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Abstract 
We discuss the problem of finding an optimal elec- 
tricity and heat production schedule subject to the 
constraints imposed by the need to match simulta- 
neously both the district heating and the electric 
power loads. In particular, we refer to the rela- 
tively complex cogeneration and district heating 
system of the city of Brescia, Italy and present: 

a model for the definition of the dynamic pro- 
gramming problem of search of the optimal 
electricity and heat production schedule for 
the next 24 hours; 

a method for the solution of the optimal co- 
generation scheduling problem, including load 
subdivision among the various turbines and 
burners of the system (this algorithm was im- 
plemented in a software). 

The method, results and software are of course 
specific to the cogeneration system of the city of 
Brescia. However, several aspects of this work can 
be readily extended to other systems by modifying 
only the specific details concerning the simplified 
performance model based on actual data for each 
cogeneration unit, the constraints on the allowed 
ranges of operation, and the interconnections be- 
tween units. 

1 Introduction 
The city of Brescia has a relatively complex co- 
generation and district heating system; the old- 
est, largest and most advanced in Italy. In 1998, 
the district heating network served 31 Mm3 of 
heated space (almost 85% of the overall volume 
of buildings in the city) with 1100 GWh of ther- 
mal energy. The cogeneration system is com- 
posed of a subsystem (CL) consisting of three mul- 
tifuel burners, producing superheated steam for 
three independent backpressure turbines, and a 
hot water reservoir; in addition there is a waste-to- 
energy facility (TU) with efficient energy recovery 
(the largest and most environmentally advanced 
in Italy) which provides steam to a turbine that 
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can operate both in condensation and in various 
mixed cogeneration configurations. 

The purpose of this paper is to show how 
the problem of production scheduling can be ap- 
proached in a relatively complex cogeneration and 
district heating system. The .tools developed in 
this work provide both a way of distributing the 
production load on an hourly basis and a way 
to partition the load between different production 
units. 

The main feature of a cogeneration system is 
that it is meant to satisfy two separate needs or 
demands (heat and electricity) by a simultane- 
ous production of the two forms of energy. Since 
the daily demand curves for electricity and heat 
are commonly distinct and seldom concomitant, a 
form of storage of one of the two products is nec- 
essary in order to succeed in providing both prod- 
ucts when requested. In the district heating plant 
of Brescia, it is possible to store the heat produced 
in excess during some hours of' the day in the form 
of hot water and use it later on, when needed. 
There are, of course, several ways of subdividing 
the load by using a hot water reservoir, neverthe- 
less the objective should be to choose the way that 
maximizes profit. Profit can be increased by either 
augmenting electricity production when it is more 
valuable, or trying to take advantage of those loads 
that are particularly cheap, or both. In addition, 
for a given rate of heat production and given feed 
and return temperatures, costs should be continu- 
ously minimized by choosing the best combination 
of power levels for the three boilers and turbines of 
subsystem CL, the best fuel composition, and the 
best configuration of the waste-to-energy facility 
TU, subject to a variety of constraints, that vary 
on a daily basis, and taking into account start up 
and shut down additional costs. 

Figure 1 shows a schematic layout of the plant. 
The cogeneration system is composed of two 

subsystems: CL and TU. CL consists of three 
multifuel burners (named, respectively, B1, B2 
and B3) producing superheated steam (510°C, 100 
bar) for three independent backpressure turbines 
(Tl, T2 and T3) with vapor condensation in the 
district heating exchanger. Table 1 shows the elec- 
trical and thermal ratings of the three turbines. 
Burners B1 and B2 use methane and fuel oil, while 
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CL 

thermal power (MW) 
electrical power (MW) 

tret 

T1 T2 T3 
84 87 130 
29 32 72 

Fig. 1: Plant layout. 

