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A seldom recognized fundamental difficulty undermines the concept of individual “state”
in the present formulations of quantum statistical mechanics and quantum information
theory. The difficulty is an unavoidable consequence of an almost forgotten corollary
proved by Schrödinger in 1936 and perused by Park in 1968. To resolve it, we must
either reject as unsound the concept of state, or else undertake a serious reformula-
tion of quantum theory and the role of statistics. We restate the difficulty and discuss
alternatives towards its resolution.
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1. Introduction

In 1936, Schrödinger1 published an article to denounce a “repugnant” but un-

avoidable consequence of the present formulation of Quantum Mechanics (QM)

and Quantum Statistical Mechanics (QSM). Schrödinger claimed no priority on the

mathematical result, and properly acknowledged that it is hardly more than a corol-

lary of a theorem about statistical operators proved by von Neumann2 five years

earlier.

Thirty years later, Park3 exploited von Neumann’s theorem and Schrödinger’s

corollary to point out quite conclusively an essential tension undermining the logi-

cal conceptual framework of QSM (and of Quantum Information Theory, QIT, as

well). Twenty more years later, Park returned on the subject in another magistral,

but almost forgotten paper4 in which he addresses the question of “whether an

observer making measurements upon systems from a canonical ensemble can deter-

mine whether the systems were prepared by mixing, equilibration, or selection”, and

concludes that “a generalized quantal law of motion designed for compatibility with

fundamental thermodynamic principles, would provide also a means for resolving

paradoxes associated with the characteristic ambiguity of ensembles in quantum

mechanics.”
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Schrödinger’s corollary was “rediscovered” by Jaynes5 and Gisin,6 and general-

ized by Hughston, Jozsa, and Wooters7 and Kirkpatrick.8 Also some interpretation

has been re-elaborated around it,9,10 but unfortunately not always the original ref-

erences have been duly cited.11 For this reason it is useful once in a while to refresh

our memory about the pioneering contributions by Schrödinger and Park. The crys-

tal clear logic of their analyses should not be forgotten, especially if we decide that

it is necessary to “go beyond”.

The tension that Park vividly brings out in his beautiful essay on the “nature

of quantum states” is about the central concept of individual state of a system.

The present formulation of QM and QSM implies the paradoxical conclusion that

every system is “a quantum monster”: a single system concurrently “in” two (and

actually even more) different states. We briefly review the issue below (as we have

done also in Ref. 12), but we urge everyone interested in the foundations of quantum

theory to read the original reference.3 The problem has been widely overlooked and

is certainly not well known, in spite of its periodic rediscoveries. The overwhelming

successes of QM and QSM understandably contributed to discourage or dismiss as

useless any serious attempt to resolve the fundamental conceptual difficulty.

Here, we emphasize that a resolution of the tension requires a serious re-

examination of the conceptual and mathematical foundations of quantum theory.

We discuss three logical alternatives. We point out that one of these alternatives

achieves a fundamental resolution of the difficulty without contradicting any of the

successes of the present mathematical formalism in the equilibrium realm where it

is backed by experiments. This alternative originates from a logical implementa-

tion of the conjecture — first proposed by Hatsopoulos and Gyftopoulos13 — that

the second law of thermodynamics may be a fundamental physical law valid at the

microscopic level. This conjecture is in sharp contrast with the traditional view

that the second law is some sort of typical statistical effect that emerges only for

macroscopic systems or open subsystems weakly coupled to much larger systems

(for references to traditional attempts to resolve the conflict between the second

law and the notorious reversibility of the fundamental laws of mechanics, see e.g.

Ref. 14, where yet another argument in favor of the traditional lines is discussed).

While entailing all the mathematical successes of equilibrium QSM, the

Hatsopoulos-Gyftopoulos Unified Quantum Theory of Mechanics and Thermody-

namics, which the present author12 complemented with the further conjecture of a

nonlinear, steepest-entropy-ascent dynamical law (and called it Quantum Thermo-

dynamics), forces a re-interpretation of the fundamental meaning of such successes,

but yields the second law as an exact theorem of the new conjectured dynamical

law and in the nonequilibrium domain opens to new discoveries, new physics com-

patible with the second law of thermodynamics,15–21 including the new theoretical

possibility (provided by the nonlinearity of the assumed dynamical law) to distin-

guish between homogeneous (proper) and heterogeneous (improper) ensembles, by

looking at the time-dependent behavior (e.g. by stroboscopic tomography).

