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FOREWORD AND SUMMARY

Thermodynamics is one of the few sciences involving fundamental concepts that are
controversial and have been so for well over one century. The basic issues are the range
of validity of the Second Law of Thermodynamics, the meaning of entropy, and the
origin of irreversibility. Over the years, several schools of thought emerged each of
which prevail among sizable groups of scientists and engineers, even today. Some of
these points of view are as follows:

1. The Second Law of Thermodynamics and the concept of entropy are approxima-
tions applicable to macroscopic systems that appear to be in equilibrium because
the observer lacks the ability to detect the actual microscopic state of the system.1

2. The Second Law of Thermodynamics and the concept of entropy apply rigorously
to all systems, whether those that appear to be in equilibrium or not, but only to the
system-observer combination.2 It follows that entropy is not an intrinsic property
of systems; rather it is a property of the system-observer combination.

3. The only quantal dispersions that are inherent to the state of any system are those
particular dispersions described by a “pure” wave function, i.e., an idempotent
density operator. Moreover, the universe as a whole is in a pure state.3 The Second
Law limitations we observe in some system, e.g. system A, are due to entanglement
of A with some other system B such that A plus B is in a pure state while each of
A and B, when viewed locally, are in mixed states.

4. Any system can assume states that possess inherent quantal dispersions including
those described by a “pure” wave function, i.e., those described by an idempotent
density operator, and those described by a non-idempotent density operator. As

1 The “classical” view.
2 The “information theory” view.
3 The “quantum information” view, discussed also in the papers by Bennett and Lloyd in this volume.
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a result, the Second Law of Thermodynamics and the concept of entropy apply
rigorously to all systems.4

In this paper, we discuss the many fundamental questions that in our view still
challenge many details of each of these points of view.

ENTROPY CHALLENGES IN THE 19th CENTURY

Entropy is a scientific concept introduced by R.J.E. Clausius in 1850 [1] to reconcile
the conclusions reached by N.L.S. Carnot in 1924 [2] concerning the motive power of
heat with those reached by J.P. Joule in 1848 [3] concerning the equivalence of heat and
work.

The motivation behind Carnot’s scientific effort was to find the basis of improving
Watt’s steam engine, invented 60 years earlier. Unlike steam engines in the past, Watt’s
engine was the first steam engine that did not consume water—it only received heat and
produced work. Thus, it was the first true “Heat Engine”. At that time the scientific
community thought that heat was a fluid called caloric and that Watt’s engine was
nothing but a turbine that takes that fluid from a high level (a boiler at high temperature),
produces useful work, and ejects it at a lower level (a condenser at lower temperature).

Carnot devised a reversible engine operating in a different cycle5 than Watt’s engine.
The ratio of the net work output to the heat input, called the efficiency of the cyclic
engine, is proportional to the difference between the temperatures of the heat source and
the heat sink. Carnot asserted that it is the largest such ratio that any engine operating
between these two temperatures can ever reach.6 This assertion is known as the Carnot
principle. It also implies that (Kelvin-Planck statement of the Second Law): a cyclic
engine that produces work (and no other effects) by exchanging heat with a single
reservoir is impossible. Such an engine is called a perpetual motion machine of the
second kind (PMM2).7

During the period from 1840 to 1848, James Prescott Joule showed experimentally
that heat and work could produce the same effect on bodies when used in a fixed
proportion. Thus, in a cyclic process, such as that of a cyclic engine, the net work
produced must be proportional to the net heat received. He concluded [3] that either
heat or work results in a change of something ‘stored’ in the bodies, which is conserved.

4 The “Hatsopoulos, Gyftopoulos, and Keenan” view.
5 In the Carnot cycle the engine’s working substance undergoes four successive changes: It receives heat
(from the heat source) while expanding at high temperature, delivers work during a reversible adiabatic
(no heat) expansion, rejects heat (to the heat sink) during a compression at low temperature, and finally
receives work during a reversible adiabatic compression.
6 It is noteworthy that the essential new element in Carnot’s reasoning, which grants the maximal ef-
ficiency for the given source and sink temperatures, is not just the particular cycle he devised for the
working substance, but the hypothesis of reversibility he conceived for his engine. Any other cyclic en-
gine operating reversibly would achieve the same efficiency, regardless of the cycle undergone by the
working substance.
7 This definition is analogous to that of a perpetual motion machine of the first kind (PMM1) which
instead would produce more work than the net energy it receives form sources and sinks.
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We now call that something energy.
In 1849 Lord Kelvin [4], a Scottish engineer, pointed out the conflict between the

caloric basis of Carnot’s argument in which heat (caloric) is conserved and the conclu-
sion reached by Joule in which the sum of work and heat is conserved. Moreover, Joule’s
theory poses no limits on how much of the heat can be transformed into work, whereas
Carnot’s theory does. One year later, in 1850, Clausius [1] reconciled Carnot’s principle
with Joule’s result by introducing the concept that bodies possess a property, which he
finally called entropy in 1865 [5], having the following characteristics: In the absence
of heat interactions with other bodies, it either remains constant if the body undergoes a
reversible process, or increases. During heat interactions, on the other hand, entropy is
transferred to or from a body in proportion to the heat transferred. It is this later charac-
teristic that limits the efficiency of any work-producing cyclical engine, as required by
Carnot’s principle, from which Clausius concluded that (Clausius statement of the Sec-
ond Law): without expenditure of work (or some equivalent external effect), a transfer
of energy from a body at any temperature to a body at higher temperature is impossible.

Joule’s finding directly relates the First Law of Thermodynamics (and the resulting
principle of energy conservation) to Newton’s laws of motion. On the other hand,
relating the Second Law to Newtonian Mechanics proved more difficult. Although
Statistical Mechanics relates the thermodynamic entropy to Mechanics, a major conflict
between the two sciences remains. It was pointed out by Maxwell and is illustrated very
clearly by what has come to be known as Maxwell’s demon [6].

This conflict results from the fact that although Mechanics allows under all circum-
stances the extraction of any fraction of the energy of any physical system confined
within a given volume in the form of work, in some states the Second Law limits that
fraction, depending on the value of the entropy (a property ‘possessed’ by all systems in
any specified condition). Only if the entropy of a system has the lowest value possible at
the given energy, can one extract all its energy in the form of work. Under that condition,
the laws of Mechanics and Thermodynamics become identical.

Until the mid twentieth century, the scientific community believed that the Second
Law is an approximation relating only to macroscopic systems which observers perceive
to be in equilibrium, but which in reality are continuously going through a very large
number of microstates following Newton’s laws of motion. According to this view,
the properties of the macroscopic system we observe are only time averages. For them
entropy relates to the probability of finding the system over time in any one particular
microstate. It follows that entropy is only meaningful for a macroscopic system we
perceive to be in equilibrium not because it actually is in equilibrium but because we
lack the ability to see changes over time. As to the possibility of extracting the energy of
such a system in the form of work, we can do so only if we get the ability to observe the
molecular details of the system as Maxwell’s demon could. In The Dynamical Theory of
Gases, Sir James Jeans writes [7]: “Thus Maxwell’s sorting demon could do in a very
short time what would probably take a very long time to come about if left to the play of
chance. There would, however, be nothing contrary to natural laws in the one case any
more than in the other”. The implied bottom line is that a PMM2 is feasible although
beyond the technology at that time.
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ENTROPY CHALLENGES IN THE 20th CENTURY

By the end of the last century most scientists have been brought to believe that the
conflict between Thermodynamics and Mechanics was resolved by Szilard in his famous
paper of 1929 [8], and Brillouin who in 1956 [9] combined Szilard’s concept with the
information theory developed by Shannon in 1948 [10].

