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Abstract. First, we briefly address the questions: “Is entropy defined for non-equilibrium states?”
and “Is entropy an intrinsic property of matter?”. Then, we focus on: “Is irreversibility an intrinsic
feature of microscopic dynamics?” We answer this question by discussing the structure and main
features of the nonlinear evolution equation proposed by this author to capture precisely how the
essence of the Second Law of Thermodynamics could be embedded at the most fundamental level of
description, i.e., the quantum level. The nonlinear equation generates a dynamical group providing
a unique deterministic description of irreversible, conservative relaxation towards equilibrium from
any non-equilibrium state, following a locally constrained, steepest entropy ascent, maximal entropy
generation path. The Hatsopoulos-Keenan statement of the Second Law emerges as a general
theorem about the Lyapunov stability of the equilibrium states of the proposed evolution equation.
An appendix gives mathematical details and outlines other important theorems.

I consider the Hatsopoulos-Keenan statement of the Second Law (“HK2nd law” for
brevity) [1] a major breakthrough in the history of the foundations of thermodynamics,
a pioneering intuition about the role of stability at thermodynamic equilibrium, which
opened up entirely new vistas, and new answers to at least three of the key questions
we are asked to address in this symposium. Based on the HK2nd law, the school
of thermodynamics founded by professor Keenan at MIT, developed very intriguing
answers to these questions, between 1976 and 1991, somewhat in competition with the
Brussels school [2].

IS ENTROPY DEFINED FOR NON-EQUILIBRIUM STATES?

My answer to this question is a definite and strong “yes”. In fact, in Ref. [3] we have
developed a rigorous axiomatic exposition of the principles of thermodynamics — that
we have taught to engineering undergraduate and graduate students for over twenty years
— that resolves the long standing problem of logical loops and non-rigorous definitions
of the traditional heuristic expositions, and which includes a very precise, unambiguous
and general definition of entropy valid also for nonequilibrium states, no matter how far
from equilibrium. '

Many in this audience are still convinced, and too many textbooks and papers about
Thermodynamics still state that entropy, for non-equilibrium states, is either not defined
or it is not clear that it is defined. Yet, our definition has been available for over 15 years

I The essential steps of our definition are outlined in the paper by Zanchini and Beretta in this volume.
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[3] and it is based on simple axiomatic reasoning of the same kind used in most tradi-
tional presentations; a posteriori, it can actually be viewed as a straightforward gener-
alization of the line of thought underlying the definition given by Fermi for equilibrium
states [4]; in particular, it is entirely independent of any of the endless controversies and
interpretational issues that surround the concept of entropy in statistical mechanics, in-
formation theory, etc. I am aware of no other rigorous, precise and general definitions
that do not resort to any statistical mechanics modeling and reasoning.’

Nonequilibrium states play a key role in a variety of state-of-the-art mesoscopic and
microscopic applications. Because of this role, thermodynamics today cannot anymore
be considered “a dead subject” having to do with equilibrium only, like many used to
think about thirty years ago.? Instead, it is well alive and actually starring at the forefront
of many technological disciplines, as well as being still a challenge in probing our
understanding of the foundations of science and engineering.

So, when developing the next generation of thermodynamics textbooks, or teaching
and scientific articles, we ought to make an effort to convince ourselves, and then our
readers, that entropy is well defined also for nonequilibrium states, and we do need this
fact to understand a variety of phenomena and gain better control of irreversibility.

IS ENTROPY AN INTRINSIC PROPERTY OF MATTER?

By our engineering experience and intuition we would expect that the answer to this
question is “yes”, but this is not the currently prevailing physical (statistical mechanics)
explanation. However, Hatsopoulos and Gyftopoulos [8] have shown that, without con-
tradicting any of the known successful results of the prevailing physical theories, all that
is needed to incorporate the Second Law at the fundamental level is to extend quantum
mechanics, so that entropy emerges as an intrinsic property of matter [9]. One way to il-
lustrate how this is done, is by considering a single two-level quantum system, a “qubit”.
If the qubit is non-interacting and non-correlated with anything else in the universe, the
set of available quantum mechanical states maps one-to-one with the points on a unit
sphere, the Bloch sphere. The key ansatz of the Hatsopoulos-Gyftopoulos theory (“HG
ansatz, for brevity”) is that the set of available quantum states is broader, and maps one-
to-one with the unit ball, not just the unit sphere. In other words, all density operators,
not just the idempotent ones, are assumed to represent distinct true individual quantum
states of any uncorrelated (and separable [9]) microscopic system, where by microscopic
system we mean each individual member of a homogeneous ensemble (homogeneous in

2 The attempt in Refs. [5, 6] does keep statistical mechanics modeling and reasoning away from the
definition, but the restriction to equilibrium states is declared at the outset, and the requirement of
extensivity actually restricts it even further to the domain of validity of what in [3, Ch.17] we call the
simple system model, which is a good approximation only for macro- and mesoscopic systems.

