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Abstract 
We overview the main features of the general equation of motion that completes the Gyftopoulos-
Hatsopoulos unified theory of mechanics and thermodynamics with a quantal law of causal 
evolution that entails relaxation towards stable equilibrium for any non-equilibrium state, no 
matter how far from thermodynamic equilibrium.  We illustrate with numerical examples the 
behavior of the equation of motion by discussing spontaneous energy redistribution within an 
isolated, closed system composed of non-interacting identical particles with energy levels ei and i 
= 1, 2,…, N.  For this system the time-dependent occupation probabilities pi(t) obey the nonlinear 
rate equations iiiiii petptppdtdp )()(ln/ βατ −−−=  where α(t) and β(t) are functions of the 
pi(t)’s that maintain invariant the mean energy )(1 tpeE N

i ii∑ ==  and the normalization condition 
)(1 1 tpN

i i∑ == . The entropy )(ln)(
1

tptpkS i
N

i iB∑ =
−=  is a non-decreasing function of time 

until the initially nonzero occupation probabilities reach a Boltzmann-like canonical distribution 
over the occupied energy eigenstates.  Initially zero occupation probabilities, instead, remain zero 
at all times.  The solutions pi(t) of the rate equations are unique and well-defined for arbitrary 
initial conditions pi(0) and for all times, +∞<<∞− t . Existence and uniqueness both forward 
and backward in time allows the reconstruction of the ancestral or primordial lowest entropy 
state.  We also illustrate the structure and main properties of the nonlinear dynamics for a 
composite system. 

Keywords: Gyftopoulos-Hatsopoulos unified quantum theory of mechanics and 
thermodynamics, quantal law of causal evolution, irreversible relaxation towards stable 
equilibrium, ancestral or primordial lowest entropy state, existence and uniqueness both 
forward and backward in time, microscopic origins of entropy and irreversibility, 
incorporating the second law in the quantal dynamical principle. 
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1. Introduction 

In recent years there has  been a revival of 
interest in quantum foundational matters and 
nonequilibrium irreversible thermodynamics.  
These fields impact on an enormous applicational 
span.  In this paper we discuss an extension of 
conventional quantum dynamical theory that is 
relevant to both fields and may prove important 
not only to the conceptual foundations of 
mechanics and thermodynamics, but also  in 
understanding and predicting modern physics 
phenomena that are currently actively investigated 

such as decoherence, entanglement structure and 
dynamics in applications involving nanometric 
devices, fast switching times, clock synchroniza-
tion, super-dense coding, quantum computation, 
teleportation, quantum cryptography, etc. [1] 
Recent discussions [2-4] have suggested possible 
fundamental tests of standard unitary quantum 
mechanics (QM), related to the existence of  
“spontaneous decoherence” at the microscopic 
level.  For example, long-baseline neutrino 
oscillation experiments [2] might provide means 
of testing the existence of spontaneous 
decoherence and, therefore, the validity of linear 
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and nonlinear extensions of standard unitary QM.  
As stated in Ref. [4], “recent, independent 
experiments [5] have provided impressive bounds 
on possible deviations from linear and unitary 
propagation of pure quantum states…   But if the 
unitarity of pure-state propagation holds under 
universal conditions, one is necessarily led to a 
quest for genuine nonlinear extensions for isolated 
systems, possibly involving an explicit arrow of 
time.  Indeed, it was pointed out in a fairly general 
ansatz [2, 3] that if the pure states happen to be 
attractors of a nonlinear evolution, then testing the 
unitary propagation of pure states alone cannot 
rule out a nonlinear propagation of mixtures.” 

The contemporary revival on thermodynamic 
foundational matters is focused on the description 
of the time evolution of general non-equilibrium 
states towards maximum-entropy stable 
(thermodynamic) equilibrium and is relevant to a 
wide variety of applications [6, 7] ranging from 
continuum mechanics, classical hydrodynamics, 
kinetic theory, quantum chemistry, molecular 
dynamics, non-Newtonian fluid mechanics, etc.  
Indeed, by general non-equilibrium states, we 
mean states that may be far from thermodynamic 
equilibrium, well beyond the usual realm of linear 
irreversible processes.  We are concerned with the 
development of a well-defined time-evolution 
equation valid for any initial state and capable of 
describing entropy producing relaxation towards 
equilibrium by internal redistribution of energy 
and occupation probabilities towards a canonical 
or a partially canonical equilibrium distribution. 

The nonlinear explicit quantum dynamical 
equation proposed in Ref. [8] and subsequent 
papers [9-15] was developed (designed) as part of 
a fundamental attempt to unite mechanics and 
thermodynamics not only at the macroscopic and 
mesoscopic level of description, but also at the 
microscopic fundamental level, without 
contradicting any of the successful results of 
standard QM.  Perhaps due to technological 
advances towards nanometric devices, today the 
physical community seems more prepared to 
accept ideas that were viewed as heretical twenty-
five years ago when the equation of motion for the 
unified theory was first proposed.  For example, in 
1984 John Maddox [16] wrote about our unified 
theory: “An adventurous scheme which seeks to 
incorporate thermodynamics into the quantum 
laws of motion may end arguments about the 
arrow of time – but only if it works.”  The theory 
has survived twenty years and in 2001 it was 
literally rediscovered [4, 17], at least in part, so 
that it appears now acceptable to postulate an 
extension of standard QM that assumes a “broader 
quantum kinematics” [18], i.e. an augmented set of 
true quantum states described by state operators ρ 
without the restriction ρρ =2 , even for a strictly 

isolated, single-particle, few-particle or single-
field system, fully separable, uncorrelated, 
disentangled and non-interacting with its 
environment. 