Szilard’s premise may be summarized as follows: We shall accept the proposition that
it is possible to construct mechanical devices that make use of any one fluctuation of a
system in stable equilibrium to produce work. Moreover, we shall accept the Second Law
in the form that no net positive work may be obtained on the average from a system in
stable equilibrium without producing any other net average effects on the environment.
From these assumptions, we conclude that any instrument (or demon) used to identify
any given fluctuation of a system in stable equilibrium will absorb a quantity of work
which is at least as much as the work that may be obtained from the fluctuation. More
recently, based on Landauer’s work [11], Bennett [12] pointed out that if Szilard’s engine
consists of a box with a single particle of gas, the demon puts the piston in, measures
where the particle is and gains 1 bit of information. He, then, uses it to decide how to
move the piston so that by expansion, he draws at most kBT ln2 of work, but the price is
that at least kBT ln2 of work must be spent to erase the 1 bit from his memory and get
back to its initial state.

In his Treatise on Thermodynamics (1927) M. Planck states the Second Law of
Thermodynamics as follows [13]: “It is impossible to construct an engine which will
work in a complete cycle, and produce no effect except the raising of a weight and the
cooling of a heat reservoir.” If we assume that what he means by “heat reservoir” is a
system in stable equilibrium sufficiently large (or passing through two- or three-phase
states) so that changes in its energy do not affect its temperature and moreover that such
systems do exist, then the following statement is a corollary of the Second Law:8

There exist states for any system such that the largest amount of energy that can be
extracted from it in the form of work without any other changes in the environment is
less than 100% of the system’s energy (above the ground energy for the given values of
amounts of constituents and parameters). Such a fraction of the system’s energy is an
intrinsic property of the given state of the system.9

For a system in combination with a thermal reservoir, this property is called “avail-
ability”.10 The difference between the energy E of a system and its availability ΩR,
times a constant CR solely related to the reservoir R with respect to which availability is
measured, defines another intrinsic property called “entropy” which can be proved to be
independent of the reservoir used for its definition,11 and valid also for nonequilibrium

8 A full account of this point is cited in Refs. [14] and [15].
9 In Refs. [16, p.130] and [15] this property is called “adiabatic availability”, and is denoted by the symbol
Ψ.
10 More precisely, in Ref. [16, p.132] this property is called “available energy with respect to a reservoir”,
denoted by the symbol Ω. In Ref. [15] it is denoted by ΩR to expose its dependence on the reservoir.
11 A detailed proof of this independence is given in Ref. [15, par.7.4, p.108].
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states.12

On the other hand, the Szilard proposition that the Second Law relates to the ignorance
that an observer has about the actual intrinsic state of a system, and therefore that entropy
is not an intrinsic property of the system can be proven wrong by means of the following
experiment:

Alice places a dozen identical batteries in a large room at some constant tempera-
ture. She charges some and totally discharges the others. The charged ones have finite
availability and those discharged zero availability. Then Bob enters the room. He knows
nothing about which batteries are charged. Bob can easily identify the charged ones
and determine their availability by slowly discharging each of them and measuring the
heat transferred to the room during the discharge operation. From these two parameters
and the room temperature the observer can calculate the change of entropy during the
discharging process. By repeating the experiment several times and getting the same
answer, a result that any engineer will predict, Bob, with no need of receiving any in-
formation from Alice, will have separated the charged from the discharged batteries.
Availability, and hence entropy, is an intrinsic objective property of the batteries.

In fact, there are numerous examples that illustrate that the subjective informational
interpretation of the Second Law makes no physical sense. For example, consider a
box separated into two halves by a partition. One half contains a gas in equilibrium
at some temperature, the other is a vacuum.13 The entropy of the box can be easily
calculated. If we lift the partition and wait long enough until equilibrium is reached,
the energy of the gas will be the same as before but its entropy will be much larger
since there are more microstates available to it. Now let us ask what the entropy of the
system is at in-between times. Some will answer that since at those times the system
is not in equilibrium, entropy is indefinable. On the other hand, it is common sense
to say that more work can be extracted from the system at those times, than when the
system reaches equilibrium, i.e., its availability at those times is greater. The change
of availability upon removal of the partition is an objective characteristic of the state
of the system and has nothing to do with the observer. Removing the partition makes
more microstates accessible and increases the availability instantly. The entropy instead
is not affected instantly.14 Only when the gas begins to diffuse into the newly available
volume, the entropy increases and the availability decreases, until the gas reaches a new
stable equilibrium, the entropy achieves the maximal value compatible with the new
volume (and the initial energy and amount of particles), and the availability achieves a
minimum (the adiabatic availability falls to zero). Innumerable other phenomena similar
to this example occur in Nature whether we observe them or not, whether we reproduce
them under controlled conditions in a lab or they happen spontaneously and unobserved.
They are part of the “objective” empirical world—the “physical reality” [18]—that our
physical theories set out to regularize. The observer plays no role, and there is nothing
subjective.

12 See Refs. [15], [16], [17], and the paper by Zanchini and Beretta in the present volume.
13 On trying to define entropy for non-equilibrium states, see the last part of the interview with Joseph
Keenan on May 13, 1977 published as his Autobiographical Notes in the present volume.
14 Of course, here we mean the nonequilibrium entropy, as we just defined it.12
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The advent of the wave theory of matter (Quantum Mechanics) and, specifically, the
introduction in 1927 of Heisenberg’s principle of indeterminacy [19] raised great hopes
that the paradox posed by Maxwell’s demon might be resolved and, moreover, that a
complete proof of the Second Law of Thermodynamics could be obtained based only on
quantum-mechanical principles. Slater [20] attempted the former and Watanabe [21] the
latter. Both attempts failed. Demers [22] proved that dispersions associated with “pure”
wave functions15 are insufficient to account for the implications of the Second Law.

The second law requirements, however, need not conflict with the foundations of
Quantum Mechanics. Unlike Newtonian Mechanics, Quantum Mechanics stipulates that
the state of a physical body at a given time can be described, at best, by a cloud of
probabilities to find its particles with specific positions and momenta. In other words,
quantum theory postulates that the state of any physical system incorporates irreducible
quantal dispersions that are inherent to it. As shown by Demers, the conflict observed
by Slater arises only if we assert that the only states that a system can assume are those
having quantal dispersions describable by an idempotent density operator, and therefore
a “pure” wave function.16 If, on the other hand we assert the possibility that systems
can assume states having quantal dispersions describable by a non-idempotent density
operator, the Second Law becomes consistent with Quantum Theory. Neither the Second
Law nor either of these two assertions could be proved right, and none has been proved
wrong.

