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Abstract. We present a rigorous logical scheme for the definition of entropy, based on operative
definitions of all the concepts employed, with all assumptions declared explicitly. Our treatment
is an equivalent variation of the general definition of entropy given in E.P. Gyftopoulos and G.P.
Beretta, Thermodynamics. Foundations and Applications, Dover, Mineola, 2005. However, here we
outline the minimal set of definitions and assumptions required to construct the same definition by
the most direct and essential sequence of logical steps.

In traditional expositions of thermodynamics, entropy is defined in terms of the
concept of heat, which in turn is introduced at the outset of the logical development
in terms of heuristic illustrations based on mechanics.1

In our experience, however, when heat is introduced before the first law, and then used

1 For example, in his lectures on physics, Feynman [2] describes heat as one of several different forms of
energy related to the jiggling motion of particles stuck together and tagging along with each other (pp. 1-3
and 4-2), a form of energy which really is just kinetic energy—internal motion (p. 4-6), and is measured
by the random motions of the atoms (p. 10-8). Tisza [3] argues that such slogans as “heat is motion,” in
spite of their fuzzy meaning, convey intuitive images of pedagogical and heuristic value.
There are at least three problems with these illustrations. First, work and heat are not stored in a system.
Each is a mode of transfer of energy from one system to another. Second, concepts of mechanics are
used to justify and make plausible a notion—that of heat—which is beyond the realm of mechanics;
although at first the student might find the idea of heat harmless, and even natural, the situation changes
drastically when the notion of heat is used to define entropy, and the logical loop is completed when
entropy is shown to imply a host of results about energy availability that contrast with mechanics. Third,
and perhaps more important, heat is a mode of energy (and entropy) transfer between systems that are
very close to thermodynamic equilibrium and, therefore, any definition of entropy based on heat is bound
to be valid only at thermodynamic equilibrium.
The first problem is addressed in some expositions. Landau and Lifshitz [4] define heat as the part of an
energy change of a body that is not due to work done on it. Guggenheim [5] defines heat as an exchange
of energy that differs from work and is determined by a temperature difference. Keenan [6] defines heat as
that which transfers from one system to a second system at lower temperature, by virtue of the temperature
difference, when the two are brought into communication. Similar definitions are adopted in many other
notable textbooks that we have no space to list.
None of these definitions, however, addresses the basic problem. The existence of exchanges of energy
that differ from work is not granted by mechanics. It is one of the striking results of thermodynamics,
that is, of the existence of entropy as a property of matter. Hatsopoulos and Keenan [7] have pointed
out explicitly that, without the second law, heat and work would be indistinguishable and, therefore, a
satisfactory definition of heat is unlikely without a prior statement of the second law.
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in the statement of the second law and in the definition of entropy, the student cannot
avoid but sense ambiguity and lack of logical consistency. This results in the wrong but
unfortunately widely spread conviction that thermodynamics is a confusing, ambiguous,
hand-waving subject.2

In this paper, we summarize and illustrate the general definition of equilibrium and
non-equilibrium entropy first given in Ref. [1]. The main reason why here we adopt a few
variations, with respect to the exposition in Ref. [1], is to identify and clarify the minimal
set of definitions and assumptions which provides the most direct and essential sequence
of logical steps strictly necessary to construct such important and general definition. In
view of the importance of non-equilibrium states for a wide range of applications of
thermodynamics, we hope our paper helps to remove statements to the effect that entropy
is defined only for equilibrium states from future textbooks.

BASIC DEFINITIONS

The term system in this paper is restricted for simplicity to mean closed separable
system.3 Due to space limitations, we omit here any discussion about the important
definitions of property and state, which are available in Ref. [1].

