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Abstract 
In introductory courses and textbooks on elementary thermodynamics, entropy is often presented 
as a property defined only for equilibrium states, and its axiomatic definition is almost invariably 
given in terms of a heat to temperature ratio, the traditional Clausius definition. Teaching 
thermodynamics to undergraduate and graduate students from all over the globe, we have sensed 
a need for more clarity, unambiguity, generality and logical consistency in the exposition of 
thermodynamics, including the general definition of entropy, than provided by traditional 
approaches. Continuing the effort pioneered by Keenan and Hatsopoulos in 1965, we proposed in 
1991 a novel axiomatic approach which eliminates the ambiguities, logical circularities and 
inconsistencies of the traditional approach still adopted in many new books. One of the new and 
important aspects of our exposition is the simple, non-mathematical axiomatic definition of 
entropy which naturally extends the traditional Clausius definition to all states, including non-
equilibrium states (for which temperature is not defined). And it does so, without any recourse to 
statistical mechanical reasoning. We have successfully presented the foundations of 
thermodynamics in undergraduate and graduate courses for the past thirty years. Our approach, 
including the definition of entropy for non-equilibrium states, is developed with full proofs in the 
treatise E.P. Gyftopoulos and G.P. Beretta, Thermodynamics. Foundations and Applications, 
Dover edition, 2005 (first edition, Macmillan, 1991) [1]. The slight variation we present here 
illustrates and emphasizes the essential elements and the minimal logical sequence to get as 
quickly as possible to our general axiomatic definition of entropy valid for non-equilibrium states 
no matter how “far” from thermodynamic equilibrium.    

Keywords: second law of thermodynamics, nonequilibrium entropy, definition of entropy, 
axiomatic foundations of thermodynamics. 
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1.  Introduction 
 

The purpose of this paper is twofold. First, we 
comment on the motivation by which the “Keenan 
school of thermodynamics at MIT” (Keenan, 
Hatsopoulos, Gyftopoulos, Beretta, Zanchini, von 
Spakovski) has developed a logical sequence of 
exposition of the axiomatic foundations of 
thermodynamics in which entropy is defined 
before heat, and not viceversa as in traditional and 
most other presentations. Second, we outline and 
emphasize the important essential hypotheses and 
the sequence of logical steps of our 
unconventional order of exposition, which was 
developed as a means to remove the well-known 
logical loop which is unavoidable in the traditional 
definition of entropy based on a heat to 
temperature ratio, due to the fact that heat and 
temperature are almost invariably ill defined by 
means of some heuristic arguments by which heat 
is introduced in terms of mechanical illustrations 
aimed at “demonstrating” the difference between 
heat and work.  

For example, in his lectures on physics that 
have influenced many generations of physicists, 
Feynman [2] describes heat as one of several 
different forms of energy, related to the “jiggling” 
motion of particles stuck together and tagging 
along with each other (pp.1-3 and 4-2), a “form of 
energy” which really is just kinetic energy—
internal motion (p.4-6), and is measured by 
random motions of the atoms (p.10-8). Tisza [3] 
argues that such slogans as “heat is motion”, in 
spite of their fuzzy meaning, convey intuitive 
images of pedagogical and heuristic value. 

There are at least three problems with these 
illustrations. First, work and heat are not stored in 
a system. Each is a mode of transfer of energy 
from one system to another. Second, concepts of 
mechanics are used to justify and make plausible a 
notion---that of heat---which is beyond the realm 
of mechanics; although at first the student might 
find the idea of heat harmless, and even natural, 
the situation changes drastically when the notion 
of heat is used to define entropy, and the logical 
loop is completed when entropy is shown to imply 
a host of results about energy availability that 
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contrast with mechanics. Third, and perhaps more 
important, heat is a mode of energy (and entropy) 
transfer between systems that are very close to 
thermodynamic equilibrium and, therefore, any 
definition of entropy based on heat is bound to be 
valid only at thermodynamic equilibrium. 

The first problem is addressed in some 
expositions. Landau and Lifshitz [4] define heat as 
the part of an energy change on a body that is not 
due to work done on it. Guggenheim [5] defines 
heat as an exchange of energy that differs from 
work and is determined by a temperature 
difference. Keenan [6] defines heat as the energy 
transferred from one system to a second system at 
lower temperature, by virtue of a temperature 
difference, when the two are brought into 
communication. Similar definitions are adopted in 
widely adopted notable textbooks, such as Van 
Wylen and Sonntag [7], Wark [8], Huang [9], 
Modell and Reid [10], Moran and Shapiro [11], 
and Bejan [12]. 

