref

ce dT: (36)

This form is that used for this work.

3. NUMERICAL RESULTS

To compare the e�ect of di�erent porosity-permeability
relations on the numerical computation of a solidi�cation
process, the same two-dimensional problem addressed by
Amberg in Ref. [2] has been chosen.

The con�guration of the test problem is shown in Fig.
2. A Fe-1wt%C alloy solidi�es in a small rectangular
cavity of height l = 0:1 m and width 2l. The upper and
lower walls are thermally insulated, whereas a uniform
and constant heat 
ux _q = 60 kW/m2 is removed from
the sidewalls, starting at time t = 0.

Initially the melt in the cavity is at rest, at uniform
temperature Ti = 1736 K, 5 K above the liquidus
temperature. The problem exhibits symmetry about the
vertical midplane. Therefore, upon introduction of a
frame of reference centered at the bottom left corner
with horizontal coordinate x and vertical coordinate y,
numerical computations are restricted to the square 0 <
x < l, 0 < y < l.

The values of the thermophysical properties of the iron-
carbon alloy used for calculations are taken from Ref. [2]
and are summarized in Tab. 1. In particular, the liquidus
and solidus temperatures, calculated for a constant carbon
mass fraction of 1%, are 1731 and 1623 K, respectively.
The reference temperature in the Boussinesq term is set
equal to the fusion temperature of pure iron, T0 = 1809 K.

The code used for numerical computations is
Fluent/UNS v. 4.1. Based on a �nite volume

insulated

insulated

q
.

y

x

Figure 2: Test problem geometry.

discretization technique, Fluent/UNS solves mass,
momentum and energy equations in a rather general form
which contains Eqs. (1), (23), and (35).

The �nite volume approach requires that source terms
be linearized. If � is the variable that is being solved for,
the source term has to be written as S = a+ b�, where a
and b may themselves depend on �. To avoid divergence
of the numerical solution, it is important that b be a non-
positive quantity [10, Chap. 3]. The source term which
appears in Eq. (23) is already a linear function of the
alloy velocity with the constant term a identically zero
and negative linear coe�cient b = ��l=K. It can be easily
included into the code by writing a user-de�ned function
in C language which is compiled and linked at runtime
from within the code itself.

If permeability is expressed using either the West
equation or the Kozeny-Carman equation, the linear
coe�cient b diverges as porosity tends to zero. Thus
permeability expressions are modi�ed to avoid occurrence
of numerical over
ow. We set
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and, following the example of Voller and Prakash [5],

bII = ��l
(1� �)2

C (�3 + "II)
(39)

where "I = 0:01 and "II = 0:001.
About the energy equation, since Fluent/UNS allows

to de�ne the speci�c heat as a stepwise function of
temperature, the e�ective speci�c heat approach has
been preferred for its semplicity. The alloy thermal
conductivity is calculated through a user-de�ned function
using Eq. (10).

Computations have been performed on a 152 �
38 orthogonal grid with uniform spacing in both x
and y direction. The number of cells in the x
direction is quadrupled with respect to the 38 � 38
grid used by Amberg [2]. This is necessary to avoid
divergence of the numerical solutions in the early stage
of solidi�cation. During calculations both PRESTO! and



Table 1: Data for test problem

Cavity height and half
width l = 0:1 m
Wall heat 
ux _q = 60 kWm�2

Initial temperature Ti = 1736 K
Density � = 6940 kgm�3

Speci�c heat c = 753 Jkg�1K�1

Dynamic viscosity � = 6:94� 10�3 kgm�1 s�1

Liquid thermal
conductivity kl = 30 Wm�1K�1

Solid thermal
conductivity ks = 60 Wm�1K�1

Liquidus temperature Tliq = 1731 K
Solidus temperature Tsol = 1623 K
Solid reference enthalpy Hs ref = 0 J kg�1

Reference temperature Tref = 298:15 K
Enthalpy of fusion L = 2:72� 105 J kg�1

Thermal coe�cient of
expansion � = 2:71� 10�4 K�1

Reference temperature T0 = 1809 K

Implicit Body Force Treatment options have been enabled,
as recommended for natural convection applications [11,
Chap. 12]. First-order upwind discretization scheme
for the advective terms has been used throughout all
computations. The �xed number of iterations performed
for each time step has been chosen su�ciently large so that
residuals level out. Calculations have been performed on
a PC equipped with two Intel Pentium 133 processors.