A state of a system A is called stationary if it does not change in time. A stationary

2 During the past thirty years of teaching thermodynamics to undergraduate and graduate students from
all over the globe, we have sensed a need for more clarity, unambiguity, generality and logical consistency
in the exposition of thermodynamics than provided by traditional approaches. Continuing the effort
pioneered by Keenan and Hatsopoulos, Ref. [1] provides the first complete answer to such long standing
quest for going beyond the traditional Clausius definition of entropy in terms of heat.
The basic concepts and principles in Ref. [1] are introduced in a novel sequence that eliminates the
problem of incomplete definitions, and that is valid for both macroscopic and microscopic systems
(provided they are well defined, i.e., separable and uncorrelated from the rest of the universe), and for
both equilibrium and non-equilibrium states. The laws of thermodynamics are presented as fundamental
laws of physics that complement the laws of mechanics. In the statement of the first law, the definition of
energy, the statement of the second law, the definition of entropy, and the concepts of energy and entropy
exchanges between interacting systems, heat plays no role. It emerges only later in the logical development
as a consequence of these concepts and laws, as a mode of energy exchange between systems that obtains
under very restrictive conditions.
3 Ref. [8] proposes a more precise definition than available in Ref. [1], as follows. We call wall a surface
which cannot be crossed by material particles. A collection A of material particles is called a closed system
if the particles are enclosed by walls in a region of space σA. A closed system may have also internal walls
or semi-permeable walls. Let us denote by G, E and H the gravitational, electric and magnetic fields,
respectively, and by σfield a region of space where a closed system A is contained. We call external force
field for A, denoted by Ge, Ee, He, the force field spatial distributions which are present in σfield when
system A is removed and placed far away from σfield.
We say that I is an isolated system in the stationary force field Ge, Ee, He—or simply, an isolated system—
if only the particles of A are present in σfield and the external force field Ge, Ee, He is stationary, i.e., time
independent.
Consider an isolated system I in Ge, Ee, He and suppose that I can be subdivided into two closed systems
A and B, such that the force fields experienced by the particles of A do not change if B is removed and
placed far away from the region of space considered and the same holds for the particles of B when A is
removed. Then, A and B are called closed separable systems, B is called the environment of A and A the
environment of B.
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state of A is called an equilibrium state if it can be reproduced while A is an isolated
system. An equilibrium state that cannot be modified unless we change either the
position of the walls which confine the matter of A or the state of the environment of
A is called a stable equilibrium state. We say that two stable equilibrium states Ase and
Bse are mutual stable equilibrium states if, when A is in state Ase and B in state Bse, the
composite system AB is in a stable equilibrium state. The definition holds also for a pair
of states of the same system: in this case, the composite system AB is composed of A
and of a duplicate of A.

We call process for A from state A1 to state A2, denoted A1 → A2, the time evolution
from A1B1 to A2B2 of AB, where B is the environment of A. A cyclic process or cycle
for A is a process for A in which the initial and final states A1 and A2 coincide (even if
states B1 and B2 are different).

A process for A is called a weight process, denoted (A1 → A2)W, if the only effect in
the environment of A is the change of state of a mechanical device M.4 We call work
performed by A in such a process, and denote it by W A→

12 , the work done on M, i.e.,
W A→

12 = W M←
12 .

FIRST LAW AND ENERGY

First law. Every pair of states of any system A can be interconnected by means of a
weight process for A. The works performed by the system in any two weight processes
between the same initial and final states are identical.
Definition of property energy. Let (A1 , A2) be any pair of states of A. We call energy
difference between A2 and A1 either the opposite of the work performed by A in any
weight process from A1 to A2 or the work performed by A in any weight process from
A2 to A1; in symbols:

E(A2)−E(A1) =−W A→
12 or E(A2)−E(A1) = W A→

21 . (1)

The first law guarantees that at least one of the weight processes considered in Eq.
1 exists. Moreover, it yields the following consequences: (a) if both weight processes
(A1 → A2)W and (A2 → A1)W exist, the two forms of Eq. 1 yield the same result; (b) the
energy difference between A2 and A1 depends only on the states A1 and A2, i.e., energy
is a property of A; (c) if C1 = A1B1 and C2 = A2B2 are arbitrarily chosen states of a
composite system C = AB, then

E(C2)−E(C1) = E(A2)−E(A1)+E(B2)−E(B1) . (2)

Rigorous proofs of these consequences can be found in Refs. [1, 8, 9].