Indeed, quoting again from Ref. [4], “a 
physically meaningful nonlinear extension 
emerges when the fundamental postulates of 
quantum mechanics are supplemented by the first 
and second principles of thermodynamics, at the 
sole expense of ignoring the constraint of a linear, 
unitary evolution in time.  The result is a largely 
irreversible, highly nonlinear generalization of the 
non-relativistic quantum Liouville equation, of a 
form closely related to the ansatz of Ref. [2] but 
not in the Lie-Poisson class, which features a 
number of rather intriguing properties.  In 
particular, pure states still propagate unitarily into 
pure states according to the usual time reversible 
Hamiltonian dynamics.” 

Much work has appeared in recent years on 
the study of entropy-generating irreversible non-
equilibrium dynamics.  Limited discussions of 
previous work is found in Refs. [4, 17, 19] and 
references therein, but no thorough critical review 
of the subject is available, although it would be 
very helpful to provide proper acknowledgement 
of pioneering work, avoid ‘rediscoveries’ such as 
in [4] and outline the different frameworks, 
motivations, approaches and controversial aspects. 

2.  “Augmented-State-Domain” Ansatz 
The fundamental ansatz that the postulates of 

quantum mechanics can be successfully 
supplemented by the first and second principles of 
thermodynamics by assuming a broader state 
domain that includes not only ρρ =2  but also 

ρρ ≠2  state operators, provided that the 
functional ( )ρρ lnTrBk−  is taken for the 
physical entropy, was first proposed (without a 
dynamical law) by Hatsopoulos and Gyftopoulos 
in a pioneering series of papers [18].  This is the 
first instance when this broader quantum 
kinematics ansatz was conceived, postulated and 
exploited, capitalizing on the recognition of the 
important role played by the stability of 
equilibrium in thermodynamics [20, 21], to 
construct a self-consistent extension of standard 
QM that provides a non-statistical, non-
information-theoretic, micro-scopic unification of 
mechanics and thermodyna-mics.  Again, the key 
ansatz is that, for any system, even if strictly 
isolated and uncorrelated:  (1) the “true” quantum 
state (in the sense analogous to that of the wave 
function of standard quantum mechanics) is 
represented by a state operator ρ – a unit trace, 
nonnegative-definite, Hermitian operator on the 
Hilbert space H associated with the system 
according to standard QM – belonging to a 
“broader quantum kinematics” that includes pure 
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states ( )ρρ =2   as well as non-idempotent states ( )ρρ ≠2 ; and (2) the “physical” entropy (as 
opposed to a statistical or information-theoretic 
entropy related to incoherent stochastic mixtures 
of true states) is represented by the state functional 

( )ρρ lnTrBk− .  Refs. [18, 22] give proofs that 
only this functional can represent the physical 
entropy in such a context. 

Perceived as “unphysical” (by the referees of 
the main physics journals), the hypothesis of a 
state domain augmented with respect to that of 
traditional QM has for almost three decades been 
systematically rejected and substantially ignored 
(except for a few exceptions [23, 24]) in favor of 
the still prevailing approaches to dissipative 
quantum dynamics within the frameworks of 
statistical, stochastic, phenomenological, meso-
scopic, information-theoretic, chaotic-behavior 
and bifurcation theories. 

3. “Steepest-Entropy-Ascent” Ansatz 
The situation did not improve when the new 

dynamical “steepest-entropy-ascent” ansatz was 
proposed and added to the scheme by the present 
author [8] and proved to have all the necessary 
mathematical features (see Section 4) to complete 
the Gyftopoulos-Hatsopoulos unified theory.  In 
spite of the skeptical but encouraging editorial 
appearing in Nature that defined our scheme 
“adventurous” [16], the theory has continued to be 
ignored and rejected, mainly because its 
motivation appeared to be derived from theoretical 
reasoning only (see the recent summary in Ref. 
[25]). 

In search for direct experimental evidence, we 
derived explicit solutions for a two-level system 
and computed the effects of the single-atom 
irreversible internal relaxation implied by the 
nonlinear equation of motion onto some basic 
quantum-electrodynamic results for absorption, 
stimulated emission, and resonance fluorescence 
from a single two-level atom [11, 12].  The results 
were obtained in the near-equilibrium linear limit 
and, of course, in terms of the yet undetermined 
internal-relaxation-time functional ( )ρτ  that is 
part of the equation of motion.  To our knowledge 
no one has yet attempted to verify these results 
experimentally and estimate or at least identify 
bounds on ( )ρτ . 

The recent and new experimental evidence of 
loss of quantum coherence [2, 26, 27] and the 
impressive effort devoted to the study of nonlinear 
modifications of the standard Schrödinger 
equation in the last twenty years [28], finally seem 
to make more acceptable, if not require, the 
Hatsopoulos-Gyftopoulos ρρ ≠2  augmented 
state domain ansatz.  Five years ago, in the 
Addendum in which he acknowledges his 
oversight of our original series of papers, 

Gheorghiu-Svirschevski [4] states that “Beretta’s 
confidence in the physicality of his construction 
seems to find vindication after all” and “the 
equation of motion was derived from a variational 
principle which observes the principles of quantum 
mechanics and the fundamental laws of 
thermodynamics.” 