None of these definitions, however, addresses 
the basic problem. The existence of exchanges of 
energy that differ from work is not granted by 
mechanics, not even (in our view) after the recent 
vaste physics literature on quantum theories of 
open systems [13] which has addressed, directly or 
indirectly, this issue. Indeed, such existence is one 
of the striking results of thermodynamics, that is, 
of the existence of entropy as a property of matter. 
Hatsopoulos and Keenan [14] have pointed out 
explicitly that without the second law heat and 
work would be indistinguishable and, therefore, a 
satisfactory definition of heat is unlikely without a 
prior statement of the second law. 

In our experience, whenever heat is introduced 
before the first law, and then used in the statement 
of the second law and in the definition of entropy, 
the student cannot avoid but sense ambiguity and 
lack of logical consistency. This results in the 
wrong but unfortunately widespread conviction 
that thermodynamics is a confusing, ambiguous, 
hand-waving, phenomenological subject. 

Teaching thermodynamics at MIT to 
generations of mechanical engineering graduate 
students from all regions of the globe has 
evidenced the need for more clarity, unambiguity 
and logical consistency in the exposition of 
general thermodynamic principles than provided 
by traditional approaches. Continuing the effort 
pioneered at MIT by Keenan [6], Hatsopoulos and 
Keenan [14], and Hatsopoulos and Gyftopoulos 
[15,16], Gyftopoulos and the present author [1] 
have composed an exposition which strives to 
develop the basic concepts unambiguously and 
with rigorous logical consistency, building upon 
the student’s sophomore background in 
introductory physics and mechanics. 

The basic concepts and principles are 
introduced in a novel sequence that eliminates the 
problem of incomplete or heuristic definitions, and 

that is valid for both macroscopic and microscopic 
well-defined systems, and for both equilibrium and 
nonequilibrium states. The laws of 
thermodynamics are presented as general 
consequences of the fundamental dynamical laws 
of physics that hold for all well-defined systems. 
In engineering presentations, like that in Ref. 1, 
they are presented as laws, rather than theorems of 
the fundamental dynamical laws, so as to develop 
a level of description that avoids the full 
mathematical technicalities required to express 
such dynamical laws. However, we do not restrict 
our attention only to the equilibrium domain. Our 
definition of entropy is more general than that of 
most textbook where, as Callen [17] stresses, the 
existence of the entropy is postulated only for 
equilibrium states and the postulate makes no 
reference whatsoever to nonequilibrium states. 

Heat plays no role in our statement of the first 
law, in the definition of energy, in our statement of 
the second law, in the definition of entropy, and in 
the concepts of energy and entropy exchanges 
between interacting systems. It is defined using 
these concepts and laws, after they have been 
independently and unambiguously introduced. 
Heat is the energy exchanged between systems 
that interact under very restrictive conditions that 
define what we call a heat interaction. 

In this paper, we summarize and illustrate  the 
general definition of equilibrium and non-
equilibrium entropy first given in Ref. 1. The main 
reason why we summarise it here and introduce a 
few minor simplifications and variations with 
respect to the exposition in Ref. 1, further 
developed in Ref. 19 and a follow-up forthcoming 
paper, is to identify and clarify the minimal set of 
definitions and assumptions which provides the 
most direct and essential sequence of logical steps 
strictly necessary to construct our important and 
general definition, and present it in an effective 
way [20].  

In view of the importance of non-equilibrium 
states for a wide range of applications of 
thermodynamics, we hope our efforts will help to 
remove statements to the effect that entropy is 
defined only for equilibrium states from future 
textbooks. 

 
2.  Outline of our sequence of exposition of 
the foundations of thermodynamics (up to 
the definition of entropy) 

 
Here we outline schematically the logical 

sequence of exposition that we adopt in our book 
[1], to which the reader is referred to for full 
details and proofs. In an undergraduate course 
focused on engineering applications, in class we 
skip most proofs (interested students can find them 
in the book) and in about six to eight 45-min 



 
lectures we develop the foundations of the subject 
according to the following sequence. 