As Park says:3 “problems concerning measurement in quantum physics can be
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sharpened, and sometimes resolved, by according proper attention to those basic

physical characteristics of quantum states.” Should the re-interpretation suggested

by the careful scrutiny of the Schrödinger-Park paradox and its resolution by con-

jecturing the validity of our Quantum Thermodynamics, motivate new fundamental

experimental tests and prove successful, then once again Thermodynamics would

have played a key role in a major step “beyond”.

2. Schrödinger-Park quantum monsters

In this section, we review briefly the problem at issue. We start with the seem-

ingly harmless assumption that every (individual) system is always in some definite,

though perhaps unknown, state. We will conclude that the assumption is incompat-

ible with the present formulation and interpretation of QSM/QIT. To this end, we

concentrate on an important special class of systems that we call “strictly isolated”.

A system is strictly isolated if and only if (a) it interacts with no other system in

the universe, and (b) its state is at all times uncorrelated from the state of any

other system in the universe.

The argument that “real” systems can never be strictly isolated and, therefore,

that the following discussion should be dismissed as useless is at once counterpro-

ductive, misleading and irrelevant, because the concept of strictly isolated system

is a keystone of the entire conceptual edifice in physics, particularly indispensable

to structure the principle of causality. Hence, the strictly isolated systems must be

accepted, at least, as conceivable. It is therefore an essential necessary requirement

that, when restricted to such systems, the formulation of a physical theory like QSM

be free of internal inconsistencies.

It is useful at this point to emphasize that here, with Schrödinger,1 von Neu-

mann,2 and Park,3 the term “state” is used with reference to the individual system

only, and not to indicate generic statistics from (or information about) an “unquali-

fied” (i.e., not necessarily homogeneous2 or proper22) statistical ensemble of systems

prepared under identical conditions. In other words, differently from the unfortunate

common current use of the term state in Quantum Information (see, e.g., Ref. 23

for a concise account of the statistical interpretation of Quantum Mechanics), here

we refer to the traditional concept of state associated with an individual system,

another keystone of physical thinking not only in Classical Mechanics but also in

Quantum Theory (whenever, for example, we assign a state vector to a single sys-

tem). From the conceptual point of view, our restrictive use of the term “state” (as

thoroughly discussed by Park3) is not contradictory with the fact that in Quantum

Theory it can be fully reconstructed from measurement results (tomography) only

by gathering enough data from a (homogeneous) ensemble of identically prepared

systems.

In QM the states of a strictly isolated (noninteracting and uncorrelated) system

are in one-to-one correspondence with the one-dimensional orthogonal projection

operators on the Hilbert space of the system. We denote such projectors by the
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symbol P . If |ψ〉 is an eigenvector of P such that P |ψ〉 = |ψ〉 and 〈ψ|ψ〉 = 1 then

P = |ψ〉〈ψ|. It is well known that differently from classical states, quantum states

are characterized by irreducible intrinsic probabilities. We give this for granted here,

and do not elaborate further on this point.

The objective of QSM is to deal with situations in which the state of the system is

not known with certainty. Such situations are handled, according to von Neumann2

(but also to Jaynes5 within the QIT approach) by assigning to each of the possible

states of the system an appropriate statistical weight which describes an “extrinsic”

(we use this term to contrast it with “intrinsic”) uncertainty as to whether that state

is the actual state of the system. The selection of a rule for a proper assignment of

the statistical weights is not of concern to us here.