Provided the ρρ ≠2 ansatz is accepted, the 
proposed nonlinear equation of motion completes 
the dynamics and holds the promise of providing a 
microscopic-level explanation of the origins of 
entropy and irreversibility and perhaps of the 
recent experimental evidence of loss of quantum 
coherence.  It is with this motivation that Ref. [4] 
has “re-proposed” our equation of motion together 
with many of its known features.  Ref. [4] 
contributes to confirm the mathematical validity of 
this equation, including existence, uniqueness and 
positivity of solutions, and elegantly derives useful 
expansions and other results in the near-
equilibrium linear limit.  However, Ref. [4] does 
not rediscover the form of our nonlinear equation 
for a multi-component system. Nonetheless, we 
show in Ref. [29] that also this more general form 
admits of an equivalent variational formulation. 

The equation of motion proposed and 
postulated in Refs. [8, 9] for the state operator ρ  
can be derived [7, 29] by means of an explicit 
geometrical construction that clarifies the steepest-
entropy-ascent feature already recognized in Refs. 
[10-15]. Several new interesting additional 
features related to separability and fluctuations can 
be proved [29,  30]. 

The nonlinear extension of the Schrödinger 
equation of motion is derived, together with a full 
discussion of the necessary notation and 
definitions, in Section III of Ref. [29] for a single-
component system, and in Sections X and XI of 
Ref. [29] for a general system consisting of M dis-
tinguishable component subsystems. 

4. A Restrictive Set of Consistency Condi-
tions for a Consistent Dynamical Law 
The problem of deriving a well-behaved 

extension of Schrödinger’s unitary dynamics, as is 
necessary if one is willing to accept the 
Gyftopoulos–Hatsopoulos broader quantum 
kinematics ansatz, has been addressed in Refs. [8, 
18, 19, 31]. It amounts to defining a very de-
manding set of strict requirements that must be 
met in order for the assumed equation of motion to 
be consistent with both the principles of quantum 
mechanics and the laws of thermodynamics. The 
following conditions must all be satisfied [31]: 

1. If the system experiences no interactions with 
its environment (and chemical or nuclear 
reactions are inhibited), energy and amounts 
of constituents must be conserved. 
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2. If the system is free, momentum conservation 
and Galilean invariance must be satisfied. 

3. If the density operator is a projector, that is, 
,2 ρρ =  the evolution of ρ in time obeys the 

Schrödinger equation of motion, and the 
entropy is zero.  This condition preserves all 
the remarkable successes of standard quantum 
mechanics, is consistent with experimental 
results, and (for projector density operators) 
rules out deviations from linear and unitary 
dynamics. 

4. For isolated systems, the rate of change of the 
entropy functional ( ) ρρρ Β lnTrkS −=       
must be nonnegative. 

5. For a system with fixed values of energy, 
amounts of constituents, and parameters, there 
must be one and only one equilibrium state for 
which both dρ/dt = 0 and the value of the 
entropy is larger than that of all the other 
states with the same values of energy, 
amounts of constituents, and parameters.  

6. The state of highest entropy just cited must be 
globally stable with respect to perturbations 
that do not alter the energy, the amounts of 
constituents and the parameters [32].  

7. Onsager reciprocity relations must hold at 
least for nonequilibrium states in the vicinity 
of the highest entropy stable equilibrium 
states.  

8. For any initial state ( ) ( ) ≥= 0
†

0 tt ρρ ( )0
2 tρ  

and ( ) ,1Tr 0 =tρ  the equation of motion must 
admit a unique well-behaved solution ( )tρ for 
all times, i.e., ( )tρ  must remain Hermitian, 
nonnegative and unit trace for arbitrary initial 
conditions.  

Further conditions are given in Ref. [31], in-
cluding “conservation of effective Hilbert space 
dimensionality” and the conditions for separability 
and locality that we briefly illustrate in Section 8. 

As first recognized in Ref. [10], the 
preceding conditions are satisfied by the ansatz 
that the density operator evolves along a trajectory 
that results from the competition and coexistence 
of two orthogonal “forces”, a Hamiltonian force 
that tends to drive the density operator along a 
unitary isentropic evolution in time and maintains 
constant each eigenvalue of ρ, and a conservative 
but dissipative force that pulls ρ towards the path 
of steepest entropy ascent. 

5. Steepest Entropy Ascent for a Single-
Component Isolated System 

Here we consider only the simplest form of 
the general equation of motion proposed for the 
unified quantum theory. For convenience, we 
define the dimensionless entropy operator 

,ln~ ρΒ−=S where Β is the idempotent operator 
obtained from ρ by substituting in its spectral 
expansion each nonzero eigenvalue with unity. 

Thus, S~ is the null operator if ρρ =2 , and, in 
general, the entropy functional ρρΒ lnTrk−  can 
be written as Sk ~Tr ρΒ . 