 
2.1  Basic definitions, First Law, energy 
and energy balance 

 
We define the scope of thermodynamics as 

that of describing the properties of physical 
systems and how they evolve in time. We define 
what we mean by the term “system” (a ‘separable’ 
set of elementary constituents subject to internal 
forces, internal partitions, and external forces 
which may depend on parameters but not on 
coordinates of external objects; examples show 
that ‘non-separable’ objects do not qualify as well-
defined systems). We define what we mean by the 
terms “amounts of constituents” (result of a 
counting measurement procedure characterizing 
the system’s preparation at on one instant of time), 
“property” (repeatable measurement procedure 
characterizing the system’s preparation by yielding 
a numerical result that depends only on one instant 
of time) and “state” (list of values at one instant of 
time of all the amounts, n, of constituents, all the 
parameters, β, of the external forces, and all the 
conceivable properties of the system).  

We explain that a full description of how the 
state of the system evolves in time requires the 
consideration and solution of its general equation 
of motion. Instead of taking this approach, which 
is postponed to more advanced and theoretical 
treatments, we focus on the two most general 
theorems of the equation of motion, that are 
universal features of the dynamics of any (well-
defined) system. Such theorems are captured by 
the two general non-mathematical statements valid 
for all systems that we call the First Law and the 
Second Law. We call them “laws” or “principles” 
because in our exposition they are not proved from 
the analysis of the equation of motion, but are 
adopted and postulated as the dynamical features 
that cannot be violated by any evolution of any 
well-defined system. To move towards the 
statements of these two laws, we introduce the 
concepts of “process” (initial and final states of a 
system; description of the effects left in its 
environment, i.e., in principle the rest of the 
Universe), “spontaneous change of state”, 
“isolated system”, and “weight process” (the only 
external effect is the change in height of a weight). 
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We then state the First Law (every pair of 
states of any given system can be interconnected 
by means of a weight process) and prove that it 
entails the existence of a property, that we call 
“energy”, whose differences are defined by a 
measurement procedure by which we interconnect 
the given state and an arbitrary reference state 
(selected once and for all for the system) by means 
of a weight process and measure the change in 
potential energy of the weight (the potential 

energy of a simple weight is a concept assumed 
known from previous courses in Mechanics). We 
emphasize that the virtue of the First Law is to 
extend the concept of energy from the domain of 
mechanics to the broader domain of 
thermodynamics. We then show that energy is an 
“additive” property, it is “conserved” (remains 
constant in spontaneous changes of state, i.e. for 
isolated systems), and it can be “exchanged” 
between interacting systems; we denote by  
the net energy exchanged during the time interval 
t

←
12E

1-t2 (positive if received by the system). Hence, 
we introduce the energy balance equation  

. ←=− 1212 EEE
 

2.2  Second Law, and other basic 
definitions 
 

To introduce the Second Law, we then classify 
states in terms of their time dependence (steady, 
unsteady, equilibrium and non-equilibrium), 
further classifying equilibrium states in terms of 
their stability (unstable, metastable, and stable). A 
“stable equilibrium state” is one that cannot be 
altered without leaving net effects in the 
environment of the system (as shown in Ref.18, 
this is a non-mathematical expression of the 
technical definition of stability for a dynamical 
system according to Lyapunov).  

The Second Law is introduced as the answer 
to the question: “How many stable equilibrium 
states does a system admit?”, a question that 
clearly addresses a fundamental feature of the 
dynamics. The answer is the Hatsopoulos-Keenan 
statement of the Second Law (among all the states 
of a system that have a given set of values of the 
energy, the amounts of constituents, and the 
parameters of the external forces and the internal 
partitions, one and only one is a stable equilibrium 
state). We “promise” that by adopting this 
statement of the Second Law, in due course we 
will prove that every other traditional statement  
that the student might have seen in his previous 
career (Clausius, Kelvin-Planck, Carathèodory) 
follows as a theorem.  

To proceed we need to introduce three new 
concepts: the definitions of “mutual stable 
equilibrium,” of “thermal reservoir,” and of 
“reversible process.”  

Two systems, A and B, are in “mutual (stable) 
equilibrium” if the composite AB of the two 
systems is in a stable equilibrium state. 

A “thermal reservoir” or simply a “reservoir” 
is any system with a set of stable equilibrium 
states that differ in energy2 but are all in mutual 

 
2 At this stage of the development it suffices to 
introduce a thermal reservoir with fixed parameters β  
(such as for example the volume V) and fixed amounts 



 
stable equilibrium with a given system in a given 
fixed stable equilibrium state.3  

A “reversible process” is a process for which 
another process exists that takes the system back to 
its initial state while also all the external effects 
are undone. In particular, a “reversible weight 
process” is a weight process for which another 
weight process exists that takes the system back to 
its initial state while also the change in height of 
the weight, which is the only external effect of the 
weight process, is undone. 