B3 can also burn coal. 
The waste-to-energy facility (TU) provides 

steam (450°C, 60 bar) to a turbine that can op- 
erate both in condensation (electrical power, 51 
MW) and in various mixed cogeneration configu- 
rations (electrical power between 40 and 50 MW, 
thermal power about 110 MW). The TU subsys- 
tem can be connected either in series or in parallel 
to the CL subsystem. 

The heat produced in excess can be either dis- 
sipated, by means of a cooling tower, or stored in 
a 2200 m3 hot water reservoir. 

2 Modeling the optimization prob- 

The optimization problem can be described as a 
multistage decision process, that is a process in 
which decisions are taken in sequence in order to 
obtain a specific result. Each decision implies a 
change in the state of the reservoir and, therefore, 
affects the results obtainable by the subsequent 
decisions. 

The time span of the problem is subdivided in 
one-hour time intervals. For each time interval, 
decisions must be taken to choose the optimal val- 
ues of the following variables that, for brevity, we 
call decisions: 

lem 

0 QP, overall amount of heat to be produced by 
TU and CL during the next hour; 

0 t,, water temperature to be maintained at the 
exit of the plant during the next hour; 

0 confTu, chosen configuration for the waste-to- 
energy facility TU for the next hour; 

0 confcL = (f%, h), chosen configuration for 
the subsystem CL for the next hour, where 
f %  is the fraction of water flow from the T3 
condenser directed to the T2 condenser for the 
next hour and t ,  is the water temperature at 
the exit of the T3 condenser and entering the 
T2 and T1 condensers; 

0 7, subdivision of the load among boilers B2 
and B3; 

( ~ i ,  p, variables describing the choice of fuels 
to burn (methane, fuel oil, coal). 

The choice of some of these variables, such as 
(Qp, t p ) ,  will affect the state of the reservoir, and, 
therefore, future states, whereas other variables af- 
fect only the momentary performance of the plant. 
The former variables are called dynamic variables 
and the latter static variables. Correspondingly, 
the optimization problem splits into a dynamic 
problem and a static problem, and the decision 
variables can be grouped as follows: 

0 Dynamic variables, Xd = (&, , tp) ;  

0 Static variables, zs = (co7lfTu,con~CL,~,(Jilp). 

2.1 The dynamic problem 
The dynamic problem is defined in terms of stages, 
states, feasible decisions, transition functions, ini- 
tial and final states, and objective function. 
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Stages. The optimal schedule is made of 24 de- 
cisions, each corresponding to the production in 
a specific hour of the day. Therefore the decision 
process consists of N = 24 stages. 

States. At the beginning of each stage n, the 
reservoir will assume a specific state, s n .  The up- 
per part of the reservoir will contain hot water 
with a temperature tres between 90°C and 120°C. 
The remaining part, contains cold water at tret 

(typically 60°C). The state is defined in terms of 

amount of hot water stored in the reser- 
voir; 

tre, temperature of the hot water present in 
the reservoir. 

The set S, of the admissible states s is defined as 
follows: 

Feasible decisions. At each stage, for every ad- 
missible state, we can define the set of feasible de- 
cisions, that is all the decisions that can be taken 
in those particular conditions and that lead to an 
admissible state at the next stage. The set has the 
following constraints: 

1. Q, has an upper limit corresponding to the 
maximum plant capacity; 

2. t, must be such as to maintain the tempera- 
ture tfeed of the water fed to the distinct heat- 
ing network above the following contractual 
limit 

if ten, 5 -7°C 
tfeed 2 90 if ten, 2 20°C 

120 - (7 + ten") otherwise 
(1) 

{ 120 
where ten, is the environmental temperature; 

3. Q, and t, must be such as to request heat 
from the storage tank at a rate less than the 
maximum allowed. 

Transition functions. The transition functions 
(Sn+1 = Tn(Sn, xd)) indicate the state sn+l at the 
beginning of stage n + 1 resulting from the choice 
of decision Xd at stage n, given the state sn at 
stage n. The transition function varies depending 
on whether the reservoir is being charged 

discharged 

and tres,n+l = tres,n (4) 