It is conceivable that the Second Law is proved wrong. All it will take is a single
experiment that violates it. For example, if we find a way to continuously produce
work at the only expense of extracting energy from a single large environment in
stable equilibrium. The same conclusion applies to the First Law (and the principle
of conservation of energy that it entails). In both cases, however, the only reason we
surmise their validity is that they have never been violated despite continuous efforts17

resulting from the enormous societal and financial benefits that the world would derive
from their violation.

On the other hand, the assertion that all the states that any physical system can assume

15 Technically, we call a density operator “idempotent” or “pure” if it can be written as ρ = |ψ+3ψ| where
|ψ+ is some unit vector in the Hilbert space H of the system, the quantum mechanical “pure state” vector.
Clearly, ρ2 = ρ . If we denote by Q the operator associated with measuring the positions of every particle in
the system and by Q|qqq+ = qqq|qqq+ its eigenvalue problem, the position-representation “pure” wave function
is ψQ(qqq) = 3ψ|qqq+ and the probability to find the particles with positions between qqq and qqq + dqqq is given
by ψQ(qqq)ψ∗

Q(qqq)dqqq. Similarly, if we denote by P the operator associated with measuring the momenta of
every particle in the system and by P|ppp+ = ppp|ppp+ its eigenvalue problem, the momentum-representation
“pure” wave function is ψP(ppp) = 3ψ|ppp+, and the probability to find the particles with momenta between
ppp and ppp + dppp is ψP(ppp)ψ∗

P(ppp)dppp. If instead ρ2 9= ρ , then we call the density operator “non-idempotent”
or “mixed”, and the corresponding position-representation and momentum-representation “mixed” wave
functions are respectively given by ψQ(qqq) = 3qqq|ρ|qqq+ and ψP(ppp) = 3ppp|ρ|ppp+.
16 More precisely, by an idempotent density operator, as defined above and further discussed in the next
sections.
17 For many years during Professor Keenan’s career he reviewed dozens of requests each year to find
the error in proposed inventions that violated the Second Law. Some of these requests came from the
US Patent Office. Such requests stopped when the Patent Office adopted the policy of rejecting all patent
applications for inventions clearly violating the Second Law.
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are describable by a pure wave function is pure speculation because it is impossible to
prove it wrong by means of any finite number of experiments. All we know is that the
states of systems for which we have experimentally identified quantum dispersions are
describable by a pure wave function. For these states the Second Law is irrelevant.

The Kelvin-Planck, the Clausius, and the Carathéodory statements of the Second Law,
can all be shown18 to be logical consequences of the following more general statement of
the Second Law proposed by Hatsopoulos and Keenan in 1965 [14] (see also [15, 16]):

Among all the states of a system19 that have a given value E of the energy and are
compatible with a given set of values nnn of the amounts of constituents and βββ of the
parameters of the external forces (i.e., parameters of the Hamiltonian), there exists one
and only one stable equilibrium state.20

This statement of the Second Law brings out very clearly the apparent conflict be-
tween Mechanics and Thermodynamics, a contrast that for over a century has been per-
ceived as paradoxical. In fact, within Mechanics, classical or quantum, the following
so-called minimum energy principle applies: Among all the states of a system that are
compatible with a given set of values nnn of the amounts of constituents and βββ of the pa-
rameters of the external forces (or the Hamiltonian), there exists one and only one stable
equilibrium state, that of minimal energy. Comparing the two assertions, if we insist that
the two theories of Nature contemplate the same set of states, than a paradox arises,
because, for given nnn and βββ , Mechanics asserts that there is only one stable equilibrium
state, whereas Thermodynamics that there is one for each of the infinite values energy
can take.

The paradox is removed if we admit that the “pure” states contemplated by Quantum
Mechanics are only a subset of those contemplated by Thermodynamics. This resolving
assumption was very controversial when Hatsopoulos and Gyftopoulos in Ref. [16] first
introduced it. However today—more as a byproduct of the more recent vast literature
on quantum entanglement and quantum information than as a result of thermodynamic
reasoning—an assumption to this effect has been included in the postulates of quantum

18 Explicit proofs of this assertion can be found in Ref. [15, p.64-65 (Kelvin-Planck), p.133-136 (Clau-
sius), and p.121 (Carathéodory)].
19 The usage of the term system implies the following restriction: we may call system any collection of
elementary constituents provided they are not subjected to forces that depend explicitly on coordinates of
constituents outside the collection. To emphasize this important restriction, without which for example it
would be impossible to define energy as an additive property, Ref. [16, p.18] defined precisely and adopted
the term separable system. Here and in Ref. [15] the term separable in this sense is not adopted, to avoid
confusion with the concept of separability related to absence of quantum entanglement, which became
widespread in more recent years. However, within Thermodynamics as well as Classical or Quantum
Mechanics, any well-defined model of a physical system is in terms of external forces and an Hamiltonian
that depends only on geometrical or other kind of parameters, and on degrees of freedom internal to the
system.
20 A stable equilibrium state is an equilibrium state that cannot be altered to a different state without
leaving net effects in the environment. It can always be restored if the state of the environment undergoes
a cycle [16], or, equivalently, it can be changed only by interactions that either leave net effects in
the environment of the system, or change the values of amounts of constituents and parameters to an
incompatible set of values [15].
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theory,21 and the discussion of its relations with Thermodynamics is flourishing.22

ENTROPY CHALLENGES FOR THE 21st CENTURY:
THE SECOND LAW AND QUANTUM STATES

The fundamental change that Quantum Theory introduced in Mechanics is the conclu-
sion that, however accurate the measuring instruments may be, there exists no state of
any physical system without at least one observable for which the outcome of a single
act of measurement cannot be predicted with certainty, and all that can be predicted
are the probabilities of occurrence of a spectrum of possible outcomes. Thus, we can
say that “the Uncertainty Principle is an intrinsic characteristic of matter”. Since this
assertion is contrary to Newtonian Mechanics, we conclude that the latter is an approxi-
mation (very good for macroscopic systems).

To determine empirically the probability distribution for one observable, we must
repeat the measurement procedure that defines that particular observable, on an ensemble
of identical replicas of the system, all identically prepared, and collect the statistics
of the outcomes. Von Neumann (1932) [26] recognized that the resulting probability
distribution, which is a feature of the preparation used to generate the ensemble, may
not be considered an intrinsic feature of each individual member of the ensemble, unless
the preparation, and hence the ensemble, is homogeneous.23 Indeed, only when there is
no conceivable decomposition of the ensemble into different subensembles, the statistics
of the ensemble cannot originate but from the individual state of each and every one of
its members.