A further part of our Second Law statement, is 
that any state of any system can be interconnected 
to some stable equilibrium state by means of a 
reversible weight process. 

We now have enough concepts to define three 
important properties characterizing each thermal 
reservoir R with respect to a reference thermal 
reservoir R0 (such as, to fix ideas, that obtained 
with water at the triple point3).  

To define them, we consider an arbitrary 
auxiliary system A, an arbitrary pair A1 and A2 of 
its states, and a reversible “standard” weight 
process for the composite system AR in which 
system A changes from state A1 to state A2 (by 
“standard” we mean that the initial and final states 
of the reservoir are stable equilibrium states [20]). 
In this process we are interested in the change in 
energy of the reservoir R,  that we denote4 by 

, and compare it with the change 

 that obtains when (for the same 

states A

revsW,
21

)( AARE∆

revsW,
210 )( AARE∆

1 and A2 of system A) we consider a 
reversible “standard” weight process for the 
composite system AR0.  

 
2.3  Definition of temperature of a thermal 
reservoir 

 
When states A1 and A2 are chosen so that they 

(a) have the same values of all parameters β, (b) 
have the same values of all amounts n of 
constituents, and (c) cannot be interconnected by 
means of a reversible weight process for system A, 
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of constituents n, so that, by the statement of the Second 
Law, its stable equilibrium states differ only by the 
value of the energy. Later on, this notion is generalized 
to reservoirs with variable parameters and/or variable 
amounts of constituents. 
3 Any pure substance in a ‘triple point’ set of states is an 
example of reservoir. Water at the triple point is 
relatively easily reproducible in every laboratory and is 
therefore taken as a ‘reference’ reservoir.  
4 For completeness, in this paper we adopt a more 
cumbersome notation than in Ref. 1. The purpose is to 
make explicit in each symbol all the many important 
hypotheses of the subsequent definitions. In class, we 
sometimes adopt a lighter notation. 

the ratio 
nAAR

nAAR EE
,

revsW,
,

revsW,
21021

)()(
ββ

∆∆  can 

be proved [1, par.7.4, p.108] to be positive and 
independent of (i) the specific choice of states A1 
and A2, (ii) the specific choice of system A, (iii) 
the initial (stable equilibrium) state of reservoir R, 
and (iv) the initial (stable equilibrium) state of 
reservoir R0; therefore, it depends only on the pair 
of reservoirs, R and R0, regardless of their states. 
Even if we do not present this proof in an 
introductory course, the fact that it is available in 
Ref. 1, in our experience gives the student 
sufficient confidence to trust that we are 
proceeding rigorously on logically consistent 
grounds. 

Based on this result, with respect to the 
reference reservoir R0, for the stable equilibrium 
states of a reservoir R we define the property 

0
,

revsW,
210

revsW,
21

)(

)(
R

nAAR

AAR
R T

E

E
T

β
∆

∆
=  

which we call5 “absolute temperature of the 
thermal reservoir” and has the same value for all 
the stable equilibrium states of R. By selecting 
water at the triple point as the reference reservoir 
R0 and choosing , defines the 

“Kelvin scale” for . 

K16.273
0

=RT

RT
At this stage of the development, in an 

introductory course, it suffices to consider systems 
and thermal reservoirs with fixed parameters β  
(such as for example the volume V) and fixed 
amounts of constituents n, leaving for a later stage 
the generalization to systems and reservoirs with 
variable parameters and/or variable amounts of 
constituents. Thus, in the interest of simplicity, we 
may jump to Section 2.6 and conveniently 
postpone the next two sections where, for 
completeness, we define two more properties of a 
thermal reservoir. 