Several preliminary tests were performed. First, we
tried and reproduced with very good agreement the results
obtained by Voller and Prakash in Ref. [5]. It is
noteworthy that the agreement is very good even though
the release of heat of fusion is represented through the
source term described by Eq. (33) in the work by Voller
and Prakash, whereas we use the equivalent speci�c heat
method. Next, we tried to solve the test problem described
above, using the momentum source term bIu based on the
West equation, but the code failed to reach convergence
shortly after the appearence of the mushy region. Many
trial calculations were necessary to adjust the time step,
the values of the underrelaxation factors, and the cell size
in the x direction to make the solver converge throughout
the entire solidi�cation process.

Three simulations of the solidi�cation process have
been carried out. In the �rst simulation we use the
modi�ed West equation (37-38). During this simulation
it has been di�cult to attain convergence. The time
step has been set to 0.1 s for the initial stage, then
modi�ed to 0.2 s and, after the liquid region disappeared,
progressively increased up to 5 s. The underrelaxation
factors have been kept equal to 0.1, which is a value
much smaller than the default ones. As a consequence,
the number of iterations allowed for each time step has
been increased to 150. Computations required about
303 h for 3600 s of simulated time. Despite the small
values of the underrelaxation factors, residuals exhibited
an oscillating behavior during several time steps. This
anomalous behavior is observed only when both the liquid
and the mushy regions are present. We identify the cause
of di�culties in convergence in the very rapid change of
the West equation as porosity tends to 1 (see Fig. 3).
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Figure 3: Momentum source linear coe�cients used in
numerical simulations: asymptotic behavior as porosity
tends to 1.

Indeed Eq. (38) is asymptotic to �(�l=4C2)(1 � �)1=3

as � ! 1 and has in�nite slope at � = 1. To avoid
this singularity we have further modi�ed the momentum
source linear coe�cient, imposing a linear behavior for
0:99 � � � 1, as shown in Fig. 3,

bIa = bI for 0 � � � 0:99 (40)

bIa = bI(�)j�=0:99

1� �

0:01
for 0:99 � � � 1: (41)

The second simulation has been performed using bIau
as momentum source term. The bene�cial e�ects of the
modi�cation of b are: to allow larger time steps | 0.2 s
at the beginning, 1 s until disappearance of the liquid
region, and 5 s later on | and higher underrelaxation
factors, set to 0.5; to reduce to 50 the number of iterations
per time step; and to eliminate oscillations of residuals.
As a consequence of these changes the computation time
required for 3600 s of simulated time decreased to 87 h.
This second simulation ended at t = 4370 s upon complete
solidi�cation of the alloy. No signi�cant di�erences can be
observed between numerical results obtained using either
bI or bIa, therefore in the discussion below we refer to the
results of the second simulation only.

During the third simulation, the source term bIIu based
on the Kozeny-Carman equation, has been tested. As
clearly shown in Fig. 3, bII tends to zero with zero slope as
� approaches 1. This behavior seems to make convergence
of the solver much easier. Indeed, for this simulation it
was not necessary to change Fluent's default values of
the underrelaxation factors. Moreover, larger time steps
could be used | from 0.5 s at the beginning, up to 10 s
when the liquid region was still present. Although as
many as 100 iterations per time step were allowed during
part of the simulation, the computation time for the �rst
3600 s amounted to about 36 h. Also in this case, the
computation was stopped at t = 4360 s upon complete
solidi�cation.