3 Perhaps even fifteen, judging from a review of our book [3] published in Nature in 1992 [7] that
“hesitates” to give the book “a full-blooded recommendation” because our basic framework does not
comprehend “a phase space in which points represent equilibrium states and curves represent quasistatic
(that is, reversible) changes”. By the way, “quasistatic” changes—being processes whereby the system
evolves through sequences of stable equilibrium states—need not necessarily be reversible (this is easily
concluded from the straightforward understanding of nonequilibrium states that we develop in our book).
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the sense defined by von Neumann [9]). If this ansatz is valid, entropy is an intrinsic
property of matter.

Notice the conceptual difference from quantum statistical mechanics, where a non-
idempotent density operator indicates that the system is randomly picked out of a mixed
heterogeneous ensemble. At the time of Ref. [8], the ansatz was felt as unacceptable and
“adventurous” [10]. Today, in apparent contradiction with the HG ansatz, an emerging
consensus in the quantum foundations community [11] accepts the existence of non-
idempotent states for microscopic systems and single particles, but attributes it to the
existence of classical correlations or quantum entanglement between the system and
other systems in the universe, such as heat baths or anything else with which it has
previously interacted. The current belief is that if all such correlated systems could be
identified and included in the description, then the overall system would be in an idem-
potent (zero entropy) state.*

If however the correlated systems cannot be identified (because maybe they escaped
far away) and the dynamics of the overall (albeit unknown) system is unitary, then no
empirical method could possibly distinguish between the nonidempotency being intrin-
sic or due to correlations/entanglement. Therefore, the two possibilities—HG ansatz and
“untraceable correlations ansatz”—turn out to be empirically indistinguishable; hence,
they must be considered physically equivalent (in spite of the apparently profound con-
ceptual difference). In other words, we must conclude that the contradiction between the
two ansatzs is only apparent.

If instead, contrary to the prevailing view, the unitarity of the fundamental dynamics
of uncorrelated and unentangled systems should turn out not to be a universal law, then
there may exist ways to empirically test which of the two ansatzs is right.

This is one of the unresolved entropy challenges.

IS IRREVERSIBILITY AN INTRINSIC FEATURE OF
MICROSCOPIC DYNAMICS?

Again, the current prevailing view about this question is: no, if by intrinsic dynamics
you mean the fundamental law of causal evolution of any isolated, uncorrelated and
unentangled system, then the dynamics is unitary and hence reversible. If such a system
is a qubit, a two-level system, the states evolve linearly and unitarily in periodic motions

4 By this reasoning, the entire universe, which by definition includes everything—and hence nothing is
left out to be correlated with—can only be in a pure state, and hence have zero entropy. But then, if
cosmological estimates assign a nonzero entropy to the universe [12], we should infer that they either
overlook the contribution of some parts, or they just refer to the sum of ’local’ entropies, which in turn
is exactly equal to the "amount of correlation’ that has accumulated so far between parts of the universe,
due to their past interactions. Indeed, a measure of the ’amount of correlation’ between two subsystems A
and B of a composite AB in state p is given by the nonnegative-definite correlation functional (we defined
it in [13, Eq. 471), 64p(p) = Tr(pInp) — Tra(palnpa) — Trp(pplnpp) which takes also the equivalent
forms: 0xp(p) = [5(pa) + 5(P5) — 5(0))/ks = Trlp(Ppsolnp — Pp,s0lnps © Iy — Iy & Poyolnpp)] =
(S(pa) ® g +1n © S(ps) — S(p)) /ks, where s(p) = —kyTr(pInp), S(p) = —ksFp>olnp, and Pp~o is
the projection operator onto the range of p. If the composite system AB has zero entropy, s(p) = 0, it is
clear that 645(p) equals to the sum of the local entropies (divided by kg).
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on the unit sphere according to the Schrédinger equation.