 
2.4  Definition of total potentials of a 
thermal reservoir 
 

When states A1 and A2 are chosen so that they 
(a) have the same values of all parameters β, and 
(b) have the same values of all amounts n of 
constituents except for that of one constituent, ni, 
the difference  

',

revsW,
0

0
',

revsW,

21021

11

nAAiR

R

R
nAAiR

R

R n
E

Tn
E

T
ββ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∆
∆

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆
∆

can be proved to be independent of (i) the specific 
choice of states A1 and A2, (ii) the specific choice 
                                                           
5 Warning: this is not yet the definition of temperature 
for a system which is not a reservoir! 
 



 
of system A, (iii) the initial (stable equilibrium) 
state of reservoir R, and (iv) the initial (stable 
equilibrium) state of reservoir R0; therefore, it 
depends only on the pair of reservoirs, R and R0, 
regardless of their states. Based on this result, with 
respect to the reference reservoir R0, for the stable 
equilibrium states of a reservoir R we define the 
property 

+⎟⎟
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0
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R
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R

R
n
E

T
T

β

µ  

which we call6 “total potential of component i of 
the thermal reservoir”. It has the same value for all 
the stable equilibrium states of R. By selecting 
arbitrarily the value of 

0iRµ for a reference 

reservoir R0 consisting, for example, of each pure 
“elemental” substance i at its solid-liquid-vapor 
triple point, we obtain one possible7 absolute scale 
for .  Here, subscript  means that all 
amounts n except n

iRµ 'n

i are kept constant; superscript 
sW,rev still means that the composite system AR 
undergoes a “reversible standard weight process” 
for which it must be clear that since the only 
external effect is the change in height of a weight, 
there is no change in parameters of either A or R, 
nor change in the overall amounts of constituents 
of AR, although in the process, A and R exchange 
the amount  of 
constituent i. 

012 iRiR
RA

i
A
i

A
i nnnnn ∆−=∆−==− ←

 
2.5  Definition of pressure of a thermal 
reservoir 
 

When states A1 and A2 are chosen so that they 
(a) have the same values of all parameters β except 
for the volume, V, and (b) have the same values of 
all amounts n of constituents, the difference 

nAA

R

R
nAAR

R

R RV
E

TV
E

T
,'

revsW,
0

0,'

revsW,

21021

11

ββ
⎟
⎟
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⎞

⎜
⎜

⎝

⎛

∆

∆
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆
∆  

can be proved to be independent of (i) the specific 
choice of states A1 and A2, (ii) the specific choice 
of system A, (iii) the initial (stable equilibrium) 
state of reservoir R, and (iv) the initial (stable 
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6 This is not yet the definition of total or chemical 
potential for a system which is not a reservoir. 
7 Elemental species are defined e.g. in Ref. 1 at page 
545. Since any other species can be obtained from the 
elemental set via a chemical reaction of formation, the 
reference value µiR0 is conveniently selected equal to the 
molar Gibbs free energy of formation [1, p.547]. 

equilibrium) state of reservoir R0; therefore, it 
depends only on the pair of reservoirs, R and R0, 
regardless of their states. Based on this result, with 
respect to the reference reservoir R0, for the stable 
equilibrium states of a reservoir R we define the 
property 

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆
∆

−=

nAAR

R
R V

Ep
,'

revsW,

21 β

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛

∆
∆

++

nAAR

R
R

R

R
V
E

p
T
T

,'

revsW,
0

0
210

0

β

 

which we call8 “pressure of the thermal reservoir”. 
It has the same value for all the stable equilibrium 
states of R. Because later on in the treatment it is 
shown that it is equal to the force per unit area that 
the constituents exert on the walls of the reservoir, 
selecting water at the triple point as the reference 
reservoir R0 and choosing , 

yields the absolute pressure scale.  

kPa611.0
0

=Rp

Here, subscript 'β  means that all parameters 
β except the volume V are kept constant. 
Superscript sW,rev means again that the composite 
system AR undergoes a “reversible standard 
weight process” for which it is clear that since the 
only external effect is the change in height of a 
weight, here there is no change in the amounts of 
constituents nor in any parameters other than the 
volumes of A and R. Of course, the overall volume 
of AR does not change, while A and R ‘exchange’ 
the volume . 012 RR

RAAA VVVVV ∆−=∆−==− ←

 
2.6  Definition of entropy 

 
We have now built enough concepts to 

proceed to our definition of entropy valid for all 
states. However, depending on our teaching goals, 
we may choose to proceed along two different but 
equivalent paths.  

The first, which we propose in Ref. 1, gets to 
the definition of entropy through the definition of 
the intuitive and empirically important properties 
that we call “adiabatic availability” and “available 
energy with respect to a thermal reservoir”.  