For a single isolated constituent without non-
Hamiltonian time-invariants, it is only for the zero 
entropy states )( 2 ρρ =  that the postulated 
nonlinear equation of motion coincides with the 
Schrödinger unitary  dynamics  of  standard  quan- 
tum mechanics, i.e., 

[ ]ρρ ,Hi
dt
d

h
−=   (1) 

For an arbitrary nonzero entropy state )( 2ρρ > , 
it is instead given by the relation  

[ ] DHi
dt
d

τ
ρρ 1, −−=

h
  (2) 

where τ  is a scalar time constant or functional, D  
is a nonlinear operator function of 

HS ,~,ρ defined by any of the following 
equivalent forms 

{ } { }

{ }

( )2

2

2

2

TrTrlnTr
Tr1lnTr

,ln

TrTr
Tr1

TrTr~Tr
Tr1~Tr

,,~

2

1

2

1

2

1

H

HHH
H

H

HH
H

HHSH
HS

HS

D

∆
=

−=

ρρρρ
ρρρ

ρρρρ

ρρ
ρ

ρρρ
ρρ

ρρρ

  

{ } ( ) ( ) { }ρρβρραρ ,
2
1,~

2
1 HS ++−=  (3) 

where •  denotes a determinant, the operators S~  
and ρ  commute so that { } ,ln,~)21( ρρρ −=S and 

( )ρα  and ( )ρβ  are the nonlinear functionals 

  ( ) HS ρβρρα Tr~Tr −=                (4) 

             ( )
( )22 TrTr

Tr~Tr~Tr
HH

HSHS
ρρ

ρρρρβ
−

−=              (5) 

Eq. (2) satisfies all the consistency conditions 
listed in Section 4. For example, it is easy to verify 
that  

  0TrTrTr === D
dt
d

dt
d ρρ   (6) 

0TrTrTr === DHH
dt
dH

dt
d ρρ   (7) 

0~Tr~Tr~Tr ≥== SDS
dt
dS

dt
d ρρ  (8)  
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In addition, it can be shown that if 2ρρ > at one 
time, it remains so at all times, both forward and 
backward in time. The only equilibrium density 
operators that are stable according to this 
dynamics are the highest entropy operators in the 
one parameter family  

( )
( )TkH

TkHse

Β

Βρ
/expTr

/exp
−

−
=   (9) 

where the parameter T is readily identified with 
the temperature (as defined in Refs. [18, 21]). 

Proofs of these and other intriguing features 
of Eq. (2) and its more general forms are given in 
Refs. [4, 7, 10–15, 29]. In particular, the form of 
the equation can be readily generalized to include 
other generators of the motion in addition to the 
Hamiltonian operator H, such as the number-of-
particle operators iN  for systems that at stable 
equilibrium are described by the grand canonical 
density operator  

( )[ ]
( )[ ]TkNH

TkNH

ii

Biise

Βµ
µ

ρ
/expTr

/exp

∑
∑
−−

−−
=   (10) 

Unitary dynamics (Eq. (1)) applied to nonzero 
entropy states ( 2ρρ > ) would maintain time-
invariant each of the eigenvalues of ρ . Instead, 
Eq. (2) maintains invariant only the initially zero 
eigenvalues of ρ and, therefore, conserves the 
cardinality of the set of zero eigenvalues, dim 
Ker ( )ρ = const. This important feature implies that 
if the isolated system is prepared in a state that 
does not require all the eigenvectors lψ of H so 
that ( ) 00 =〉lψρ for some values of l , then the 
zero eigenvalues persist at all times, that is, 

( ) 0=〉lψρ t . This is the nontrivial condition that 
we call conservation of effective Hilbert space 
dimensionality (by effective Hilbert space we 
mean the range Ran ρ  of the density operator, 
namely the subspace of H  spanned by the 
eigenvectors of ρ with nonzero eigenvalues). It 
can be viewed as an extension of item (3) of the 
consistency conditions listed in Section 4 and, of 
course, it is a characteristic feature of all 
successful models and theories of the physics of 
isolated systems.  

The non-Hamiltonian dissipative term 
τ/D− in Eq. (2) pulls the state operator in the 

direction of the projection of the gradient of the 
entropy functional Sk ~TrρΒ onto the (hyper) plane 
of constant ρTr and HρTr . Because the system is 
isolated, the entropy ceases to increase only when 
the largest entropy value is reached consistent with 
the specified dimensionality of the Hilbert space. 
The same would hold for adiabatic processes 
described by a time-dependent H.  

As recently shown in Refs. [4, 29], the 
steepest-entropy-ascent feature is confirmed also 
by a variational formulation wherein the form (3) 

of the dissipative term in Eq. (2) is obtained as a 
result of searching among all possible directions in 
which operator ρ can change with the direction of 
maximal entropy generation compatible with the 
constraints that ρ remains a well-defined operator, 
and ρTr and HρTr remain time invariant. For the 
more general form that conserves also other 
observables in addition to the energy see Ref. [29]. 

Given any initial density operator, it is pos-
sible to solve the equation of motion not only in 
forward time but also in backward time [7, 11] and 
reconstruct the entire trajectory in ρ space 
for +∞<<−∞ t , provided of course either the 
Hamiltonian H is time independent or its 
dependence on time is well behaved at all times.  

In Ref. [12], Eq. (2) is applied to study atomic 
relaxation in a two-level atom. By modeling the 
interaction between a single two-level atom and 
the quantum electromagnetic field that 
corresponds to driving the two-level atom near 
resonance by a nearly monochromatic laser beam, 
it is shown that the nonlinear irreversible atomic 
relaxation described by the term τ/D− in Eq. (2) 
implies corrections to the resonance fluorescence, 
absorption and stimulated emission line shapes. 
Such experiments on properly prepared 
homogeneous ensembles that require 2ρρ ≠  
would provide experimental evidence and a means 
to evaluate the atomic relaxation time τ . 