The problem I undertook in my doctoral thesis [14] was to “design” an extension of
the Schrodinger equation to the interior of the unit ball, compatible with the HK2nd
law, via the HG ansatz. Indeed, my steepest-entropy-ascent (SEA) or locally-maximal-
entropy-generation (LMEG) dynamical law entails the HK2nd law as a theorem about
the dynamical (Lyapunov) stability of the equilibrium states® (math details in the Ap-
pendix).

The equation I proposed implements the competition of two orthogonal tendencies:
one is the usual Hamiltonian tendency to produce a unitary evolution of the density op-
erator; the other is a “dissipative” tendency to spontaneously redistribute probabilities
by which the system rearranges how its energy is distributed among the available eigen-
modes. This spontaneous energy-load sharing redistribution follows the path of SEA or
LMEG compatible with conservation of energy (and number of constituents) as well as
separability and no-signaling conditions for composite systems (see Appendix).

When my equation of motion is written for a qubit, the dissipative (but conservative)
redistribution tendency vanishes on the Bloch surface of the unit ball, where the entropy
is zero, and we recover Schrodinger’s unitary equation of motion of pure states. How-
ever, inside the unit ball, where density operators are non-idempotent and the entropy is
not zero my dynamical law is largely nonlinear and—in a context where mixed density
operators represent intrinsic entropy—it incorporates intrinsic irreversibility at the fun-
damental microscopic level [15]. This equation achieves what the Brussels school [2]
searched for years with no success.

For a d-level system, a “qudit”, if focus [16] for simplicity on the density operators
that commute with the Hamiltonian, only the nonlinear redistribution term is active,
and the eigenvalues of p represent the relative mean occupation of the system’s energy
levels, i.e., they measure the degree of involvement of each energy level in carring
the overall energy load. Then, the entropy, —kgTr(plnp), takes on a very clear and
concrete physical meaning: it measures the degree of sharing by which the active energy
eigenmodes contribute to carrying the system’s overall energy. The entropy is zero when
only one mode carries all the energy: no sharing. The maximal sharing obtains instead
when the load is canonically distributed among all the system’s eigenmodes. Physically,
the equation is designed to describe a local® and spontaneous’ tendency to rearrange
noncanonical energy-load distributions until they become either canonical (maximal
sharing among all the energy eigenmodes; a feature of stable equilibrium states only)
or partially canonical (maximal sharing among a subset of active energy eigenmodes,

5 There is one and only one stable equilibrium state for each possible set of values of: (i) the (mean)
energy Tr[H (V)p]; (ii) the parameters V of the Hamiltonian operator H(V'); and (iii) the (mean) amounts
of elementary constituents, Tr(N;p), where Nj, for i = 1,2,...,r, is the number-of-particles operator for
the i-th kind of particles in the system.

61 say local, because the terms in the equation responsible for driving the energy redistribution contain
only local projections [see Egs. (6)-(7)] of the overall system operators H, N;, p, and S = —kgPp~oInp.
71 say spontaneous because the dissipative terms in the equation of motion represent, in its original
context, an intrinsic tendency, internal to every degree of freedom and not due to interactions with heat
baths and the like, therefore active even if the system is isolated, except when p belongs to the very
restricted subset of non-dissipative states, which includes all idempotent states [see Eq. (4)].
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while the remaining ones do not participate at all; a feature of unstable and metastable
equilibrium).®

For every density operator, the equation generates a unique trajectory well-defined not
only forward in time, but also backwards in time [16]. In addition to the Second Law, it
entails other important theorems and geometrical features, including Onsager reciprocal
relations and fluctuation-dissipation relations [17], and time-energy and time-entropy
uncertainty relations [18].

Perhaps unexpected, another interesting result obtains from the structure of the equa-
tion of motion for a composite of two non-interacting subsystems: the local evolution
depends on the correlations that have built up in past interactions. This is in contrast
with the usual assumption of strictly Markovian local dynamics, whereby if Alice does
not interact with Bob then p4 must be a function of p4 only, as is the case under unitary
dynamics. Instead, under our nonunitary evolution, existing correlations between Alice
and Bob may influence their future, without this fact producing any paradox or violation
of the no-signaling condition (details in the Appendix)’.