To make clear the meaning of the words extrinsic and intrinsic, consider the

following non quantal example. We have two types of “biased” coins A and B for

which “heads” and “tails” are not equally likely. Say that pA = 1/3 and 1−pA = 2/3

are the intrinsic probabilities of all the coins of type A, and that pB = 2/3 and

1 − pB = 1/3 those of the coins of type B. Each time we need a coin for a new

toss, however, we receive it from a slot machine that first tosses an unbiased coin

C with intrinsic probabilities w = 1/2 and 1− w = 1/2 and, without telling us the

outcome, gives us a coin of type A whenever coin C yields “head” and a coin of

type B whenever C yields “tail”. It is clear that, for such a preparation scheme,

the probabilities w and 1− w with which we receive coins of type A or of type B

have “nothing to do” with the intrinsic probabilities pA, 1 − pA, and pB , 1 − pB
that characterize the biased coins we will toss. We therefore say that w and 1− w
are extrinsic probabilities, that characterize the heterogeneity of the preparation

scheme rather than features of the prepared systems (the coins). If on every coin

we receive we are allowed only a single toss (projection measurement?), then due

to the particular values (pA = 1/3, pB = 2/3 and w = 1/2) chosen for this tricky

preparation scheme, we get “heads” and “tails” which are equally likely; but if we

are allowed repeated tosses (non-destructive measurements, gentle measurements,

quantum cloning measurements?) then we expect to be able to discover the trick.

Thus, it is only under the one-toss constraint that we would not loose, if we base

our bets on a description of the preparation scheme that simply weighs the intrinsic

probabilities with the extrinsic ones, i.e., that would require us to expect “head”

with probability phead = wpA + (1− w)pB = 1/2 ∗ 1/3 + 1/2 ∗ 2/3 = 1/2.

For a strictly isolated system, the possible states according to QM are, in prin-

ciple, all the one-dimensional projectors Pi on the Hilbert space of the system.

QSM/QIT assigns to each state Pi a statistical weight wi, and characterizes the ex-

trinsically uncertain situation by a (von Neumann) statistical (or density) operator

W =
∑
i wiPi, a weighted sum of the projectors representing the possible states.

This construction is ambiguous, because the same statistical operator is assigned

to represent a variety of different preparations, with the only exception of homoge-

neous preparations where there is only one possible state Pψ with statistical weight

equal to 1, so thatW = Pψ is “pure”. Given a statistical operatorW (a nonnegative,
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unit-trace, hermitean operator on the Hilbert space of the system), its decomposi-

tion into a weighted sum of one-dimensional projectors Pi with weights wi implies

that there is a preparation such that the system is in state Pi with probability

wi, to which the QSM/QIT von Neumann construction would assign the statistical

operator W =
∑

i wiPi. The situation described by W has no extrinsic uncertainty

if and only if W equals one of the Pi’s, i.e., if and only if W 2 = W = Pi (von

Neumann’s theorem2). Then, QSM reduces to QM and no ambiguities arise.

The problem is that whenever W represents a situation with extrinsic uncer-

tainty (W 2 6= W ) then the decomposition of W into a weighted sum of one-

dimensional projectors is not unique. This is the essence of Schrödinger’s corol-

lary1 relevant to this issue (for a mathematical generalization see Ref. 8 and for

interpretation in the framework of non-local effects see e.g. Ref. 9).

For our purposes, notice that every statistical (density) operator W , when re-

stricted to its range Ran(W ), has an inverse that we denote by W−1. If W 6= W 2,

then Ran(W ) is at least two-dimensional, i.e., the rank of W is greater than 1. Let

Pj = |ψj〉〈ψj | denote the orthogonal projector onto the one-dimensional subspace

of Ran(W ) spanned by the j-th eigenvector |ψj〉 of an eigenbasis of the restriction

of W to its range Ran(W ) (j runs from 1 to the rank of W ). Then, W =
∑
j wjPj

where wj is the j-th eigenvalue, repeated in case of degeneracy. It is noteworthy that

wj = [TrRan(W )(W
−1Pj)]

−1. Schrödinger’s corollary states that, chosen an arbitrary

vector α1 in Ran(W ), it is always possible to construct a set of linearly indepen-

dent vectors |αk〉 (k running from 1 to the rank of W , α1 being the chosen vector)

which span Ran(W ) (but are not in general orthogonal to each other), such that the

orthogonal projectors P ′
k = |αk〉〈αk | onto the corresponding one-dimensional sub-

spaces of Ran(W ) give rise to the alternative resolution of the statistical operator

W =
∑

k w
′
kP

′
k, with w′

k = [TrRan(W )(W
−1P ′

k)]
−1.