Il;i;es,n+l = a r e s , n  and tres,n+l = tres,n (5) 

or not altered 

where At = 1 hour, 

Qr(n) is the amount of heat requested by the 
district heating network iit a given hour of the 

tret is the temperature of the water return- 
ing to the plant from the distinct heating net- 
work, which remains approximately constant 
for each given day. 

day; 

Initial and final states. The initial state is the 
state of the reservoir at the beginning of the 24- 
hour optimization time interval, e.g. at midnight. 
The final state must be the same as the initial, 
in order to consider each day as a different and 
separate optimization interval from the others. If 
the final state were different from the initial, pro- 
duction during one day would affect the results 
obtainable in the following days, that is, the op- 
timization time interval would have to be longer 
then 24 hours. 

Objective function. Our scope is to maximize 
profit from each one-day production, therefore we 
consider those economic variables that are related 
to decisions that affect profit. We shall not con- 
sider maintenance costs and amortization costs, 
because they are in no way affected by the type 
of decisions we are taking. On the other hand, 
we consider the returns that derive from the sale 
of electricity and heat, and the fuel costs. The 
objective function is therefore 

24 

( OF)d = max [PE (n> WE (n) PQ (n) Qp (n) 
n=l  

-PCH4 NCH4 (n) - PFO M F O  (n) 
-pcoal M c o a ~  ( I Q ) ]  (6)  

where pE(n) and pQ(n) are the unit prices of 
electricity and heat at stage n (the n-th hour of 
the day) and PCH.,, ~ F O  and pcoalthe unit costs 
of methane,'fuel oil and coal and  WE(^), Qr(n), 
N c ~ ~ ( n ) ,  M ~ o ( n )  and k!lcoal(n) denote the elec- 
tricity and heat production and the consumption 
of each type of fuel at sta,ge n. 
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2.2 The static problem 

The static problem maximizes hourly profit, 
choosing the best possible values for the static 
variables, for given values of the dynamic vari- 
ables. 

The static problem is solved by assuming given 
values for the external plant variables ( Q,, t,, tret) 
and finding the best values for C O ~ ~ T U ,  confc~,  oi, 

p and r. 
In order to complete the definition of the op- 

timization problem an accurate mathematical de- 
scription of the plant interconnections and compo- 
nent performance is necessary, which consists of a 
simplified model of each turbine and burner of the 
system and of the waste-to-energy facility based on 
correlations obtained by means of a structured sta- 
tistical analysis of the available real performance 
data. 

Also the static problem can be cast as a multi- 
stage decision process and therefore formulated in 
terms of stages (ii), states (Se )  and transition func- 
tions, and solved using the methods of dynamic 
programming theory. 

The static problem is made of I? = 4 stages 
(Figure 2). The first stage consists of choosing the 
more external variable ( c o n f ~ u ) ,  given the external 
parameters describing the production of the plant 
(61). The choice of the configuration for the TU 
subsystem determines the state (32) in which the 
CL subsystem works, since it defines how much 
water enters CL and its temperature. The choice 
of confTu implies a certain electricity production 
WE, so that values of confTu that yield inadequate 
electrical production (WE < WE,min) should not 
be accepted. The second stage consists of choosing 
how the loads must 

be subdivided between the three turbines be- 
longing to CL (confcL). As a consequence of this 
choice, each turbine requires a certain amount of 
steam to work as requested (33). The load is there- 
fore to be subdivided among the boilers, by choos- 
ing the variable r ,  which results in state 6 4  (load 
for each burner). The last stage consists of choos- 
ing for the given load of each boiler, the best type 
and composition of fuel needed (p, q), so that the 
overall costs of production can be determined. 