The second, which we developed later and is 
outlined for example in Ref. 19, goes directly to 
the definition of entropy. It is a more direct and 
essential path, but being more abstract it is sligthly 
less intuitive.  

Below, we present both paths: the first in 
Section 2.7a, the second in Section 2.7. 

 
2.7a Path 1:  “Availability first” 
 
                                                           
8 This is not yet the definition of pressure for a 
system which is not a reservoir. 



 
We address the fundamental question: “How 

much energy can we extract from a system A by 
means of a weight process?”. The answer is in the 
theorem of existence of a property, that we call 
“adiabatic availability”, defined by the raise in 
potential energy of the weight in a measurement 
procedure by which we interconnect the given 
state A1 with the only stable equilibrium state, AS1, 
that can be reached by means of a reversible 
weight process (at fixed amounts of constituents 
and fixed parameters). That this defines a property 
for any state A1 of system A, including non-
equilibrium states, is a consequence of the first law 
and the second law together; we usually do not 
present in class the full proof, but just mention that 
it is given in Ref. 1. We denote the value of the 
adiabatic availability of state A1 by .  1Ψ

We show that energy and adiabatic availability 
can be used to ascertain whether a given weight 
process for system A, say from state A1 to state A2, 
is reversible, irreversible or impossible: we must 
evaluate  and  for state A1E 1Ψ 1,  and 2E 2Ψ  for 
state A2, and then verify whether the difference 

 is zero, positive or 
negative, respectively. From this result we see that 
the difference 

)()( 1122 Ψ−−Ψ− EE

Ψ−E  (“adiabatic unavailability”) 
has some of the important features of entropy (it 
satisfies a principle of non-decrease in any weight 
process), but it has the drawback of not being 
additive. This observation motivates the 
subsequent effort to construct the definition of a 
new property (entropy) monotonically related to 

Ψ−E , but additive. 
We now address again the previous question 

but for a more specific situation of very practical 
interest: “How much energy can we extract from a 
system C by means of a weight process when 
system C is composed of a system A and a thermal 
reservoir R?”. By the results just derived, the 
answer is of course that the largest amount that can 
be extracted is the adiabatic availability of system 
C, and is therefore a property of the combination 
system-reservoir. This property is empirically very 
important because the “natural environment,” in 
which we live and develop our machineries and 
energy conversion systems, is very well 
approximated by a thermal reservoir. 
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Because of the special defining features of a 
reservoir, the adiabatic availability of a composite 
AR turns out to be independent of the initial state 
of the reservoir, therefore, for a fixed R, it depends 
only on the state of system A, i.e., it is a property 
of system A only. Thus, when viewed as a 
property of system A with respect to a given 
reservoir R. If system A has fixed values of n and 
β we call this property “available energy with 
respect to reservoir R” and for state A1 we denote 
it by the symbol  (which of course is equal to 

the adiabatic availability  of AR in state 

A

R
1Ω

AR
11Ψ

1R1).  In a broad sense this property is an 
“availability” or “exergy” function.9

More generally, if system A has variable 
values of n and β we call this property 
“generalized available energy with respect to 
reservoir R” and here we adopt the symbol . R

1Ξ
The important advantage of this new property 

is that it is additive, and it preserves some of the 
key features of adiabatica availability. In 
particular, we show that it too can be used to 
ascertain whether a given weight process for 
system A, say from state A1 to state A2, is 
reversible, irreversible or impossible: we must 
evaluate  and  for state A1E R

1Ω 1,  and  for 
state A

2E R
2Ω

2, and then verify whether the difference 
 is zero, positive or 

negative, respectively. From this result we see that 
the difference  (“unavailable energy” with 

respect to reservoir R) has some of the important 
features of entropy (it satisfies a principle of non-
decrease in any weight process), and it is additive, 
but it has the drawback of depending on the 
reservoir R. This observation motivates the 
subsequent and final step to preserves the two 
features but construct a property of system A only. 