To fix ideas, consider the example of a qubit with the statistical operator given

by W = p|1〉〈1| + (1 − p)|0〉〈0| for some given p, 0 < p < 1. Consistently with

Schrödinger’s corollary, it is easy to verify that the same W can also be obtained

as a statistical mixture of the two projectors |+〉〈+| and |a〉〈a| where |+〉 = (|0〉+
|1〉)/

√
2, |a〉 = (|+〉 + a|−〉)/

√
1 + a2 (note that |a〉 and |+〉 are not orthogonal

to each other), |−〉 = (|0〉 − |1〉)/
√

2, a = 1/(1 − 2p) and w = 2p(1 − p) so that

W = w|+〉〈+| + (1 − w)|a〉〈a|. With p = 1/4 this is exactly the example given by

Park in Ref. 3.

QSM forces on us the following interpretation of Schrödinger’s corollary. The

first decomposition of W implies that we may have a preparation which yields the

system in state Pj with probability wj , therefore, the system is for sure in one of

the states in the set {Pj}. The second decomposition implies that we may as well

have a preparation which yields the system in state P ′
k with probability w′

k and,

therefore, the system is for sure in one of the states in the set {P ′
k}. Because both

decompositions hold true simultaneously, the very rules we adopted to construct

statistical operators W allow us to conclude that that the state of the system is

certainly one in the set {Pj}, but concurrently it is also certainly one in the set
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{P ′
k}. Because the two sets of states {Pj} and {P ′

k} are different (no elements in

common), this would mean that the system “is” simultaneously “in” two different

states, thus contradicting our starting assumption that a system is always in one

definite state (though perhaps unknown). Little emphasis is gained by noting that,

because the possible different decompositions are not just two but an infinity, we are

forced to conclude that the system is concurrently in an infinite number of different

states! Obviously such conclusion is unbearable and perplexing, but it is unavoidable

within the current formulation of QSM/QIT. The reason why we have learnt to live

with this issue – by simply ignoring it – is that if we forget about interpretation

and simply use the mathematics, so far we always got successful results that are in

good agreement with experiments.

Also for the coin preparation example discussed above, there are infinite ways to

provide 50% head and 50% tail upon a single toss of a coin chosen randomly out of

a mixture of two kinds of biased coins of opposite bias. If we exclude the possibility

of performing repeated (gentle) measurements on each single coin, than all such

situations are indeed equivalent, and our adopting the weighted sum of probabilities

as a faithful representation is in fact a tacit acceptance of the impossibility of

making repeated measurements. This limitation amounts to accepting that extrinsic

probabilities (w,1 − w) combine irreducibly with intrinsic ones (pA,pB), and once

this is done there is no way to separate them again (at least not in a unique way).

If these mixed probabilities are indeed all that we can conceive, then we must give

up the assumption that each coin has its own possibly unknown, but definite bias,

because otherwise we are lead to a contradiction, for we would conclude that there

is some definite probability that a single coin has at once two different biases (a

monster coin which belongs concurrently to both the box of, say, 2/3 – 1/3 biased

coins and the box of, say, 3/4 – 1/4 biased coins).

3. Is there a way out?

In this section we discuss three main alternatives towards the resolution of the

paradox, that is, if we wish to clear our everyday, already complicated life from

quantum monsters. Indeed, even though it has been latent for fifty years and it has

not impeded major achievements, the conceptual tension denounced by Schrödinger

and Park is untenable, and must be resolved.

Let us therefore restate the three main hinges of QSM which lead to the logical

inconsistency:

(1) a system is always in a definite, though perhaps unknown, state;

(2) states (of strictly isolated systems) are in one-to-one correspondence with the

one-dimensional projectors P on the Hilbert space H of the system; and

(3) situations with extrinsic uncertainty as to which is the actual state of the system

are unambiguously described by the statistical operatorsW . The decomposition

W =
∑

i wiPi implies that the state is Pi with statistical weight wi.
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To remove the inconsistency, we must reject or modify at least one of these state-

ments. But, in doing so, we cannot afford to contradict any of the innumerable

successes of the present mathematical formulation of QSM.

A first alternative was discussed by Park3 in his essay on the nature of quantum

states. If we decide to retain statements (2) and (3), then we must reject statement

(1), i.e., we must conclude that the concept of state is “fraught with ambiguities and

should therefore be avoided.” A system should never be regarded as being in any

physical state. We should dismiss as unsound all statements of this type: “Suppose

an electron is in state ψ . . . ” Do we need to undertake this alternative and therefore

abandon deliberately the concept of state? Are we ready to face all the ramifications

of this alternative?