CONCLUDING REMARK

In past and recent years, many authors in a variety of contexts [20], have observed
that irreversible natural phenomena at all levels of description seem to obey a principle
of general and unifying validity that has been named “maximum entropy production
principle”. This principle is in tune with our steepest-entropy-ascent dynamical ansatz,
in which, at least at the quantum level of description, it finds a fundamental justification
and a sound mathematical formulation. We originally conceived it to capture precisely
how the essence of the Second Law could be embedded at the most fundamental level of
description. But in view of the resulting intriguing general mathematical and geometrical
features it has in the quantum context, it should also find immediate application outside
of quantum thermodynamics, in a variety of fields where a well-behaved evolution
equation may serve as a useful phenomenological kinetic and dynamical modeling tool.
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APPENDIX. LOCALLY-MAXIMAL-ENTROPY-GENERATION
QUANTUM DYNAMICS

Among the several equivalent forms that SEA or LMEG quantum dynamics may take for a single particle
or a localized open field of particles [14, 13], I present here the most compact [19] for an adiabatic

system10
dp i 1
- = H. _
[H.p]+ ot

W= {an.p} (M

where!l 7= 7(p) is a yet unspecified positive-definite functional describing the characteristic time of the
internal redistribution mechanism, and the dissipation operator AM = AM(p,H ,N) is defined by

AM =AS+[u-AN—AH| /6 (@)

where 6 = 0(p) and p = p(p) = {i(p),...,ur(p)} are the set of real nonlinear functionals de-

fined for each p by the solution of the system of 1+r linear equations (with nonlinear coefficients),'?
(ASAH) 0 +31_| (AN;AH) 1; = (AHAH)) and (ASAN;) 6 +37_, (AN;AN,) 1; = (AHAN,) V/j, which war-
rants that (AHAM) = 0 and (AN;AM) = 0 Vj, and hence that the dissipative term “conserves” the mean

energy (H) = Tr(pH) and the mean number of particles (N) = Tr(pN).!3 The entropy, (S) = Tr(pS) =
—kgTr(p Inp), changes at the rate
as) 1

— = —(AMAM 3
T ) ©)
which is clearly non-negative definite,'# and is zero only for the non-dissipative states

_ Bexpl(ptpg N~ H) /kshalB
T (B expl{ftg- N —H) /Ky b))

Pnd (4)

where B is any projection operator (B> = B), either constant in time or evolving unitarily according to
dB/dt = —i[H,B]/h. If B is a one-dimensional projector, this coincides with the standard Schrodinger
dynamics of pure states, which emerge therefore as boundary limit cycles of our dynamics. The only
stable equilibrium states obtain when B = I. Then, Eq. (4) yields a grand-canonical density operator,

10 By adiabatic we mean that the Hamiltonian operator H has some time-dependent parameters B which
describe the effects of external forces. If the parameters are time-independent, the system is isolated.

I Notation: [-,-]and {-, -} are the usual commutator and anticommutator, H is the Hamiltonian operator
of the system (not necessarily independent of time #), 7 is the reduced Planck constant, kp the Boltzmann
constant, § = —kgPp~oInp our “entropy operator”™ (well defined for any p), and for any operator F =
S,H,Ni,..., (F)=Ti(opF), AF =F —I {F), (\FAG) = Tr[p{(AF), (AG)}] /2 =Tr(p{F,G})/2 - (F)(G).
12 By Cramer’s rule, the solution of this linear system of equations can be expressed explicitly as a ratio
of determinants. This yields the explicit forms (and the geometrical interpretations in terms of Gram
determinants) given in our original references and, for example, Eq. (14) by Bedeaux in this volume.

13 For a canonical system, (AN) = 0, 0 is given for all states by 8 = (AHAH)/(ASAH); moreover,
6 > (AHAH)/(ASAS) with equality only if the state is non-dissipative, Eq. (4).

141t is also maximal with respect to all possible evolutions of p which conserve (H) and (N) [21].
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which reduces to a canonical one if in addition (AN) = 0, or a micro-canonical if we also have a fully
degenerate Hamiltonian, (AH) = 0.