The transition functions from one state to the 
other consist either of the relevant correlations ob- 
tained from statistical analyses of the actual per- 
formance data of each turbine group or of the 
equations resulting from the description of the in- 
terconnections. For instance, the transition func- 
tion from 2 3  to 3 4 ,  i.e., 2 4  = F3(~3,2,,3), is 

mlB = ml and m 2 ~  = r(m2 + m 3 )  

and m3B = (1 - ?-)(m2 + ms) (7) 

The objective function of the static problem is 

( O F ) ,  maz(PE WE + PQ &P - PCHI N C H l  

-PFO MFO - Pcoal Mcoai) (8) 

where PE and PQ are the prices that prevail at 
the stage of the dynamic problem at which the 
static problem is solved, and the other terms are 
as already defined. The value ( O F ) ,  is the optimal 
hourly marginal profit that we also denote MP for 
brevity. 

3 Solving the optimization problem 
Both the static and the dynamic problems defined 
in Section 2 have been cast as dynamic program- 
ming problems and can be solved by virtue of 
the principle of optimality, first stated by Richard 
Bellman [2]: 

An optimal policy has the property 
that whatever the initial state and the 
initial decision are, the remaining deci- 
sions must constitute an optimal policy 
with regard to the state resulting from 
the first decision. 

A direct consequence of this principle is that an 
optimal solution can be associated with each state 
of each stage regardless of the decisions that might 
have been previously taken, as long as they result 
in the same state at  the same stage. Thus, given a 
state s, at stage n and two ways of reaching that 
state from the first stage, the optimal solution, i.e., 
the choices that must be taken at  stage n and the 
following stages, is independent of which way has 
been chosen from the first stage to stage n. 

The algorithm that implements this principle 
proceeds backwards and can be used to solve both 
the dynamic problem (sAn, Tn, N = 24) and the 
static problem (&, Tfi, N = 4). 

The algorithm begins by associating an optimal 
solution with each state at  the beginning of the 
last stage (stage N or I?). In this case the problem 
can be easily solved by simple enumeration since it 
consists of an optimization problem in terms of a 
few variables, namely the choice of XN at stage N 
(i.e., Zd,N or x,,&) . The solution of the optimiza- 
tion problem at stage N produces a function fN(S) 
that associates with each state s the optimal so- 
lution value and a function &(s) that associates 
with the state an optimal policy (best decision, 
x&, that can be taken at state s, stage N ) .  f ~ ( s )  
will be the optimal value of the objective function 
restricted to the last stage (i.e., not considering 
the contribution of decisions at stages n < N ) .  

Next, the decisions at  stage N - 1 can be taken 
into consideration. For each state we consider the 
different feasible decisions, each one of them leads 
to a particular state of the final stage through the 
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Entire plant CL turbines boilers fuels I I 

Fig. 2: Dynamic programming formulation of the static problem. 

transition function. We need not reconsider what 
the best choice from there on is, since this is al- 
ready known, that is ~ N ( s ) .  We just have to con- 
sider the additional contribution of the choices at 
the stage N - 1. Also this optimization problem 
of just a few variables can be solved by simple 
enumeration and yields the function fN-l(S). The 
solution proceeds backwards for the other stages, 
as can be easily inferred by induction. 

For the dynamic problem (Section 2.1), fn(s) 
has the following form 

24 

fn(s) = max h(i) + p Q ( i )  &p(i) 

-PCH4 NCH4 ( 2 )  - m0 MFO(i )  - pcoal Mcoaf (i)] 

which reduces to  the whole-day objective function 
( 0 F ) d  (Equation 6 )  when n = 1 and s is the initial 
state $1 = (tres,l, Mres,l)- 

Once we reach the initial stage, we can deter- 
mine the best path from any given state s1 at stage 
1 as follows 

i=n 

For the static problem (Section 2.2), fh has a 
different form for each of the different stages. 