Figs. 4-6 show isotherms | which coincide with
isoporosity lines inside the mushy region | and velocity
vectors at t = 200, 400, 3600 s for the second (West) and
the third (Kozeny-Carman) simulations. At t = 200 s
roughly half of the cavity is occupied by the mush. It
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Figure 4: Isotherms and velocity vectors at t = 200 s: (a)
West equation; (b) Kozeny-Carman equation. Isotherms
are plotted in increments of 1 K. Liquidus temperature is
1731 K. In (a) jujmax = 4:16� 10�3 m=s, in (b) jujmax =
3:13� 10�3 m=s.

is apparent an anticlockwise circulation induced by a jet
of cooled liquid 
owing downward, close to the liquidus
line (1731 K). Maximum velocity is about 5� 10�3 m/s.
If advection were absent, isotherms would be vertical;
the development of the slow recirculating motion due
to natural convection, instead, keeps the liquid region

1726 K 1731 K

(a)

1726 K

(b)

Figure 5: Isotherms and velocity vectors at t = 400 s: (a)
West equation; (b) Kozeny-Carman equation. Isotherms
are plotted in increments of 5 K. Liquidus temperature is
1731 K. Velocity vector scale is 5 times smaller than in
Fig. 4.

almost isothermal, with a weak temperature gradient
directed upward. The e�ect of advection extends to
isotherms inside the mushy region which are inclined. The
liquid region disappears at t = 400 s approximately. At
this stage thermal convection is still appreciable in the
more porous regions of the mush, even if velocities are
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Figure 6: Isotherms and velocity vectors at t = 3600 s: (a)
West equation; (b) Kozeny-Carman equation. Isotherms
are plotted in increments of 5 K. Solidus temperature is
1623 K.

reduced by one order of magnitude. As cooling proceeds,
permeability of the mush decreases rapidly and velocities
become vanishingly small. Although thermal di�usion is
now the only active mechanism of heat transfer, isotherms
near the centerline are still inclined because the vertical
temperature gradient established at the beginning of the
process is not smoothed out yet. The fully solid region

begins to form around t = 2600 s, when temperature
distribution is practically one-dimensional. Later on, at
t = 4360 s, the mushy region disappears and the alloy
becomes completely solid.

How can we compare the e�ects of the two
permeability expressions on ingot solidi�cation? Global
parameters such as the rate of solid formation coincide
within 1% throughout the entire process, denoting a
negligible in
uence of the form of the momentum source
term. However, this indicator seems to deceive the
key phenomena governing this test problem. Indeed,
calculations performed assuming both phases at rest give
the same rate of solid formation as in the cases where
advection is present. The Rayleigh number based on the
di�erence between initial and liquidus temperatures and
on the cavity height l, is equal to 2:3 � 106. Although
this value is su�ciently large, advection seems to act as a
perturbation e�ect on the dominant di�usion transport,
perhaps because of the type of boundary condition
imposed on the sidewalls. Further tests are necessary to
verify whether for higher Ra or smaller heat 
uxes, the
e�ect of the permeability expression on the heat transport
process becomes appreciable. For the time being, we
can only say that the choice of one of the two source
terms investigated a�ects only the velocity �elds and the
isotherm patterns in the �rst phase of the solidi�cation
process.

It is apparent that the main di�erences between Figs.
4(a) and 5(a) (West) and Figs. 4(b) and 5(b) (Kozeny-
Carman) are due to the di�erent order of magnitude of
bIa and bII for porosity close to one, which produces
dissimilar velocity �elds in the mushy region close to
the liquidus line. While the West equation induces an
abrupt reduction of velocity across the boundary between
liquid and mushy regions, the Kozeny-Carman equation
is characterized by a smooth damping of velocity which
allows signi�cant 
ow rates inside the mush. These
di�erences a�ect heat transfer appreciably only in the
shape and relative position of isotherms between 1726 and
1731 K approximately. However, if transport of solute
were taken into account, the numerically predicted solute
distribution in the solidi�ed ingot might be signi�cantly
a�ected by the permeability expression adopted. It has
been observed [1, 2] that when solute concentration is
allowed to vary, a clockwise circulation develops in the
mush. This motion is due to solutal driven convection
which overwhelms the thermally driven one and is the
main cause of the enrichment of solute at the top of the
ingot. Therefore, stronger 
ow rates in the mush, as those
allowed by the Kozeny-Carman equation, might produce
a more severe macrosegregation.