To determine empirically the state of a system at one time, we must measure, on
a homogeneous ensemble of identically prepared identical replicas of the system, the
probability distributions for a complete set (quorum) of independent observables,24

sufficient to determine the probability distributions of all other conceivable observables.
Paul A.M. Dirac [28] established the modern formalism of Quantum Theory in 1930.

He unified the two major theories of atomic phenomena [29]: matrix mechanics, de-
veloped by Werner Heisenberg with help of Max Born and Pascual Jordan around late
1925-early 1926, and wave mechanics developed by Erwin Schrödinger in early 1926
based on ideas set forth by Louis de Broglie in 1923. Since then, however, the master-

21 Compare for example the postulates of quantum theory as stated, e.g., in the recent Ref. [23] with those
stated by Park and Margenau in 1968 [24].
22 See for example Ref. [25] and references therein (which unfortunately do not include [16]).
23 An ensemble is homogeneous if and only if no partitioning scheme can possibly subdivide it into
subensembles that would yield measurement statistics different from the original ensemble. An example
of a heterogeneous ensemble is one resulting from the random statistical composition of two different
preparations Π1 and Π2 (different meaning that they yield different statistics for at least one observable):
for example, we toss a coin and, depending on whether we get head or tail we prepare the system according
to Π1 or Π2, respectively.
24 The empirical determination of a quantum state has been recently called quantum tomography. In a
seminal series of papers, Park and Band (1970-1971) [27] devised elegant systematic rules to construct a
quorum of observables whose mean values are sufficient to fully determine the probability distributions
of all other observables and, hence, the state of the system.
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ing of the formalism, its conceptual implications about the nature of physical reality, its
experimental validation, and its applications has been continuously evolving. As put in
a recent paper [30]: ”It is astonishing that after over 60 years of study, the quantum for-
malism has only recently revealed us new possibilities due to entanglement processing
being a root of such new quantum phenomena as quantum cryptography with the Bell
theorem, quantum dense coding, quantum teleportation, quantum computation, etc. It
shows how important it is to recognize not only the structure of the formalism itself, but
also the potential possibilities encoded within. In spite of many wonderful experimental
and theoretical results on entanglement, there are still difficulties in understanding its
many faces.” It is conceivable that entanglement may also be the fundamental reason for
the existence of the irreducible quantal dispersions that in Ref. [16] were first shown to
be all that is needed to reconcile Mechanics and Thermodynamics, independently of the
question of irreversibility.

Initially von Neumann [26] introduced density operators to represent statistics of
measurement results obtained from heterogeneous ensembles, as a logical way to extend
the Statistical-Mechanics notion of distribution over a set of possible “microstates” to
the quantum domain [31]. If the measurement statistics from preparations Π1 and Π2
are represented by density operators ρ1 and ρ2, respectively, their random statistical
composition with weights w and 1−w is represented by density operator ρ = wρ1 +
(1−w)ρ2. Thus, density operators form a convex set whose extreme elements are the
pure states, the only ones that cannot be decomposed as a weighted sum of two different
density operators, and hence the only ones that may represent homogeneous ensembles.
For a two-level system, pure states map to a three-dimensional unit sphere (the Bloch
sphere), and mixed density operators to the enclosed unit ball. In general, pure states
map one-to-one with the unit norm vectors |ψ+ in the Hilbert space of the system,
the corresponding density operators being ρ = ρ2 = |ψ+3ψ| (i.e., the idempotent, one
dimensional projectors onto the linear span of the state vector |ψ+).

The essential new features of Quantum Theory versus Classical Mechanics can be
brought out with no loss of generality by focusing on physical observables that have a
binary spectrum, i.e., that upon measurement yield only two possible outcomes, such
as ‘one’ or ‘zero’ (or ‘yes’ or ‘no’). In fact, all other observables can be expressed
as combinations of binary observables. In Classical Mechanics, a binary observable is
represented by a unit valued function P defined over the system’s phase space Ω which
induces a disjoint partition Ω = ΩP

2
Ω1−P into a region ΩP where the measurement

outcome is always ‘one’ and the region Ω1−P where the outcome is always ‘zero’. Since
the ‘answers’ are either always ‘one’ or always ‘zero’, the intersection ΩP

?
Ω1−P is

empty by definition. In Quantum Theory, instead, a binary observable is represented by
a projection operator P onto some subspace HP of the system’s Hilbert space H =
HP

&
HI−P, so that for state vectors |ψ+ that belong to subspace HP (where P|ψ+ =

|ψ+) the measurement outcome is always ‘one’, for state vectors in the orthogonal
complement subspace HI−P (where P|ψ+ = 0 or equivalently (I − P)|ψ+ = |ψ+) the
outcome is always ‘zero’, but in addition there are state vectors that have nonzero
orthogonal components both in HP and HI−P (i.e., |ψ+ = P|ψ++ (I − P)|ψ+, with
0 < 3ψ|P|ψ+ < 1). For the latter state vectors, the outcome is not predictable, but the
probability of getting ‘one’ is well defined and given by p = 3ψ |P|ψ+ or, equivalently,
Tr(P|ψ+3ψ|). For a statistical mixture of two homogeneous ensembles, respectively
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represented by state vectors |ψ1+ and |ψ2+ (not necessarily orthogonal to each other),
the von Neumann recipe assigns the density operator ρ = w|ψ1+3ψ1|+(1−w)|ψ2+3ψ2|,
and the probability of getting ‘one’ is given by p = Tr(Pρ) = w p1 + (1−w) p2, as it
should be.

The von Neumann construction has been extremely successful because it
prompted the “translation” of the Gibbs-Boltzmann canonical distribution of
equilibrium Statistical Mechanics into the corresponding density operators
ρ = exp(−H/kBT )/Tr[exp(−H/kBT )] where H is the system’s Hamiltonian operator;
and the subsequent restriction of this to the symmetric and antisymmetric subspaces of
the Hilbert space of an assembly of indistinguishable particles succeeded in regularizing
Bose-Einstein and Fermi-Dirac statistics, respectively.

However, already in 1936 Schrödinger [32, 33] expressed his discomfort with von
Neumann’s conceptual construction, arising from the fact that the same mixed den-
sity operator can be resolved in different statistical mixtures of incompatible sets
of component pure states. This means that the same mixed density operator ρ rep-
resents an infinite number of statistical mixtures of different pairs of pure states,25

i.e., there are infinite pairs of different state vectors {|ψ1+, |ψ2+}, {|ψ3+, |ψ4+}, etc.
such that ρ = w12|ψ1+3ψ1|+(1−w12)|ψ2+3ψ2| = w34|ψ3+3ψ3|+(1−w34)|ψ4+3ψ4| =
. . . . This leads to the following paradox: according to the von Neumann construc-
tion, the first decomposition implies that the (heterogeneous) ensemble is {{w12,1−
w12},{|ψ1+3ψ1|, |ψ2+3ψ2|}} and therefore the individual state of the systems in the en-
semble can only be either |ψ1+ or |ψ2+, but the second decomposition implies the en-
semble {{w34,1−w34},{|ψ3+3ψ3|, |ψ4+3ψ4|}} and therefore that the individual state of
the systems in the ensemble can only be either |ψ3+ or |ψ4+, which clearly contradicts
the preceding conclusion. So, if the language of individual states is applied to these
ensembles, as Park put it in 1968 [34]: “Immediately a quantum monster is born: a sin-
gle system concurrently ‘in’ two states |ψ1+ and |ψ3+. . . . Thus the concept of individ-
ual quantum state is fraught with ambiguity and should therefore be avoided in serious
philosophic inquiries concerning the nature of quantum theory.”