)()( 1122
RR EE Ω−−Ω−

RE Ω−

Therefore, we finally define the property 
“entropy” whose difference for two states of a 
system A with fixed values of n and β is given by 

R

RR

T
EESS )()( 1122

12
Ω−−Ω−

=−  

Indeed, by a simple energy balance we show that 
in general 

)()()( 2211
,
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RR
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and, using our important result in Section 2.3, we 
show that 

0

21021 ,
revsW,

,
revsW,

12

)()(

RT

E

T

E
SS nAAR

R

nAAR
ββ

∆
−=

∆
−=−

and hence it is independent of R. This proves that 
the reservoir R plays only an auxiliary role in our 
definition of entropy differences. Because no 
restriction has been necessary on either the system 
A or its states, this definition holds valid for all 
systems and all states.10

                                                           
9 More generally, if system A has variable 

values of n and V, and fixed all other β’s we call 
this property “generalized available energy with 
respect to reservoir R” and here we adopt the 
symbol . R

1Ξ
10 More generally, for a system A with variable values 
of n and V, and fixed all other β’s, entropy differences 
are defined by 



 
We finally prove that entropy differences are 

additive, and that entropy satisfies a theorem of 
non-decrease in weight processes, and can be 
exchanged between interacting systems. We 
denote by  the net energy exchanged during 
the time interval t

←
12S

1-t2 (positive if received by the 
system). Hence, we introduce the entropy balance 
inequality  or, equivalently and 
more conveniently, the entropy balance  equation 

, where of course  
represents the entropy generated in the system if 
the process is irreversible. 

←≥− 1212 SSS

gen1212 SSSS +=− ← 0gen ≥S

We then prove the “maximum entropy 
theorem” (or “principle”) which states that every 
state which is not stable equilibrium has entropy 
strictly lower than the entropy of the stable 
equilibrium state with the same values of E, n and 
β . We also prove the “state principle” and the 
existence of the “fundamental relation for the 
stable equilibrium states”, )',,,( βnVESS =  and 
its inverse )',,,( βnVSEE = . From these 
theorems we drive the necessary conditions for 
mutual stable equilibrium between systems, which 
motivate and prompt us to give the general 
definitions of “temperature”, “pressure”, “total 
potentials” for stable equilibrium states of any 
system (not just a reservoir) in terms of the partial 
derivatives of the fundamental relation in energy 
form, respectively, SnSET ∂∂= /),,( β , 

VnVSEp ∂−∂= /)',,,( β , ii nnSE ∂∂= /),,( βµ . 
 
2.7b Path 2: “Entropy first” 
 

We define immediately the measurement 
procedure that defines the new property entropy. 
To measure the entropy difference between any 
two given states A1 and A2 of a system A, we 
select arbitrarily an auxiliary reservoir R and 
consider a reversible “standard” weight process for 
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Also here, by an energy balance we note that  

)()()( 2211
'
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21
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β

12 SS −

 

and to prove that the difference  is independent 
of the choice of the reservoir R it suffices to use the 
results of Sections 2.4 and 2.5, and split the change 
between states A1 and A2 into a sequence of steps 
whereby the volume and each amount constituents 
change one at a time. 

the composite system AR. For the change in 
energy of the reservoir R in this process we have 
introduced the notation . revsW,

21
)( AARE∆

If  states A1 and A2 have the same values of n 
and β  we define 

R

nAAR

T

E
SS ,

revsW,

12
21

)(
β

∆
−=−  

and, as shown in Section 2.7a, we use the result of 
Section 2.3 to show that the ratio on the r.h.s. is 
invariant upon change of reservoir R with any 
other reservoir.11 Figure 1 summarizes this 
approach in a single sketchy viewgraph. 

We next state that entropy differences are 
additive, that entropy satisfies a theorem of non-
decrease in weight processes, and that it can be 
exchanged between interacting systems. Thus, as 
at the end of Section 2.7a we introduce: the 
“entropy balance equation”, the “maximum 
entropy theorem”, the “fundamental relation for 
the stable equilibrium states”, the necessary 
conditions for mutual stable equilibrium between 
systems, and the general definitions of 
“temperature”, “pressure”, and “total potentials” as 
the partial derivatives of the fundamental relation 
in energy form (defined for stable equilibriun 
states only. 

With this we can move on to the questions that 
define adiabatic availability and available energy 
with respect to a reservoir and derive their 
expressions in terms of energy and entropy, by 
means of energy and entropy balances. These 
derivations can be also done graphically with the 
help of our energy versus entropy graphs [1,Ch.14] 
which constitute a very effective teaching tool, that 
helps to fix and summarize all the basic results, 
and to reason in a logically consistent way.12

In particular, we derive the following practical  
relations. For the adiabatic availability of state A1

111 SEE −=Ψ  
where state AS1 is defined by the condition 

11 SSS = . For the available energy with respect to 

                                                           
11 If  states A1 and A2 have the different values of n 

and V, whereas all other β’s are fixed, we define 

R

AAi iRiRRRR

T

nVpE
SS '

revsW,

12
21

)(
β

µ∑ ∆−∆+∆
−=−

where of course  and 

 because by definition of weight 
process the volume and the amounts of the overall 
system AR must not change. 