6.  One Particle Approximation for a Boltz-
mann Gas 
As an illustration of the applications of Eq. 

(2), we consider an isolated system composed of a 
single-component gas of non-interacting identical 
particles with single-particle energy eigenvalues 

ie for i =1, 2, . . . , N where N is finite and the ei’s 
are repeated in case of degeneracy. As done in 
Ref. [7], we restrict for simplicity our analysis to 
the class of dilute-Boltzmann-gas states in which 
the particles are independently distributed among 
the N (possibly degenerate) one-particle energy 
eigenstates. In density operator language, this is 
tantamount to restricting the analysis to the subset 
of one-particle density operators ρ that are 
diagonal in the representation in which also the 
one-particle Hamiltonian operator H is diagonal 
[ ]( ).0, =ρH We denote by ip the probability of 

the i-th energy eigenstate, so that the per-particle 
energy and entropy functionals are given by the 
relations 

∑∑∑
===

=−==
N

i
i

N

i
ii

N

i
ii pppkSpe

111
1lnΒΕ  (11)  

The nonlinear equation of motion maintains 
the initially zero probabilities equal to zero, 
whereas the rates of change of the nonzero 
probabilities, for i, j = 1,2,...,N, are given by 
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∑∑
∑

∑∑∑
∑∑

−=

iiii

ii

iiiiii

iiii

jjjjj

j

pepe
pe

pepepe
pepp

peppp

dt
dp

2

2

1

ln
1ln

ln

1
τ

 (12) 

 The solutions of these equations are well-
behaved in the sense that they satisfy all the condi-
tions listed in Section 4. In particular, as exempli-
fied by the numerical simulations discussed in Sec-
tion  7,  they exhibit the following general features: 
1. They conserve the energy and trace of ρ . 
2. They preserve the non-negativity of each .ip  
3. The maintain the rate of entropy generation 

non-negative. 
4. They maintain the dimensionality of the 

effective Hilbert space, that is, for a density 
operator ρ  with [ ] 0, =ρH  and eigenvalues 
p given by any set of 'ip s, they maintain 

invariant the vector ( )pδδδδ  of si 'δ defined so 
that for each i=1,2,...,N, 1=iδ  if 0≠ip  and 

0=iδ  if 0=ip . 
5. They drive any arbitrary initial density 

operator ( )otρ  towards the partially canonical 
(or canonical if 1=iδ  for all energy 
eigenstates of the Boltzmann gas) equilibrium 
density operator ( )∞+ρ  with time-
independent eigenvalues ( )∞+p  in the energy 
representation given by  

( ) ( )( )
( )( )∑ = −

−
= N

i i
pe

i

j
pe

jpe
j

e

e
p

1 ,exp

,exp
,

δδδδ

δδδδ
δδδδ

Εβδ

Εβδ
Ε  (13) 

where ( )( )0pδδδδδδδδ = , the value of peβ  is 
determined by the initial condition 

( ) ( )( )0,1 pΕΕΕ ==∑ = δδδδN
i

pe
pi i

pe , and the su-
perscript “pe” is used to indicate that the 
system is in an unstable or, so-called, partial 
equilibrium state. 
Among all the equilibrium states just cited, 

there exists one and only one that is stable (su-
perscript “se”) and corresponds to the largest value 
of the entropy for the given value of energy E and 
for which the eigenvalues of the density operator 
in the energy representation are given by the 
canonical distribution  

( ) ( )( )
( )( )∑ = −

−
= N

i i

jse
j

kTe

kTe
p

1exp

exp

Ε

Ε
Ε   (14) 

where T(E) may be shown to be equal to the deriv-
ative of the energy with respect to the entropy for 
the stable equilibrium states of the Boltzmann gas. 
By de-finition, the derivative just cited is the 
temperature.  

For a general non-equilibrium state, the rate of 
entropy generation may be written as a ratio of 
Gram determinants in the form 

( )

∑∑
∑

∑∑∑
∑∑

∑∑∑

=

iiii

ii

iiiiiii

iiii

iiiiiii

pepe
pe

pepeppe
pepp

ppepppp

dt
dS

k
2

2

2

1

ln
1ln

lnlnln

Β

τ

 (15) 
and its non-negativity follows from the well-
known properties of Gram determinants. 

Given any initial density operator, it is possible 
to solve the equation of motion for all values of 
time, that is +∞<<−∞ t .  In the limit as +∞→t , 
the trajectory approaches a largest entropy 
equilibrium state with a density operator that is 
canonical over the energy eigenstates initially 
included in the analysis.  An exception to this 
conclusion is the case of the initial density 
operator being a projector .2ρρ =   Then the 
evolution in time follows the Schrödinger equation 
and is unitary and reversible, except if the 
projector is an energy eigenprojector which is 
stationary. 

7.  Numerical Simulations 
The energy versus entropy diagram introduced 

by Gibbs represents the intersection with the E–S 
plane of the E–S–V–n surface representing the 
stable thermodynamic equilibrium states of a 
system, assuming that the energy eigenvalues 
depend on the volume V and the amounts of 
constituents n, so that the surface is represented by 
the so-called fundamental relation 

( ){ }( ).,, nVeSS jΕ= . In [21] the use of such a 
diagram has been extended to include the 
projection onto the E–S plane of all other states, 
i.e., not only the stable equilibrium states but also 
the non-equilibrium and the non-stable equilibrium 
states, with given fixed values of V and n and, 
therefore, a given fixed set of energy eigenvalues. 
On such a diagram, therefore, one point represents 
in general a multitude of distributions, except at 
every point of maximal entropy for each given 
value of E (V and n are fixed) which corresponds 
to a unique canonical distribution (Eq. (14)), i.e., a 
unique stable thermodynamic equilibrium state.  