4 We call mechanical device a system M such that: (a) the state of M is determined uniquely by the
position x of a material point P of M which can move along a straight line; (b) an external force f which
depends only on x is applied to P. We denote by W M←

12 the work performed by the force f which acts on
M while the position of P is changed from x1 to x2 , i.e., W M←

12 =
B x2

x1
fx dx, where fx is the component of

f along the x direction.

298



SECOND LAW AND ENTROPY

Assumption 1. For every initial state of any system A, there exists a weight process for A
such that: (a) the energy of A increases; (b) the region of space occupied by A in the final
state is the same as in the initial state; and (c) the final state of A is a non-equilibrium
state.
Assumption 2. Starting from any state, a system A can be changed to a stable equilib-
rium state by means of a zero-work weight process in which the region of space occupied
by A has no net change.

We call thermal reservoir a system R which, for the regions of space and the range
of energy values of interest, has stable equilibrium states that are all mutual equilibrium
states. For example, water at the triple point obeys this definition.

We call standard weight process for AR a weight process for the composite system
AR in which the end states of the thermal reservoir R are stable equilibrium states
and the region of space occupied by R has no net change. We denote such process by
(A1R1 → A2R2)sW, and the energy change of the reservoir by (ΔER)sW

A1A2
.

Assumption 3. Every pair of states (A1, A2) of a system A can be interconnected by
a reversible standard weight process for AR, where R is an arbitrarily chosen thermal
reservoir.
Second law (for closed separable systems without internal partitions). Among all the
states of a system A with a given value E of the energy and such that A is contained in a
prescribed region of space σA, there exists a unique stable equilibrium state.
Theorem 1. Impossibility of a PMM2. If the initial state of A is a stable equilibrium
state, it is impossible to lower the energy of A by means of a weight process for A in
which the region of space σA occupied by A has no net change.
Theorem 2. Among all standard weight processes for AR between a given pair of states
(A1, A2) of system A, the energy change (ΔER)sW

A1A2
of the thermal reservoir R has a lower

bound which is reached whenever the process is reversible.
Theorem 3. Let R2 and R22 be any two thermal reservoirs and consider the energy
changes, (ΔER2)

sW,rev
A1A2

and (ΔER22)
sW,rev
A1A2

respectively, in standard reversible weight pro-
cesses (A1R21 → A2R22)

rev
sW and (A1R221 → A2R222)

rev
sW, where (A1, A2) is an arbitrary pair of

states of an arbitrary system A. Then the ratio (ΔER2)
sW,rev
A1A2

/ (ΔER22)
sW,rev
A1A2

is positive and
depends only on R2 and R22, i.e., it is independent of (a) the initial stable equilibrium
states of R2 and R22, (b) the choice of system A, and (c) the choice of states A1 and A2.
Definition of temperature of a thermal reservoir. Let R be a given thermal reservoir
and Ro a reference thermal reservoir. Select an arbitrary pair of states (A1, A2) of an
arbitrary system A, and consider the energy changes (ΔER)sW,rev

A1A2
and (ΔERo)sW,rev

A1A2
,

respectively, in standard reversible weight processes (A1R1 → A2R2)rev
sW and (A1Ro

1 →
A2Ro

2)
rev
sW. We call temperature of R the positive quantity

TR = TRo
(ΔER)sW,rev

A1A2

(ΔERo)sW,rev
A1A2

, (3)

where TRo is a positive constant associated arbitrarily with the reference thermal reser-
voir Ro. If for Ro we select water at the triple point and we set TRo = 273.16 K, we obtain
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the Kelvin temperature scale. Clearly, the temperature TR of R is defined only up to an
arbitrary multiplicative constant.
Corollary 1. The ratio of the temperatures of two thermal reservoirs