As t — oo, the state operator p(t), i.e., the solution of Eq. (4) for any initial p(0), approaches a
non-dissipative operator of form (4), 6 and g approach smoothly the corresponding thermodynamic
equilibrium (or partial equilibrium) temperature 6,4 and chemical potentials L4 respectively. In this
sense, therefore, & and p can be interpreted as nonequilibrium extensions of the temperature and the
chemical potentials.

When it comes to composite systems, the nonlinearity of the dynamical law imposes that the structure
of the interactions and the “internal constraints” between subsystems must be described not only through
the Hamiltonian operator, but also through the structure of the dynamical equation itself. Suppose Alice
and Bob are the two elementary subsystems, A and B, of an adiabatic system. Each subsystem is either
a single particle or a localized open field of particles. Alice and Bob may be either interacting (H =
H,®Iy + 1, ®Hy + Vap) or noninteracting (Vap = 0), and either correlated/entangled* [§ (p) # S(pa)®Ip+
14®S(pp)] or uncorrelated [645(p) = 0]. Then LMEG dynamics takes the form [13, 19]

dp i 1 " 1 5
H.pI+ S LAY Pa} P+ 5 Py @AM, P} ®)

& h

where 74, T3 are positive-definite characteristic times of local internal redistribution,'> and (AM)A, (AM)?
their respective local dissipation operators defined by

(AM)* = (ASY* + [, - (AN)*) — (AH)*] /64 with (AF)* = Trg[(Is@pp)F] VF (6)

(AM)° = (AS)" + [ (AN)®) — (AH)®] /85 with (AF)” = Tra[(pa®1p)F] VF !

Here 6; and pu; (for J = A,B) are defined for each p by the solution of the system of 1+r lin-
ear equations, ((AS)'(AH)")6; + X0, (AN (AH)) iy = ((AH)/(AH)?) and ((AS)’(AN;)’) 6, +
S ((ANY (AN) Y wy = ((AH)'(AN;)’)  Vj, which warrants that ((AH)’(AM)’) = 0 and
((AN;)! (AM)?) = 0 Vj, and hence that each local dissipative term separately “conserves” the over-
all system’s mean energy (H) = Tr(pH) and mean number of particles (N) = Tr(pN). The overall
system’s rate of entropy change is

sy 1

o () @) o

AMY* (AM)Y) +

kst

where each subsystem’s contribution is nonnegative definite.

If Alice and Bob come to interact, the Hamiltonian evolution during the interaction builds up correla-
tions that survive even after they separate and loose touch completely. When that happens, the so called
no-signaling condition requires that the evolution of Alice should become independent of whatever hap-
pens to Bob, and viceversa. This is reflected in the local structure of Eq. (5) and in particular of operators
(AS)4, (AS)B, (AH)A, (AH)B, etc. Despite the nonlinearity, this structure of the non-Hamiltonian terms in
the equation prevents “no-signaling” violations, in that it satisfies strong (and weak) separability condi-
tions.

Indeed, denoting by pag(p,H,N) the rhs of Eq. (5), it is easy to show that it satisfies a strong
separability condition, i.e., for any p and any Hy, Hp, N4, Np,

Trg[Pag(p, Ha@Ip+Is@Hp, N ®@Ip+Is@Nip Vi) = f4[(AS)* Ha N4 ©)
Tea[pas(p, Ha®Ip+ Iy ®Hg, Ny @Ip+I1y®Nig Vi) = f5(AS)® Hp Ng] (10)
which, of course, imply also the weak separability condition, i.e., fi = pPa(pa,Ha,Na) and

f8 = Ps(ps,Hp,Np) whenever p = ps®pp. Conditions (9) and (10) prevent locality problems by
guaranteeing that if Alice and Bob are noninteracting, no changes in the Hamiltonian of Bob (e.g.,

15 To guarantee strong separability, the positive-definite characteristic times must either be constants or
local functionals of the form (J = A, B) 7; = 7/[(AS)’,(AH)’ ,(AN)].
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switching on a measurement apparatus on Bob) can affect the local evolution of Alice, and viceversa. By
Eq. (9), the rate of change of Alice’s reduced density operator p4 does not depend on Hp and, therefore,
none of Alice’s local observables (the functionals of p4) can be affected by whatever happens to B, no
faster-than-light communication can occur between B and A, even if Alice and Bob are correlated or
entangled due to previous interactions. But existing correlations do influence their local evolutions, which
therefore are not Markovian in that they do not depend only on their respective local (reduced) states p4

and pp.
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