AA
R VVV 21 −=∆

A
i

A
iiR nnn 21 −=∆

12 For example it helps very much in visualizing the 
resoning underlying the delicate definition of “heat 
interaction” [20]. 



 
reservoir R of state A1 of a system A with fixed n 
and β 

)( 111 RRR
R SSTEE −−−=Ω  

where ER and SR denote the energy and the entropy 
of system A in the state AR of mutual stable 
equilibrium with the reservoir, i.e., at temperature 
TR and the given fixed values of n and β. For the 
generalized available energy with respect to 
reservoir R of state A1 of a system A with variable 
n and V, and fixed all other β’s 

+−−−=Ξ )( 111 RRR
R SSTEE  

)()( 11 iRii iRRR nnVVp −−−+ ∑ µ  
where again ER, SR , VR, and niR denote the energy, 
the entropy, the volume and the amounts of 
constituents of system A in the state AR of mutual 
stable equilibrium with the reservoir, i.e., at 
temperature TR, pressure pR, total potentials µiR’s, 
and  the given fixed values of the other β’s.  

 
 

3  Conclusions 
 
We have outlined and illustrated the essential 

elements and the minimal logical sequence we 
developed to introduce in rigorous terms a general 
axiomatic definition of entropy valid for non-
equilibrium states no matter how “far” from 
thermodynamic equilibrium. 

It is important to note that up to the definition 
of entropy, our logical development does not make 
use of the “fundamental relation for the stable 
equilibrium states”, nor of the definitions of 
“temperature”, “pressure”, “total potentials” for 
such states, which are given later in terms of its 
partial derivatives.  

Moreover, it is only later in the development 
that we define “work interactions” as those in 
which no entropy is exchanged, and “heat 
interactions” as those in which energy and entropy 
are exchanged between two systems that initially 
are both in stable equilibrium states at nearly the 
same temperature. 

Still much later, by introducing what we call 
“the simple system model” we specialize the 
treatment to systems with a sufficiently high 
number of particles so that wall-rarefaction effects 
are negligible. For these systems, we show that the 
fundamental relation )',,,( βnVESS =  for the 
stable equilibrium states is homogeneous of first 
degree in E, V, n, and all other additive parameters 
[1,Ch.17], so that we gain the Euler relation and 
many well-known standard results. But we 
emphasize that the wealth of results we derive in 
Ref. 1 before introducing the simple system 
model, hold for all systems, including micro, nano 
and few-particle systems, that have today become 
within reach of experiments and practical 
applications. 

 
Nomenclature 

 
Symbols 
A without subscript denotes a system, with 

subscript denotes a state 
E energy 
S entropy 
V volume 
T temperature 
t time 
p pressure 
n amount of constituent 
n = {n1, n2, …, nr} amounts of all constituents 
β parameters of the Hamiltonian, e.g., of the 

external forces (geometry of container, 
volume, etc) 

Ψ adiabatic availability 
ΩR available energy with respect to a reservoir R 

with fixed amounts and parameters 
Ξ generalized available energy with respect to a 

reservoir R with fixed amounts and 
parameters  

µ total potential 
∆ difference between final and initial value 
 
Subscripts 
0 reference 
1 state 1; instant of time 1 
2 state 2; instant of time 2 
R belonging to reservoir R; referred to a system 

identifies the state R in which the system is in 
mutual equilibrium with reservoir R 

i belonging to constituent i 
n fixed values of all the constituents 
n’ fixed values of all other constituents 
β fixed values of all parameters 
β’ fixed values of all other parameters 
gen generated by irreversibility 
12 in a process occurred between times t1 and t2; 

or in a process in which the system changes 
between states 1 and 2 

 
Superscripts 
sW standard weight process 
rev reversible process 
← exchanged by the system via interaction 

(positive if into the system) 
→ exchanged by the system via interaction 

(positive if out of the system) 
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Figure 1.  Schematic ‘blackboard summary’ of the essential conceptual steps of the axiomatic definition of 
entropy introduced in Ref.1 (where full details and proofs can be found in Chapters 5 to 7). 
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