As argued in Ref. [33], the fundamental assumption introduced by Hatsopoulos and
Gyftopoulos in Ref. [16] in order to remove the conflict between Mechanics and Ther-
modynamics (one stable equilibrium state versus many, for given nnn and βββ ), removes
also the Schrödinger-Park paradox about individual states. All it takes is to accept that
in general the density operators be associated with the homogeneous ensembles (or
preparations)—not the heterogeneous ones. Each density operator is raised to represent
a ‘true’ individual state, true in the same sense as the state vectors represent individual
states within standard von Neumann Quantum Mechanics.

This key assumption resolves the paradox and at the same time unifies Mechanics
and Thermodynamics into a single general uncontradictory theory. However, it is also a
source of foundational questions.

25 This property has a simple geometrical proof in the Bloch ball/sphere representation, for a two level
system. Through every point in the interior of the unit sphere (which represents a mixed density operator)
there pass an infinity of chords; each chord identifies a possible resolution of the density operator as a
mixture of the pure states represented by the end points of the chord.
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The assumption that there are preparations which produce homogeneous ensembles
of independent and separable systems whose measurement statistics require mixed den-
sity operators, was contradictory with the standard postulates [24] of Quantum Theory
at the time it was introduced, and it still is, if the condition of independence is main-
tained. It is true that Quantum Theory is currently formulated [23] by postulating that
homogeneous ensembles of separable systems are represented by pure as well as mixed
density operators. But the current general understanding is that mixed density operators
are required for homogeneous ensembles only when every system A in the ensemble
is entangled with some external system B. This means that the A-systems ensemble
can be purified, because there exists a correlated B-systems ensemble somewhere in
the Universe, such that the homogeneous ensemble of composite systems AB is rep-
resented by a pure density operator |ψAB+3ψAB|. Mathematically, such existence is a
granted by the Schmidt decomposition theorem together with the fact that for any local
binary observable PA ⊗ IB of system A, the outcome probability of the ‘one’ answer is
pA = 3ψAB|PA⊗IB|ψAB+= Tr(ρAPA) where ρA = TrB(|ψAB+3ψAB|), therefore the reduced
density operator ρA ‘contains’ all local probability distributions.26

The following question arises. There seem to be many ways to prepare an ensemble
described by a given mixed density operator ρA, many ways that appear physically very
different from one another:

1. system A is an entangled subsystem of a member system AB of a “homoge-
neous” ensemble described by the idempotent density operator |ψAB+3ψAB| with
TrB(|ψAB+3ψAB|) = ρA; system B may be anywhere, as A need not be interacting
with B; but they did interact in the past, when the quantum correlation (entangle-
ment) has been established;

2. system A is a member of a heterogeneous ensemble {{w12,1−w12},{|ψ1+3ψ1|,
|ψ2+3ψ2|}} with w12|ψ1+3ψ1| + (1 − w12)|ψ2+3ψ2| = ρA, 0 < w12 < 1, and
3ψ1|ψ2+= 0, i.e., a statistical mixture of homogeneous components represented by

26 For the overall system AB, the outcome ‘one’ of a binary observable PA ⊗PB implies that both local
measurements on A and B gave “one”, the (joint) probability being pAB = 3ψAB|PA ⊗PB|ψAB+. If A and B
are entangled, pAB differs from pA pB, and this happens whenever there is no pair of vectors |α+ in HA and
|β + in HB such that |ψAB+ = |α+⊗ |β +. The entanglement is maximal when pAB = pA = pB, i.e., when
every time A measures ‘one’ also B measures ‘one’. This striking, purely quantum effect has generated
much debate over the years, mainly because it defeats classical reasoning. Indeed, if we are sure that the
state of the pair AB is maximally entangled, then upon obtaining ‘one’ from A we are certain that also B
would yield ‘one’, even if A and B are far apart and do not communicate. What is striking is that, before the
measurement, it is impossible to predict what will be the outcomes, so according to our classical thinking
it appears that either

1. A and B instantly communicate with each other in order to agree on which of the two possible
answers to yield (thus violating the impossibility of instantaneous or faster-than-light-speed com-
munication), or else

2. there is some additional (hidden variable) local feature, additional to the state vector |ψAB+, that each
subsystem consults when subjected to a measurement, where it is written a priori which answer they
must give (thus violating the principle that Heisenberg indeterminacy is irreducible and intrinsic in
the nature of every quantum state).
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orthogonal state vectors;
3. system A is a member of a heterogeneous ensemble {{w34,1−w34},{|ψ3+3ψ3|,

|ψ4+3ψ4|}} with w34|ψ3+3ψ3| + (1 − w34)|ψ4+3ψ4| = ρA, 0 < w34 < 1, and
3ψ3|ψ4+ 9= 0, i.e., a statistical mixture of homogeneous components represented by
non-orthogonal state vectors;

4. system A is a member of a homogeneous ensemble of independent systems (i.e.,
not correlated with any other system in the Universe) which nevertheless requires
a mixed density operator ρA; this is one of the non-mechanical states the existence
of which was postulated to exist in Ref. [16] and is still controversial;

5. system A is a member of a heterogeneous ensemble {{w,1−w},{ρ1,ρ2}} where
0 < w < 1 with wρ1 +(1−w)ρ2 = ρA, where ρ1 and ρ2 are any pair or combination
of the above cases.

Are all these cases equivalent, in the sense that no (local) measurement on system A
can possibly distinguish between them? If we exclude case 4 from the list, the current
understanding is that the answer to this question is “yes”.

Case 4 appears conceptually very different from Case 1, so much that one is tempted
to reject it as unphysical. However, if there are no experimental ways to distinguish them,
then we must consider them physically equivalent. The difference is only philosophical.
If this is true, then saying that a system A is independent of any other system in the
Universe is tantamount to saying that somewhere in the Universe there is a system B,
entangled with A, so that AB is in a pure state. The mathematics say so, therefore it is
conceivable that such a system B is there, somewhere in the Universe; but we have a
simpler model of physical reality if we just assume (equivalently) the independence of
system A, as done in Ref. [16]. As a matter of fact, there and in Ref. [15], it is assumed
at the outset and explicitly that to be well-defined a state must be independent, much in
the same way as, to be well defined, a system must be separable. Obviously, in cases
when the system B, entangled with A, is not just hypothetical, but is part of the physical
reality our model sets out to represent; then, we can show that, in the environment of
A, there is an entangled B and so a better (or ‘correct’) model would include it, so as to
consider system AB as independent, as so on.