For the last stage fi, fh(34) results from the 
minimization of the production costs for the boil- 
ers, given a specific value of the steam flow that 
must be produced by each one of them. We define 

c (mlB, m2B m3B, 0 1 , 0 2 , 0 3 ,  p )  = c ($4, %,4) 

=PCH4 NCH4($4,%,4)  +pFO MF0($4txs,4) 

+Pcoal Mcoal(S4, %,4) (10) 

as the function that describes the relation be- 
tween production costs related to fuel consump- 
tion and the amount of steam production $4 = 

( m l ~ , m 2 B , m 3 ~ )  and the chloice of fuels xS,4 = 
( 0 1 ,  0 2 ,  0 3 ,  p). Thus the objective function re- 
stricted to  the last stage is 

f N ( i 4 )  = mino,,u,,n3,p C ( i 4 , 0 1 , 0 2 , 0 3 , P )  

= m i 7 ~ ~ , , ~  c ($4, zS,4) 

Function 10 can be decomposed in terms of the 
costs related to  each single boiler as follows 

c (mlB, m2B, m3B1 c 1 ,  a27 0 3 ,  p) 

= c1 (mlB, 0 1 )  + c2 (m2B 7 a 2 )  + c3 (m3B, 0 3 ,  p)  

and ffi ($4) becomes 

f ~ ( S 4 )  = min,, CI  mi^,^) + minu, cz m mi^,^) 
+7ni%73,p c1 (m3B t 0 3 ,  P)  

Therefore the fuel choice can be taken separately 
for each boiler and the optimization problem at 
stage N splits into three simpler problems, each 
associated with a single boiler. The optimal fuel 
choice for each boiler Bi for a given steam produc- 
tion  mi^ determines the function 64,i(miB). The 
overall 64 for this stage is 

64 (mlB > m2B i m3B) 

= ( 6 4 ~  (mlB) 7 64.2 (nz2B) , 64,3 (m3B)) 

At Stage 3 we decide how the production of 
steam requested by turbines T 2  and T3 can be 
subdivided among boilers B2 and B3 in order to 
minimize joined production costs for B 2  and B3. 
Therefore the objective function for this stage is 

f3 (ml,mZim3) 

= min7C(mlB,m2B,m38,64(mlB,m2Bim3B)) 
= c1 (mlB, 64,l) + 

mi% (c2 (m2B,64,2(m2B)) + c3 (m3B,64,3(m3B))) 

= mi%f4(mlB, mlB, mlB) 

subject to the transition function for stage 3 

(mlB , m2B , m 3 B )  = T3 (ml, m2 7 m3 7 7) 

= (ml, r(m2 + m), (1 - ~ ) ( m  + m3)) 
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The approach we are using allows us not to recon- 
sider the fuel choice at this stage, since that has 
already been decided to  be 64. 

At Stage 2 we choose the best configuration for 
the CL subsystem maximizing profit associated 
with its production. For given values oft,, t, and 
MCL (32) and confcL we can determine: 

1. the production of heat and electricity for CL, 
and therefore the corresponding returns, 

2. the steam rate requirements for turbines T1, 
T2 and T3, obtained through t h e  transition 
function T2(tx,ty, MCL,  confc~),  and there- 
fore the costs associated with steam produc- 
tion. 

The objective function for Stage 2 is 

j2(tx,ty, MCL) = maxconfcL ( ~ c L ( 3 2 ,  confcL) 

- c (mlB 1 m2B,  m3B164(mlB , m2B, m3B))) 

subject to the constraints 

(mlB,m2B,m3B) = T3(337 63(33)> 

33 = T2(S2, C04CL) 

At Stage 1, the best configuration for the TU 
subsystem is taken into consideration, with the 
purpose of maximizing profit obtained by the 
whole plant. The objective function for this stage 
depends on the state 31 = (Q,, tret, t,) with which 
it is associated and coincides with Equation 8, 

fi (Qp 7 tret 7 tp)  

= mazconfTu (TCL(i2,61(32)) + TTU(317 COnfTU) 

- (mlB, m 2 B  , m 3 B ,  64(mlB 9 m2B 3 m3B)))  

subject to the constraints 

(mlB,m2B, m3B) = T3(33,63(33)) 

s 3  = T2(32,82(32)) 

SZ = TI (31 , C0nfi.U) 

3.1 Example: solving the dynamic 
lem 

prob- 

To clarify the solution algorithm we consider the 
example described in Figure 3. The last three 
stages of the optimization process are here rep- 
resented with the purpose of finding the best path 
for state 0 at stage N - 2. For simplicity of the ex- 
ample, for the stages beginning at 22:OO and 23:00, 

we assume just three possible states of the reser- 
voir, even though the solution of the problem is 
more accurate if more states are considered. 