TR2

TR22
=

(ΔER22)
sW,rev
A1A2

(ΔER22)
sW,rev
A1A2

(4)

is independent of the choice of the reference thermal reservoir and can be measured
directly.
Corollary 2. Let (A1, A2) be any pair of states of a system A and let (ΔER)sW,rev

A1A2
be the

energy change of a thermal reservoir R, with temperature TR, in any reversible standard
weight process (A1R1→A2R2)rev

sW. Then, for the given system A the ratio (ΔER)sW,rev
A1A2

/TR
depends only on the pair of states (A1, A2), i.e., this ratio is independent of the choice of
reservoir R and of its initial stable equilibrium state R1.
Definition of property entropy. Let (A1 , A2) be any pair of states of a system A and let
R be an arbitrarily chosen thermal reservoir. We call entropy difference between A2 and
A1 the quantity

S(A2)−S(A1) =−(ΔER)sW,rev
A1A2

TR
, (5)

where (ΔER)sW,rev
A1A2

is the energy change of R in any reversible standard weight process
(A1R1 → A2R2)rev

sW and TR is the temperature of R. On account of Corollary 2, the right
hand side of Eq. 5 is determined uniquely by states A1 and A2; therefore, entropy is a
property of A.

Let A0 be a reference state of A, to which we assign an arbitrarily chosen value of
entropy S(A0). Then, the value of the entropy of A in any other state A1 is determined
uniquely by the equation

S(A1)−S(A0) =−(ΔER)sW,rev
A0A1

TR
. (6)

Such a process exists for every state A1, on account of assumption 3.
Theorem 4. If C1 = A1B1 and C2 = A2B2 are arbitrarily chosen states of a composite
system C = AB, then

S(C2)−S(C1) = S(A2)−S(A1)+S(B2)−S(B1) . (7)

As a consequence of this theorem, if the values of entropy are chosen so that they are
additive in the reference states, entropy results as an additive property.
Theorem 5. Let (A1, A2) be any pair of states of a system A and let R be a thermal
reservoir with temperature TR. Let (A1R1 → A2R2)irr

W be any irreversible standard weight
process and let (ΔER)sW,irr

A1A2
be the energy change of R in this process. Then

−(ΔER)sW,irr
A1A2

TR
< S(A2)−S(A1) . (8)
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Theorem 6. Let (A1 → A2)W be any weight process for a system A. Then, the entropy
difference S(A2)− S(A1) is equal to zero if and only if the process is reversible; it is
strctly positive if and only if the process is irreversible.

CONCLUSIONS

In this paper we provide a most concise but rigorous definition of entropy based on
operative definitions of all the concepts employed in the treatment. The concept of heat
is not employed and all assumptions are stated explicitly.

The domain of validity of the definition coincides with that of Assumption 3: every
pair of states (A1, A2) of a system A can be interconnected by a reversible standard weight
process for AR, where R is an arbitrarily chosen thermal reservoir. Since also the concept
of quasi-static process is not used, the domain of validity of this definition of entropy
is very general, and is not necessarily restricted to stable-equilibrium states or to local
stable-equilibrium states of A. Moreover, since also the concepts of ’macroscopicity’
and ’mesoscopicity’ of the system are not used, and since no assumptions need to be
made about the size of the region of space occupied by the system and the number of
material particles in it, the definition holds as well for microscopic systems.

Therefore, as already emphasized in Ref. [1], where a less concise but equivalent
definition was first presented, our carefully devised logical sequence yields a rigorous
and sound generalization of the Clausius definition of entropy that extends from the
usual thermodynamic equilibrium domain, to the domains of non-equilibrium states
and of microscopic systems, which are of extreme importance to applications. Perhaps
quite surprisingly, such important gains in generality are accompanied by a gain also
in the simplicity of the exposition. Indeed, in our graduate and undergraduate teaching
experience this approach has proved to be much superior than the obsolete traditional
heuristic definitions cited in footnote 1, not only for its sound logical consistency, but
also for the unifying basis it provides towards the understanding of non-equilibrium and
microscopic phenomena.
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