But have experiments been performed to prove that the measurement statistics we
produce by entanglement or by statistical mixing are indeed so entirely indistinguishable
to be considered equivalent?

When it comes to entropy and its physical role in determining the adiabatic availability
of a system, another challenging question arises. If the density operators represent
homogeneous ensembles, what should be used to represent the heterogeneous ones [31]?

As shown in Refs. [16, 35], the expression for the thermodynamic entropy of a system
in state ρ is S = −kBTr(ρ lnρ) = −kB ∑i pi ln(pi/di) where kB is Boltzmann’s constant,
the pi’s are the eigenvalues of ρ and the di’s their respective degeneracies. Of course,
S = 0 if the density operator ρ is idempotent.

Consider the random statistical composition of two different preparations Π1 and
Π2 each of which is homogeneous, i.e., it prepares every individual system in the
ensemble in the individual state ρ1 or ρ2, respectively, each obtained, say, to fix ideas,
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as in Case 1 above. The current notation27 for this statistically mixed ensemble is
{{w,1− w},{ρ1,ρ2}} where 0 < w < 1. Denote by S1 and S2 the entropies of the
component states, and by Ψ1 and Ψ2 their adiabatic availabilities. It would seem logical
that, since we are getting state ρ1 a fraction w of the times and ρ2 the remaining ones,
all properties should be weighted averages of the properties of the component states.
So, for the ensemble we would expect quite naturally that 3S+ = wS1 +(1−w)S2 and
3Ψ+= wΨ1 +(1−w)Ψ2. Following von Neumann’s quantum statistical recipe, instead,
we should assign to this mixed ensemble the density operator ρw = wρ1 +(1−w)ρ2,
with the consequence that the corresponding values of S and Ψ are not what we expect.
In fact, S(ρw) > 3S+ and Ψ(ρw) < 3Ψ+. It is as if the probability that the individual system
belongs to one or the other component ensemble, mixes with the intrinsic probabilities
of the individual systems, and does it so intimately and irrecoverably that the actual
adiabatic availability is less than the average availability of the individual systems.

In terms of the battery example cited above, the paradox becomes more obvious. Say,
ρ1 is the state of the charged battery and ρ2 that of the discharged, and suppose we
have a reliable procedure λ1 to extract the adiabatic availability Ψ1 from the charged
ones.28 For example, we could connect the battery to a resistor and measure the electric
current until it discharges. We do not know whether the next battery is charged or not,
but by connecting a resistor to a discharged one we get no work out, so Ψ2 = 0. Since
the fraction of charged batteries is w, the overall net work output per battery will be
wΨ1. Thus, we run into a paradox, because we have just seen that according to von
Neumann’s recipe, we should get less than wΨ1.

ENTROPY CHALLENGES FOR THE 21st CENTURY:
IRREVERSIBILITY AND FUNDAMENTAL DYNAMICS

Theories that attempt to develop a fundamental first principle understanding of the ori-
gins of irreversibility face the requirement of compatibility with a wealth of objec-
tive experimental evidence. Fick’s law of mass diffusion, Fourier’s law heat conduc-
tion, Navier’s law of momentum diffusion, Ohm’s law of charge diffusion describe ev-
idence that deeply entangles physics and engineering. In our view they describe bulk
irreversible phenomena not surface phenomena, whereby the entropy generation occurs
within each fluid or solid element by local spontaneous redistribution of mass, energy,
momentum and charge. At steady state, the interactions with its neighbors maintain each
fluid element in a state that otherwise would be nonequilibrium, by transferring out of

27 The recent introduction of this notation is an implicit acknowledgment that the von Neumann recipe
that would instead represent the heterogeneous ensemble by means of the mixed density operator ρ =
wρ1 + (1 − w)ρ2 is misleading and incompatible, as we are about to see, with the measurement of
observables that are nonlinear functionals of ρ , such as entropy and adiabatic availability.
28 In quantum language, the procedure consists of devising a temporary change of the (parameters of the)
Hamiltonian of the system for a precise time interval, and assume a unitary evolution generated by such
Hamiltonian. When such change and time interval are tailor designed on a particular state ρ of interest
(such as the charged battery, or some given non-equilibrium state) we can make the system end in any
other state with the same eigenvalues and degeneracies as the initial state ρ .
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it exactly the entropy that it continuously generates by its bulk spontaneous tendency
(attraction) toward a stable equilibrium internal distribution of mass, energy, momen-
tum and charge. Such kind of irreversible phenomena are widely verified in all fields of
science and engineering, where they are definitely perceived as real and objective, and
occurring regardless of the state of knowledge of the observer or whether the system is
being observed or not.

Yet, the most widely accepted physical explanations ultimately hinge on some “time
averaging” or “coarse graining” argument justified by the “time scale of observation”
being much longer than the correlation time between each particle and its surroundings.
For example, the Boltzmann equation yields good predictions for not-too-dense gases,
but all attempts to derive it from the reversible Hamilton-Liouville dynamics introduce
at some point a key assumption (or ad hoc approximation) which basically “builds in”
irreversibility. The assumption is that in the short time interval between one collision
and the next, each particle “forgets” the correlations produced by the previous collision.
Yet Hamilton-Liouville classical dynamics literally forbids such decoherence and spon-
taneous erasure of correlation (and so does the equivalent Schrödinger-Liouville-von
Neumann unitary quantum dynamics). Thus, we are left with the following variant of
the Loschmidt paradox: how come physical observations seem to agree with a model,
like the Boltzmann classical equation (or the quantum Markovian master equation we
discuss below), which “forces in” irreversibility by assuming a decoherence and era-
sure of correlation mechanism which clearly violates the fundamental dynamical law
unconditionally assumed at the outset of the derivation to explain all phenomena?

Before discussing the prevailing model of irreversibility, let us make a few preliminary
remarks about some little discussed important points and questions.
The Second Law does not demand irreversibility. It is compatible with reversible
dynamics, but not with unitary dynamics.

The Second Law is often associated with irreversibility and “the arrow of time”.
However, in Ref. [16, p.450] it has been noted that the statement and the validity of the
Second Law are independent of the existence of irreversibility, because the statement
of existence and uniqueness of stable equilibrium states does not demand the existence
of irreversible processes. In fact, all the results of Thermodynamics, including the fact
that in most states not all the energy of the system can be extracted in the form of work,
would maintain their importance and validity even in a scenario in which the Universe
evolves reversibly remaining either at zero or at constant entropy. In other words, the
Second Law holds valid and nontrivial irrespective of the Loschmidt paradox (1876).29

However, a little known entropy challenge emerges from the observation that if we
assume that non-idempotent density operators of an isolated system evolve according to
unitary Liouville-von Neumann quantum dynamics, dρ/dt = −i[H,ρ]/h̄, then the sta-
ble equilibrium states are many more than the (Hatsopoulos-Keenan statement of the)
Second Law asserts. In fact, not only the maximal-entropy canonical density operators,
but also all the other stationary density operators (such that ρH = H ρ) are stable equi-
librium [42]. This means that, since it contradicts it, unitary dynamics cannot possibly

29 The Loschmidt paradox is [36]: how come we observe irreversible phenomena everyday and yet the
fundamental laws of dynamics, that should explain all phenomena, are strictly reversible?
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coexist with the Second Law (it violates the uniqueness of stable equilibrium for each
given value of Tr(ρH)). Thus, considerations and derivations that assume the validity at
the fundamental level of both unitary dynamics and the Second law, rest on faulty logic
(contradictory premises). Adopting the assumption of unitary dynamics leaves for the
Second Law only the non-fundamental (phenomenological) role (approximation) which
it has according to the prevailing view. However, an alternative is possible, namely that
the Second Law is fundamental and the dynamics is not unitary in general (we return on
this in the last paragraph).