A second alternative is to retain statements (1) and (2), reject statement (3) and

reformulate the mathematical description of situations with extrinsic uncertainty

in a way not leading to ambiguities. To our knowledge, such a reformulation has

never been considered. The key defect of the representation by means of statistical

operators is that it mixes irrecoverably two different types of uncertainties: the

intrinsic uncertainties inherent in the quantum states and the extrinsic uncertainties

introduced by the statistical description.

In Ref. 12, we have suggested a measure-theoretic representation that would

achieve the desired goal of keeping the necessary separation between intrinsic quan-

tal uncertainties and extrinsic statistical uncertainties. We will elaborate on such

representation elsewhere. Here, we point out that a change in the mathematical for-

malism involves the serious risk of contradicting some of the successes of the present

formalism of QSM. Such successes are to us sufficient indication that changes in the

present mathematical formalism should be resisted unless the need becomes incon-

trovertible.

A third intriguing alternative has been first proposed by Hatsopoulos and

Gyftopoulos13 in 1976. The idea is to retain statement (1) and modify statement

(2) by adopting the mathematics of statement (3) to describe the states. The defin-

ing features of the projectors P , which represent the states for a strictly isolated

system in QM, are: P † = P , P > 0, TrP = 1, P 2 = P . The defining features of the

statistical (or density) operators W are W † = W , W > 0, TrW = 1. Hatsopoulos

and Gyftopoulos propose to modify statement (2) as follows:

(2’) States (of every strictly isolated system) are in one-to-one correspondence with

the state operators ρ onH, where ρ† = ρ, ρ > 0, Trρ = 1, without the restriction

ρ2 = ρ. We call these the “state operators” to emphasize that they play the

same role that in QM is played by the projectors P , according to statement

(2) above, i.e., they are associated with the homogeneous (or pure or proper)

preparation schemes.

Mathematically, state operators ρ have the same defining features as the statisti-

cal (or density) operatorsW . But their physical meaning according to statement (2’)

is sharply different. A state operator ρ represents the state of an individual system.

 B
ey

on
d 

th
e 

Q
ua

nt
um

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 U

N
IV

E
R

SI
T

Y
 O

F 
SI

N
G

A
PO

R
E

 o
n 

01
/2

0/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.



July 23, 2007 12:0 WSPC - Proceedings Trim Size: 9.75in x 6.5in master

362 G. P. Beretta

Whatever uncertainties and probabilities it entails, they are intrinsic in the state,

in the same sense as uncertainties are intrinsic in a state described (in QM) by a

projector P = |ψ〉〈ψ|. A statistical operator W, instead, represents (ambiguously) a

mixture of intrinsic and extrinsic uncertainties obtained via a heterogeneous prepa-

ration. In Ref. 13, all the successful mathematical results of QSM are re-derived for

the state operators ρ. There, it is shown that statement (2’) is non-contradictory to

any of the (mathematical) successes of the present QSM theory, in that region where

theory is backed by experiment. However it demands a serious re-interpretation of

such successes because they now emerge no longer as statistical results (partly in-

trinsic and partly extrinsic probabilities), but as non-statistical consequences (only

intrinsic probabilities) of the nature of the individual states.

In addition, statement (2’) implies the existence of a broader variety of states

than conceived of in QM (according to statement (2)). Strikingly, if we adopt state-

ment (2’) with all its ramifications, those situations in which the state of the system

is not known with certainty stop playing the perplexing central role that in QSM is

necessary to justify the successful mathematical results such as canonical and grand

canonical equilibrium distributions. The physical entropy that has been central in

so many discoveries in physics, would have finally gained its deserved right to enter

the edifice from the front door. It would be measured by −kBTrρ ln ρ and, by way

of statement (2’), be related to intrinsic probabilities, differently from the von Neu-

mann measure −TrW lnW which measures the state of uncertainty determined by

the extrinsic probabilities of a heterogeneous preparation. We would not be any-

more embarrassed by the inevitable need to cast our explanations of single-atom,

single-photon, single-spin heat engines in terms of entropy, and entropy balances.