For a four-level, non-degenerate system, 
Figure 1 presents the families of possible 
canonical (Eq. (14)) and partially-canonical (Eq. 
(13)) equilibrium distributions which in our 
dynamics are the only ones with zero entropy 
generation rate. We recall that the slope of these 
curves is related to the parameter ( )δδδδ,Εβ pe  
because ( ) ( )δδδδδδδδ δδδδ ,/, ΕβΕΕ Β

pepe kS =∂∂ , which 
for the canonical distribution (all si 'δ  equal to 
unity) is ( ) ( ) ( )ΕΕβΕ Β TkES /1/ ==∂∂ . 

The number of possible distributions that 
share a given pair of values of  E and S is in 
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general a (N-3)–fold infinity except at maximum 
entropy for each value of E, where the distribution 
is unique and at a few other notable exceptions 
such as at minimal entropy for each given E where 
the distribution may be unique or sometimes 
manyfold.  

The next figures show typical time dependen-
ces of the occupation probabilities that result from 
the numerical integration (by means of  a  standard 

 
Figure 1: From Ref. [7]. Representation on an energy 
versus entropy diagram (for N=4 and non-degenerate 
eigenstates with energies e = [0, 1/3, 2/3, 1]) of the 
families of possible canonical and partially-canonical 
equilibrium distributions which in our dynamics are the 
only ones with a zero entropy generation rate. For 
example, a horizontal line at E = 0.4 intersects seven 
different families of partially canonical states.  
 
Runge-Kutta algorithm) of Eq. (12) both forward 
and backward in time. All trajectories in these 
figures refer to a system with N=4 and non-
degenerate eigenstates with e = [0, 1/3, 2/3, 1] and 
all have the same mean energy E = 2/5; they all 
tend, of course, to the canonical distribution 

sep (2/5) = [0.3474, 0.2722, 0.2133, 0.1671] that 
has inverse temperature seβ (2/5) = 0.7321. They 
are obtained by assuming for all cases an initial 
distribution ( )0p  obtained by perturbing the 
canonical distribution sep (E) (Eq. (14)) according 
to  

( )
( )∑ =

= N
i

se
ii

se
jj

j
pf

pf
p

1

~
Ε

Ε  (16) 

with the energy preserving perturbing factors 
defined as follows for j = 1,2,…,N: 

( )
( )Ε
Ε

λλ se
j

pe
j

j p

p
f

δδδδ,
1 +−= with 10 << λ  (17)  

where λ  is otherwise arbitrary and also δδδδ is 
arbitrarily chosen among the possible vectors of 
0’s and 1’s compatible with the given value of 
Ε and Eq. (13) of the distribution ( )δδδδ,Εpep  (see 
Figure 1), where ( )δδδδ,Εβ pe  is computed by 

solving the equation ( ) ΕΕ =∑ ii
pe
i ep δδδδ, . For all 

subsequent figures, we use 9.0=λ . 
Figure 2 shows the time dependence of the 

occupation probabilities that results under the 
assumptions just cited using E =2/5, λ =0.9 and δ 
= [1, 1, 0, 1] in Eq. (17) and subsequently 
substituting into Eqs. (16), that is, 

 
( ) ( ) ( ) ( )EE sepe ppp λλ −+= 1,0 δδδδ          (18) 

 
Figure 2:  From Ref. [7].  Top:  typical time 
dependences of the occupation probabilities that result 
from the numerical integration of Eq. (12) both forward 
and backward in time for N = 4, e = [0,1/3,2/3,1], energy 
Ε = 2/5, initial state at 0=t  from Eq. (18) with 

9.0=λ  and [ ]1,0,1,1=δδδδ . The dots on the right 
represent the maximum entropy distribution; the dots at 
the left represent the lowest-entropy or ‘primordial’ 
distribution; the dots in the middle represent the  

( )δδδδ,Εpep  distribution used in Eq. (18) to select  the 
0=t  state, plotted at the instant in time when the 

entropy of the time-varying trajectory is equal to the 
entropy of the ( )δδδδ,Εpep  distribution.  Bottom:  the 
corresponding time dependence of the entropy (left axis) 
and the entropy generation rate (right axis).   
 

It is noteworthy that when the trajectory gets 
very close to the partially-canonical unstable-
equilibrium distribution )5/2( =Epep , δδδδ = [1, 1, 
0, 1], the entropy surface presents a local ’plateau’, 
and the entropy generation rate drops almost to 
zero, but shortly thereafter, the trajectory bends in 
a direction of steeper slope that drives the 
generation up again until the canonical distribution 

)(Esep  = [0.3474, 0.2722, 0.2133, 0.1671] is 
finally approached with the inverse temperature 

)5/2(seβ = 0.7321. Of course, the entropy is a 
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monotonically increasing function of time along 
the entire trajectory.  