In a reversible Universe obeying unitary (Hamiltonian) dynamics, if a system is
isolated, or adiabatic,30 the (Liouville-von Neumann) equation of motion is dρ/dt =
−i[H,ρ]/h̄, which of course reduces to the Schrödinger equation d|ψ+/dt =−iH|ψ+/h̄
if ρ is idempotent, ρ = |ψ+3ψ|. As is well known, all the eigenvalues of ρ , their
degeneracies and, therefore, the entropy are time invariant.

If by means of a (local) unitary process we try to extract the adiabatic availability of
a system in a state ρ1, the best we can do is to devise a temporary time-dependence of
the Hamiltonian H to be turned on only for a given time interval so that when we turn it
off the system is in the state ρ2 which commutes with H and has eigenvalues arranged
in decreasing order when represented with respect to the H-eigenvectors ordered by
increasing energy eigenvalues.31 In general the energy extracted in this way is less than
or equal to the adiabatic availability. Except for very special ρ1’s, to get out the full
adiabatic availability requires a (locally) nonunitary process that changes the eigenvalues
of ρ at constant entropy, a task which according to standard Quantum Mechanics is
possible only in principle because we need to have control not only on our system but
also on all the systems with which ours is entangled.32

30 We say that the system is adiabatic when it is separable (in the sense previously defined19) and its
Hamiltonian operator may depend on some parameters βββ which describe the effects of external forces. If
the parameters are time-independent, then the system is isolated.
31 This important theorem, stated and proved in Ref. [16, pp.136-138], has been rediscovered as the main
result in a recent paper [37] where the name “ergotropy” is coined to describe the maximum amount of
energy that can be extracted in this way.
32 From the perspective discussed above by which “local entropy” is due to entanglement between the
local system A and some other system B, we may always—in principle—extract the full adiabatic avail-
ability as follows. Based on the Schmidt decomposition theorem, we consider the maximally entangled
“purifications” of the given local state ρ1 and of the unique canonical local (stable equilibrium) state ρS1
with the same entropy as ρ1. This means that ρ1 and ρS1 are the reduced density operators of the pure
states |ψ1+3ψ1| and |ψS1+3ψS1| of the overall entangled system AB. And since any pair of pure states can
be interconnected by a unitary process, a suitable time-dependent Hamiltonian can be found which, when
turned on for a suitable time interval and then turned off, can take one pure state to the other and hence
change the state of A from ρ1 to ρS1, thus reversibly extracting the adiabatic availability of system A.
Indeed, since initial and final pure states are maximally entangled, the “local entropy” of B remains equal
to that of A and hence constant. The local process for A is nonunitary. but of course the entropy of AB
remains zero. The challenges with this view are: (1) that of course we seldom have access and control of
the entangled system B which might involve many degrees of freedom and radiation that has traveled far
away; (2) that there are infinite combinations of systems B and pure states of AB that all reduce to the
same local states ρ1 and ρS1 of A; (3) that “local entropies” are not additive for correlated systems (in fact
the difference between sum of local entropies and entropy of the overall system is a measure of the degree
of correlation of the subsystems) and therefore making a “local entropy” balance becomes tricky, if not
impossible.
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Irreversibility does not demand the phase-space volume to increase.
This remark follows from a somewhat technical property of the quantum entropy

functional, s(ρ) =−kBTr(ρ lnρ), which in the so-called classical limit h̄ → 0 is usually
claimed to tend to the classical functional33 scl(w) =−kB

B dqd p
2π h̄ w(q, p) lnw(q, p) where

w is either the Blokhintzev, the Wigner or the Wehrl phase-space distribution that map
density operators to points in classical phase space (see [39]). In the limit as h̄ → 0 the
spectral expansion of the density operator ρ induces [39] a partition of the classical
phase space Ω into disjoint cells Ω j each belonging to a distinct eigenvalue p j of
ρ , and having a phase-space volume equal to the degeneracy d j of the corresponding
eigenvalue p j. In particular, the sum of the degeneracies of the nonzero eigenvalues is
the overall phase-space volume occupied by the system in the given state (the volume
of the support of w, i.e. where w(q, p) 9= 0). Therefore a Liouville-von Neumann unitary
evolution of ρ induces as h̄ → 0 a Liouville evolution of w which preserves both the
overall phase-space volume and the value of the entropy. When it comes to describing
irreversibility, the foregoing observations prompt an important and seldom recognized
clarification: conservation of phase-space volume is not tantamount to thermodynamic
reversibility. The entropy in the quantum description depends on both the p j’s and the
d j’s; in the classical description it depends on the shape of w, not just the volume of its
support. Therefore, to describe entropy changes, an evolution equation should capitalize
on either or both of two independent and rather different mechanisms: (1) phase-space-
volume-changing expansion, contraction or diffusion, and (2) constant-phase-space-
volume redistribution.34

Irreversibility does not demand dynamical map to be non-invertible.
This remark is about the common assertion that unitary evolution is “reversible” be-

cause it always “has an inverse”.35 The theory of dynamical semi-groups has been devel-
oped around the idea that non-invertibility—the feature that distinguishes a semi-group
from a group of dynamical evolutions [42]—is an indispensable feature of irreversibility;
the equation of motion can be solved only forward in time, not backwards; causality is
thus retained only in “weak form”: future states can be predicted from the present state,
but the past cannot be reconstructed from the present. To challenge this idea, we note
that the existence of thermodynamic irreversibility is not incompatible with causality in

33 In 1979 Wehrl noted that [38] “a rigorous proof of this is nowhere found in the literature”. The problem
of giving restrictive conditions that define a complete classical phase-space representation of quantum
kinematics for systems with both a classical and a quantum description appears to be still unresolved,
although heuristic arguments [39] do support the usual claim that s(ρ) → scl(w) in the classical limit
h̄ → 0.
34 For example, the nonunitary part of the evolution equation proposed in Refs. [31, 40, 41] continuously
redistributes the eigenvalues of ρ while preserving its null eigenspace, which in the classical limit h̄ → 0
means that it redistributes the shape of w(q, p) while preserving its support.
35 If ρ(0) and ρ(t) are the states at times 0 and t, they are related by the dynamical map ρ(t) = Λt(ρ(0)),
i.e., the solution of the equation of motion for the time interval from 0 to t with initial condition ρ(0). If the
inverse map exists, it points from the final state back to the initial state, ρ(0) = Λ−1

t (ρ(t)). In other words,
there is a one-to-one correspondence between initial and final state. Lack of inverse (non-invertibility)
means instead that for example many initial states lead to the same final state; therefore, given the final
state it is impossible to reconstruct which of the compatible initial states it came from.
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the strong sense: it does not necessarily forbid the possibility to reconstruct the past from
the present. In fact, Refs. [43, 44] show that it is possible to conceive a dynamical law—
fully compatible with all thermodynamics principles—that entails irreversibility and yet
generates a “strongly causal” group of dynamical evolutions, with inverse defined every-
where, unique trajectories through every state, fully defined both forward and backward
in time, thus allowing full reconstruction of the past from the present. It is an example
of an invertible dynamics which nevertheless is largely irreversible in that in forward
time and for an adiabatic system it entails and describes entropy generation along the
direction of steepest entropy ascent.
The prevailing view. Irreversibility from the Markovian approximation.