4. CONCLUSIONS

Solidi�cation of an iron-carbon alloy has been
investigated through numerical simulations performed
with a general-purpose CFD code. In order to use
a �xed grid, the solidifying alloy is represented as a
porous matrix with temperature-dependent porosity (solid
phase), at rest, �lled with liquid (liquid phase). Release
of heat of fusion during phase change is accounted for
by introduction of an e�ective speci�c heat, but solute
transport is neglected. Two relations between porosity
and permeability are used in previous studies of binary
alloys solidi�cation. In this paper interest lies mainly in



comparing the e�ects of the choice between these relations.
We chose as test problem the same problem solved

in Ref. [2] | solidi�cation in a small rectangular 2D
cavity cooled from the sidewalls. Di�culties in attaining
numerical convergence for one of the permeability
expressions is overcome through a small modi�cation for
porosity close to one. This change reduces computation
time by a factor three without introducing signi�cant
di�erences.

Numerical results do not show appreciable in
uence
of the permeability relations on the overall heat transfer
process, however, there are clear di�erences between the
velocity �elds near the boundary between the mush and
the liquid alloy. Since liquid motion through the mush
is strictly related to solute segregation, this fact suggests
that the permeability model adopted should a�ect quite
importantly the transport of solute. The results presented
are preliminary in that they have to be con�rmed by
further tests for di�erent values of the Rayleigh number
and di�erent boundary conditions. In addition, di�erences
between the two permeability expressions can be fully
appreciated only if the transport equation for the solute
(4) is included in the model.

NOMENCLATURE

a; b coe�cients in the linearized form of the
source term

B; B body force per unit mass [m s�2]
c speci�c heat [J kg�1K�1]
ce e�ective speci�c heat [J kg�1K�1]
c0 Kozeny's constant [dimensionless]
C; C1; C2 constants in permeability expressions [m2]
D mass di�usion coe�cient [m2 s�1]
e(i) i-th unit vector of a Cartesian right handed

bases
f mass fraction [dimensionless]
g volume fraction [dimensionless]
g gravity acceleration [m s�2]
_G momentum source due to phase interactions

[kgm�2 s�2]
_GD momentum source due to shear forces

between phases [kgm�2 s�2]
h sensible heat [J kg�1]
�H latent heat [J kg�1]
H speci�c enthalpy [J kg�1]
H (x) Heaviside function
k thermal conductivity [Wm�1K�1]
K permeability [m2]
l cavity height [m]
L enthalpy of fusion [J kg�1]
Ms speci�c surface [m�1]
p pressure [Pa]
p0 pressure without the hydrostatic

contribution [Pa]
_q wall heat 
ux [Wm�2]
Ra Rayleigh number [dimensionless]
S general source term
Se energy equation source term [Wm�3]
Sm momentum equation source term [kgm�2 s�2]
t time [s]
T temperature [K]
u; u velocity [m s�1]

x; y Cartesian coordinates [m]

� thermal coe�cient of expansion [K�1]
" small constant [dimensionless]
� porosity [dimensionless]
� dynamic viscosity [kgm�1 s�1]
� density [kgm�3]
�� partial density [kgm�3]
� stress tensor [Pa]
� general scalar quantity

Subscripts and superscripts

i initial
i i-th component of a Cartesian vector
k phase k
l liquid
liq liquidus
ref reference value
s solid
sol solidus
0 reference value
I, Ia, II denoting di�erent forms of the momentum

source term

� constituent �
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