The first step consists of associating with each 
arc the set of values of Q, and t, defined by the in- 
verse of the transition function (Equations 2 to  5) 
for Q,  and t ,  (tret is set to 60°C). The solution of 
the static problem for these values yields (Equa- 
tion 8) the optimal hourly marginal profit for the 
arc considered ( M P ,  Table 2). For the last stage 
there is only one arc for each state s that leads 
to  the last state, consequently, the value of f ~ ( s )  
associated to state s will be that of MP (first row, 
Table 3). 

For each state s of the stage N - 1, the three 
possible decisions (arcs) must be compared. With 
each one of them a value of MP, can be associated, 
calculated as the sum of the MP for that arc and 
f jv(s ' ) ,  where s' is the state at the beginning of 
stage N ,  resulting from the decision taken (MP,, 
Table 2). The value of f ~ - l ( s )  is the maximum 
of the MP: for that state. S N - I ( S )  is the corre- 
sponding value of the optimal decision for Q, and 
t,. The same algorithm must be repeated for the 
state at stage N - 2. The optimal path from this 
state to the end turns out to be: m -+ d -+ a. 

The algorithm can be extended to  a 24-hour pe- 
riod subject to additional constraints on electricity 
and heat hourly consumptions  WE(^) and Q,(n). 
Typical results obtained for the optimal heat pro- 
duction Q,(n) and the state of the reservoir during 
the day are shown in Figures 4 and 5. 

3.2 

In this Section we explain with an example how the 
optimal value of MP can be associated with given 
values of Q,, t ,  and tret, taking into consideration 
some additional constraints that the user might 
impose. For instance, we clarify the reason why 
in the previous example the value of MP = 27.16 
has been associated with arcs d, h and 1, all char- 
acterized by the same values of &,, t, and tret.  

We suppose that the user requested a configura- 
tion of the plant where the waste-to-energy facility 
TU produces only electricity, boilers B1 and B2 
use only fuel oil ((TI = u2 = 100%) and boiler B3 
warms 80% of its flow with coal and the remaining 
part with methane (~73  = 20%, p = 1). 

In this case, the solution of the optimization 
problem at Stage 4 is immediate since for each 
boiler there is only one possible value for the fuel 
choice, that chosen by the user, which is also the 
optimal solution. In other circumstances we would 
have to enumerate all possible values for the fuel 
choice and sort the best one. With reference to 

Example: solving the static problem 

1009 



. 

a 
d 
g 
j 
m 

0 

Qp t p  M P  MPc Qp tp M P  MPc Qp tp M P  MPc  

233.05 120 28.43 28.43 b 156.05 114 24.94 24.94 c 79.05 1.10 19.03 19.03 
201.38 116 27.16 55.59 e 278.38 120 29.97 54.91 f 355.38 120 32.09 51.12 
124.38 114 22.97 51.40 h 201.38 114 27.16 52.10 i 278.38 120 29.97 49.00 
47.38 120 14.58 43.01 k 124.38 114 22.97 47.91 1 201.38 116 27.16 46.19 
251.33 114 29.08 84.67 n 328.33 120 31.40 83.50 o 405.33 120 33.24 81.15 

(MW) ("C) (ME) (ME) (MW) ("C) (ML) ( M t )  (MW) ("C) (ME) ( M f )  

21:oo 

Time 

2300 h 

22:00 h 

21:OO h 

Fig. 3: Example. 
* 

s = (Mres, tres) 

(2200,120) (1 100,120) 

~ N - z ( s )  = (251.33,114) 

~ N ( s )  = 19.03 f ~ ( s )  = 24.94 
~ N ( s )  = (79.05,llO) ~ N ( s )  = (156.05,114) 

6 N - 1 ( S )  = (124.38,114) 6 ~ - 1 ( S )  = (201.38,116) 

arc c arc b 
fN-l(S) 47.91 f N - l ( S )  = 52.1 

arc k arc h 

Table 2: Arcs. 