Figure 3 shows the same trajectory as well as 
six other trajectories; but instead of plotting the 
time dependence of the occupation probabilities, 
we plot them against the entropy. The initial (time 

)0=t distribution used to obtain these seven 
sample trajectories are obtained from Eq. (18) with 
E = 2/5, λ = 0.9 and each of the seven partially ca- 

 
Figure 3: From Ref. [7]. Plots of ( )tpi versus ( )tS  for 
seven sample time dependences of the occupation 
probabilities that result from the numerical integration 
of Eq. (12) both forward and backward in time, for 
different initial distributions.  
 
nonical states corresponding to the given value of 
the energy. These seven states are easily identified 
on the E–S diagram in Figure 1 by drawing a 

horizontal line at E =0.4. For the first, third, and 
sixth trajectories, we use the ( )δδδδ,Εpep  states 
with δδδδ = [1, 0, 1, 0], =δδδδ [1, 0, 0, 1] and δδδδ = [0, 1, 
0, 1], respectively, which (as is apparent from the 
subsequent Figure 4) are the lowest-entropy 
boundary points of the entropy surface for the 
given energy, and turn out also to be the 
‘primordial’ states of the corresponding 
trajectories.  For the remaining trajectories, we use 
the ( )δδδδ,Εpep  states with =δδδδ [1, 1, 1, 0], =δδδδ [1, 
1, 0, 1], =δδδδ [1, 0, 1, 1], and =δδδδ [0, 1, 1, 1], 
respectively.  These too are boundary points of the 
entropy surface, but they correspond to partial 
maxima (over the subset of distributions with one 
unoccupied eigenstate as specified by the 
corresponding zero element of δδδδ ). It is seen that 
these partial maxima affect the trajectories passing 
nearby by acting as partial attractors especially in 
the initial phase of the time evolution. 

Figure 4 is a more elaborate representation of 
the same seven trajectories.  They are shown four 
times from different perspectives on the 
background of contour plots of the entropy 
surface, for four pairs of occupation probabilities.  
Indeed, for N = 4 and fixed energy Ε , the number  

 
Figure 4: From Ref. [7]. Each rotated quadrant of the 
graph represents, for the corresponding pair of 
occupation probabilities, a plot of the seven trajectories 
shown in Figure 3 drawn over contour plots of the 
entropy surface.  
 
of independent occupation probabilities is two.  
Thus, for four pairs of probabilities 
( ),,, 14433221 pppppppp −−−− , we draw 
the contour plot of the entropy surface over the 
entire domain of allowed values (which, of course, 
are contained in a triangular region of the first 
quadrant), and over this plot we draw the seven 
trajectories (and the seven partially canonical 
states used to choose them).  To save space, we 
then rotate each of the four graphs (respectively, 
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by 45, 135, 225, 315 degrees) and present them in 
the same figure (Figure 4).   The figure visualizes 
clearly that the trajectories indeed follow paths of 
locally-steepest-entropy-ascent and also unfold 
smoothly backward in time to the ‘primordial’ 
states.  We also note that these lowest-entropy 
states exhibit a singular behavior in that, for 
example, state [2/5, 0, 3/5, 0] is the primordial 
state for two entirely different trajectories, state 
[3/5, 0, 0, 2/5] for three others, and state [0, 9/10, 
0, 1/10] for the remaining two.  Moreover, the 
partially canonical states appear as partial 
attractors of trajectories passing nearby, as seen 
quite clearly for the second, fourth and fifth 
trajectories of Figure 3, which are partially 
attracted by the partially canonical states with δδδδ = 
[1, 1, 1, 0], δδδδ = [1, 1, 0, 1] and δδδδ = [1, 0, 1, 1], 
respectively. 

8. Composite System Dynamics 
As in standard quantum theory, the com-

position of a system is embedded in the structure 
of the associated Hilbert space as a direct product 
of the subspaces associated with the individual 
elementary constituent subsystem, as well as in the 
form of the Hamiltonian operator. 

For simplicity, we consider here a system 
composed of two distinguishable and indivisible 
elementary constituent subsystems.  For example, 
each subsystem may be a different elementary 
particle or a Fermi-Dirac or Bose-Einstein or 
Boltzmann field (in which case the corresponding 
Hilbert space is a Fock space). The subdivision 
into elementary constituents, each considered as 
indivisible, is reflected by the structure of the 
Hilbert space Η  as a direct product of subspaces,  

ΒΗΗΗ ⊗= A   (19) 

and is particularly important because it defines the 
level of description of the system and specifies its 
elementary structure together with the Hamiltonian 
operator 

VII BABA +⊗+⊗= ΗΗΗ   (20) 

where JΗ  is the Hamiltonian operator on 
JΗ associated with subsystem J when isolated, 

for J=A,B, and V (onΗ ) is the interaction Hamil-
tonian among the two subsystems.  

The specification just cited determines also 
the structure of the nonlinear dynamical law, 
which is different depending on whether the sys-
tem is or is not sub-divisible into indivisible sub-
systems, i.e., whether or not it has an internal 
structure. The dependence of the structure of the 
dynamical law on the level of description of the 
system’s internal structure in terms of elementary 
indivisible constituents is an important 
consequence of having given up linearity [15, 29].  

In the simplest case that we are considering 

here, the dissipative term in the equation of motion 
is a function of two novel important nonlinear 
local observables that we call “locally perceived 
overall-system energy” and “locally perceived 
overall-system entropy” that represent measures of 
how the overall-system energy and entropy 
operators, H and S~ = −B ln ρ , are “felt” locally 
within the Jth subsystem [9, 29]. They are 
associated with the following local operators:  

( ) ( )[ ]ΗρΗ JJJ
J I ⊗= Tr   (21) 

( ) ( )[ ]SIS JJJ
J ~Tr~ ρ⊗=   (22) 

where J = A, B and J =B, A, ρρ JJ Tr=  and 
ρρ JJ Tr= . 