The prevailing model of irreversibility, starts from unitary dynamics but assumes that
no system is truly isolated, so that even an initial pure state becomes mixed due to
increasing system-environment entanglement.

The system-environment entanglement builds up due to interactions according to the
standard Liouville-von Neumann unitary dynamics of the overall system-environment
composite. By tracing out all envirommental degrees of freedom and making the so-
called Markovian approximation,36 the overall unitary dynamics gives rise to a system’s
reduced dynamics which is nonunitary, linear, completely positive and generated by
the celebrated Kossakowski-Sudarshan-Gorini-Lindblad (KSGL) quantum master equa-
tion.37 38 In this widely accepted model, the assumption of erasure of correlations is
the sole mechanism responsible for “entropy generation” [47], but it appears contradic-

36 In this phenomenological model [45] a system A is assumed to be weakly coupled with a reservoir
R, so that they can exchange energy via unitary evolution of the overall state ρAR. The reservoir R is
modeled as a collection of a large number of quantum systems (many degrees of freedom, e.g., the
modes of the electromagnetic field). Because of the weak coupling, the unitary dynamics of ρAR produces
both an energy exchange and a build up of correlations between the system and the reservoir. However,
justified only by some heuristic reasoning, a crucial additional assumption is injected in the derivation
(Markovian “approximation”): that correlations smear out rapidly enough so as to maintain A and R
effectively decorrelated not only initially, but at all times. When the reduced density operator of the system
is time averaged (coarse grained) over a sufficiently long time interval, which is nevertheless still much
shorter that the system’s time scale of interest, the average correlations becomes negligible, and the state
is assumed to effectively factor at all times. The model is phenomenological and basically charges the
reservoir’s complexity for the system’s (apparent) losing quickly its memory of past interactions.
37 As is well known, the KSGL quantum Markovian master equation has the form [46]

dρ
dt

=− i
h̄
[H,ρ]+

1
2 ∑

j

6
2V †

j ρVj −{V †
j Vj,ρ}

-
, (1)

where the Vj’s are some operators on H (each term within the summation, often written in the alternative
form [Vj,ρV †

j ]+ [Vjρ,V †
j ], is obviously traceless). It has been used for a number of successful models of

dissipative quantum dynamics of open subsystems.
38 Operators Vj in Eq. (1) are in general interpreted as creation and annihilation, or transition operators.
For example, by choosing [31], Vj = crs|r+3s|, where crs are complex scalars and |s+ eigenvectors of the
Hamiltonian operator H, and defining the transition probabilities wrs = crsc∗rs, equation (1) becomes

dρ
dt

=− i
h̄
[H, ρ]+∑

rs
wrs

/
|s+3ρ+3s|− 1

2
{|s+3s| ,ρ}

D
, (2)
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tory with the assumed underlying reversible unitary dynamics. The situation is parallel
to what is needed to “derive” the classical Boltzmann equation from the underlying re-
versible Hamilton-Liouville dynamics.

A problem with the Markovian assumption and the theory of completely positive
linear dynamical semigroups, is that the KSGL master equation preserves positivity of
ρ only in forward time, not backwards. We already noted that such “non-invertibility”
is not a necessary feature of thermodynamic irreversibility but is instead related to the
principle of causality. By seeking irreversibility through non-invertibility are we ready
to give up the principle of causality, a keystone of scientific thinking and philosophical
reasoning?

Moreover, it is (philosophically) hard to understand how diffusion of mass, momen-
tum, energy and charge, could find their justification in a “loss of information on the
time scale of the observer leading to rapid decoherence from the entanglement which
continuously builds up by weak coupling with environmental degrees of freedom”. Is
this the real reason for the “universal tendency in nature to the dissipation of mechanical
energy” already recognized by Kelvin in 1852 [48]?
An alternative view. Irreversibility built in the fundamental microscopic dynamical
laws.

A possible alternative is to assume a fundamental non-unitary extension of standard
Schrödinger unitary dynamics not contradicting the Second Law nor any of the success-
ful results of pure-state quantum mechanics, but entailing an objective entropy increase
for mixed states. We have shown in Refs. [31, 40, 44] that such an approach is possible
based on a steepest entropy ascent, i.e. maximal entropy generation, nonlinear and non-
unitary equation of motion which reduces to the Schrödinger equation for pure states.39

The challenge with this approach is to ascertain if the intrinsic irreversibility it implies
at the single particle (local, microscopic) level is experimentally verifiable, or else its
mathematics must only be considered yet another phenomenological tool, at the same
level as the quantum Markovian master equations which, as we have seen, are not free
of their own challenges.

or, equivalently, for the nm-th matrix element of ρ in the H representation,

dρnm

dt
=− i

h̄
ρnm(En −Em)+δnm ∑

r
wnrρrr −ρnm

1
2 ∑

r
(wrn +wrm) , (3)

which, for the n-th energy level occupation probability pn = ρnn, is the celebrated Pauli master equation

dpn

dt
= ∑

r
wnr pr − pn ∑

r
wrn . (4)

39 In a 1985 Nature editorial, John Maddox defined this approach “An adventurous scheme which may end
arguments about the arrow of time”. Here we do not discuss it further because it is detailed and discussed
elsewhere in this volume. See the articles by Bedeaux, Gyftopoulos, Beretta, Gheorghiu-Svirschevski, and
Von Spakovsky.
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CONCLUSION

Professor Keenan’s method in teaching and mentoring was by “asking questions”. In
this introductory paper, we hope to have honored his memory by reviewing and for-
mulating in our own language the many fundamental “questions” that arise when the
various facets of the Second Law of Thermodynamics, regarding Entropy, Reversibil-
ity and Irreversibility, are confronted with Classical and Quantum Mechanics. Of these
questions many are old and well known, but a few are less known if not new, and deserve
more attention. Some researchers will remain convinced that all these questions are al-
ready well resolved by the currently prevailing theories and interpretations. We instead
believe they still constitute a formidable “challenge”, that present and future generations
of scientists and engineers ought to “meet”.
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