I I I 

Fig. 4: Heat demand and production Fig. 5: State of the reservoir 
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(Figure 6), f 4 ( i 4 )  is 

0.875 + 2.216 + 2.211 = 5.302 
if i 4  = (20,51,47) 

0.875 + 1.563 + 2.911 = 5.349 i if 24 = (20,36,62) 

VE4 

f4(’4) = 

S4(24)  = (loo%, 100%,20%, 1) 

In order to solve the optimization problem at 
Stage 4, it is necessary to split it into three sepa- 
rate problems (explosion). 

At  Stage 3, for several 23, the best value of T 
is chosen. For instance, for i 3  = (20,27,71), the 
best T is 52%, since it leads to the lower production 
cost, between 5.302 and 5.349. Therefore 

f3(20,27,71) = 5.302 

63(20,27,71) = 52% 

The choice of confcL determines the heat and 
electricity production obtained by the CL subsys- 
tem and the amount of steam needed by each 
turbine (through the transition function). Ta- 
ble 4, compares two different options from state 
i 2  = (60,116,3200). 

Therefore 

f2(60,116,3200) = ~ ~ ~ ~ ( 1 1 . 2 6 1 , 1 0 . 6 9 0 )  = 11.261 

&(60,116,3200) = (94,55%) 

There is only one possible choice for Stage 1, 
given by the user’s constraint that TU shall pro- 
duce only electricity. In this configuration, the 
electricity production rate is 54 MW, which con- 
tributes an additional 15.9 ME to the profit, 

f~(201.38,116,60) = 11.261 + 15.9 = 27.161 

4 Conclusions 
We developed a model and a method, based on 
dynamic programming theory, capable of finding 
the optimal production schedule for the complex 
system of cogeneration facilities that serve the dis- 
trict heating network of the city of Brescia, Italy. 
A key component of the system is a heat reservoir, 
that allows a limited extent of decoupling of the 
heat request from its production. 

The method assumes that simnple performance 
correlations and simplified models are available for 
each turbine group and boiler of the system, in- 
cluding the waste-to-energy facility and the heat- 
storage reservoir. Such correlations can be readily 
obtained by means of a structured statistical anal- 
ysis of the available real performance data, and are 
not discussed in the paper since they are specific 
to each facility. We presented instead the general 
features and some technicalities of the optimiza- 
tion method that can be useful for its application 
to other facilities. 

The method has been implemented into an effi- 
cient software that considers additional constraints 
and inputs given by the user and computes the 
optimal production schedule and load subdivision. 
For each hour of the day, the optimization method 
allows an efficient search of the choice of fuels and 
of the subdivision of the production load among 
the various units. 

The software will be used for the Brescia sys- 
tem as a support for long-term choices related, for 
instance, to the best use of the waste-to-energy fa- 
cility and also as a means to determine the optimal 
size of a new heat-storage reservoir. 
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+- Stage 1 4  Stage 2- Stage 3- Stage 4---+ 

Explosion---c( 

confc~ Qp,cL(confcL) Tz(confc~) TCL c(i4,64(&)) 
t ,  = 94°C 89.511 201.38 5.302 (20,27,71) 16.563 

t" = 94°C 86.213 201.38 5.413 (22,30,31) 16.103 
f % = 50% 

f% = 55% 

201.38 e 

TCL - c( i4,  64(i4)) 
11.261 

10.690 

0.875 

0.974 

1.480 

1.563 

2.216 

2.731 

2.211 

2.767 

2.911 

Fig. 6: States and transitions. 
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