The same observations would be true even in the classical limit,19 where the state

operators tend to distributions on phase-space. In that limit, statement (2’) implies

a broader variety of individual classical states than those conceived of in Classical

Mechanics (and described by the Dirac delta distributions over phase-space). The

classical phase-space distributions, that are presently interpreted as statistical de-

scriptions of situations with extrinsic uncertainty, can be readily reinterpreted as

non-statistical descriptions of individual states with intrinsic uncertainty. Thus, if

we accept this third alternative, we must seriously reinterpret, from a new non-

statistical perspective, all the successes not only of quantum theory but also of

classical theory.

4. Concluding remarks

In conclusion, the Hatsopoulos-Gyftopoulos ansatz, proposed thirty years ago in

Ref. 13 and follow up theory,15,17–20 not only resolves the Schrödinger-Park para-

dox without rejecting the concept of state (a keystone of scientific thinking), but

forces us to re-examine the physical nature of the individual states (quantum and

classical), and finally gains for thermodynamics and in particular the second law

a truly fundamental role, the prize it deserves not only for having never failed in
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the past 180 years since its discovery by Carnot, but also for having been and still

being a perpetual source of reliable advise as to how things work in Nature.

In this paper, we restate a seldom recognized conceptual inconsistency which is

unavoidable within the present formulation of QSM/QIT and discuss briefly logical

alternatives towards its resolution. Together with Schrödinger1 who first surfaced

the paradox and Park3 who first magistrally explained the incontrovertible tension

it introduces around the fundamental concept of state of a system, we maintain that

this fundamental difficulty is by itself a sufficient reason to go beyond QSM/QIT,

for we must resolves the “essential tension” which has sapped the conceptual foun-

dations of the present formulation of quantum theory for almost eighty years.

We argue that rather than adopting the drastic way out provokingly prospected

by Park, namely, that we should reject as unsound the very concept of state of an

individual system (as we basically do every day by simply ignoring the paradox), we

may alternatively remove the paradox by rejecting the present statistical interpreta-

tion of QSM/QIT without nevertheless rejecting the successes of its mathematical

formalism. The latter resolution is satisfactory both conceptually and mathemati-

cally, but requires that the physical meaning of the formalism be reinterpreted with

care and detail. Facing the situation sounds perhaps uncomfortable because there

seems to be no harmless way out, but if we adopt the Hatsopoulos-Gyftopoulos fun-

damental ansatz (of existence of a broader kinematics) the change will be at first

mainly conceptual, so that practitioners who happily get results everyday out of

QSM would basically maintain the status quo, because we would maintain the same

mathematics both for the time-independent state operators that give us the canon-

ical and grand-canonical description of thermodynamics equilibrium states, and for

the time-dependent evolution of the idempotent density operators (ρ2 = ρ), i.e.,

the states of ordinary QM, which keep evolving unitarily. On the other hand, if the

ansatz is right, new physics is likely to emerge, for it would imply that beyond the

states of ordinary QM, there are states (“true” states, obtained from preparations

that are “homogeneous” in the sense of von Neumann2) that even for an isolated and

uncorrelated single degree of freedom “have physical entropy” (−kBTrρ ln ρ) and re-

quire a non-idempotent state operator (ρ2 6= ρ) for their description, and therefore

exhibit even at the microscopic level the limitations imposed by the second law,

In addition, if we adopt as a further ansatz that the time evolution of these

non-ordinary-QM states (the non-idempotent ones) obeys the nonlinear equation

of motion developed by the present author,13,15,18–20 then in most cases they do

not evolve unitarily but follow a path that results from the competition of the

Hamiltonian unitary propagator and a new internal-redistribution propagator that

“pulls” the state operator ρ in the direction of steepest entropy ascent (maximal

entropy generation) until it reaches a (partially) canonical form (or grand canonical,

depending on the system). Full details can be found in Ref. 17.

The proposed resolution definitely goes beyond QM, and turns out to be in line

with Schrödinger’s prescient conclusion of his 1936 article1 when he writes: “My

point is, that in a domain which the present theory does not cover, there is room
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for new assumptions without necessarily contradicting the theory in that region

where it is backed by experiment.”
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