Operator JS~ may be interpreted as the sub-
system entropy operator only if subsystem J is not 
correlated with the other subsystem, i.e., only if ρ 
can be written as  

ΒΑ ρρρ ⊗=   (23) 

then the subsystem entropy is defined and given 
by the nonlinear state functional of the reduced 
state operator JJJBJJJB kSk ρρρ lnTr~Tr −= , and 

BABA SIISS ~~~ ⊗+⊗= . If the subsystems are 
correlated, then no individual entropies can be 
defined; however, the functional J

JJB Sk )~(Tr ρ
 
is 

always well-defined and may be interpreted as the 
subsystem’s local perception of the overall-system 
entropy.  

Similarly, energy is defined for subsystem J 
only if it is not interacting with the other sub-
system, i.e., if H can be written as  

BABA II ΗΗΗ ⊗+⊗=   (24)  

Then the energy of J is given by the functional. 
JJJ ΗρTr . The functional J

JJ )(Tr Ηρ instead is 
always well-defined, even if the subsystems are 
interacting, and may be interpreted as the sub-
system’s local perception of the overall-system 
energy.  

In order for an equation of motion of quantum 
thermodynamics to be acceptable for both the 
description of the time evolution of a composite 
system and the exclusion of non-locality paradoxes 
such as faster-than-light communication, the 
following conditions must be added to the list of 
Section 4 [31]:  

1. For a system composed of non-interacting 
subsystems, the energy of each subsystem, 

JJJ ΗρTr , must be time invariant (separate 
energy conservation). 

2. For a system composed of subsystems in 
independent states, that is, such that 

ΒΑ ρρρ ⊗= , the entropy of each sub-
system J, JJ Sk ~TrJ ρ , must be non-
decreasing in time (separate entropy non-
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decrease). 
3. Non-interacting subsystems that are initially 

in correlated states must be unable to 
influence each other’s time evolution as long 
as they remain non-interacting, even if each 
of them separately interacts with other 
systems. 

For an isolated composite of r constituents 
without non-Hamiltonian time-invariants, the 
postulated nonlinear equation of motion coincides 
with Eq. (1) only for zero entropy states ( )ρρ =2 , 
whereas for an arbitrary nonzero entropy state ( )ρρ <2  the equation of motion is  

[ ] ΒΑΒΑ ρ
τ

ρ
τ

ρΗρ DDi
dt
d

BA
⊗−⊗−−= 11,

h
 (25) 

where each JD is the nonlinear operator defined 
by the relations 

  ( ){ } ( ){ }J
J

JJJJ
J

J HSD ρβραρ ,
2
1,~

2
1 +−−=

 (26) 

        ( ) ( )J
JJJ

J
JJJ S Ηρβρα Tr~Tr +−=   (27) 

( ) ( ){ } ( ) ( )

( ) ( ) ( )[ ]2TrTr

Tr~Tr,~
2
1Tr

J
JJ

JJ
JJ

J
JJ

J
JJ

JJ
JJ

J
HHH

HSHS

ρρ

ρρρ
β

−

−
=

 (28) 

It is noteworthy that the functional dependence of 
each JD on Jρ , ( )J

S~ , ( )JΗ is the same as that of 
D on S,ρ , and Η for the single constituent 
system (Eq. (3)).  Proofs that Eq. (25) satisfies all 
the consistency conditions listed in Section 4 plus 
the three just cited are given in Refs. [8, 9, 29].  
Again, it is easy to verify that   

( ) ( ) 0~Tr0Tr0Tr ≥==
J

JJ
J

JJJJ SDDD Η  (29) 

and, therefore, 

0TrTrTr =+= ΒΒΑΑρ DD
dt
d   (30) 

( ) ( ) 0TrTrTr =+= B
BB

A
AA HDHDH

dt
d ρ  (31) 

         ( ) ( ) 0~Tr~Tr~Tr ≥+=
B

BB
A

AA SDSDS
dt
d ρ  (32) 

Finally, it is shown that if ρρ <2  at one time, it  
remains so at all times, that is, for  +∞<<−∞ t . 

By taking the partial trace of dtd /ρ  (as 
given by Eq. (25)) over ΒΗ , we obtain the rate 
of change of the reduced state operator of sub-
system A, i.e., dtddtd B /Tr/ ρρ Α = . If B is not 
interacting with A, i.e., the Hamiltonian is given 

by Eq. (24) with V = 0, dtd /Αρ  turns out to be 
independent of BH . This means that it is im-
possible to affect the local observables of A by 
acting only on B, and so non-locality paradoxes 
are excluded by the novel equation of motion. 
This, however, does not mean that existing entan-
glement and/or correlations between A and B 
established by past interactions that have been 
subsequently turned off have no influence what-
soever on the time evolution of the local observ-
ables of either A or B. In particular, there is no 
physical reason to expect that two different density 
operators ρ  and ρ ′  such that ΑΑ ρρ =′ should 
evolve with identical local dynamics 

)//( dtddtd ΑΑ ρρ =′  whenever A does not interact 
with B, because the fact that ρρ ′≠ means that in 
these two states the subsystems are differently 
correlated and/or entangled and, therefore, the two 
local evolutions should in general be different, at 
least until memory of the entanglement and the 
correlations established by turned-off past 
interactions have faded away (spontaneous deco-
herence) as a consequence of the irreversible 
entropy-increasing evolution [31]. This subtlety is 
also captured by the novel equation of motion. 
Indeed, dtd /Αρ  in general depends not only on 
the “local” reduced density operator Αρ  but also 
on the overall density operator ρ  through oper-
ator ( ) ( )ΑΑ ρΒ ln~ −=S , resulting in a collective 
behavior effect on the local dynamics that origi-
nates from the existing residual correlations due to 
past interactions.  
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