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Assumption 1: restriction to normal system. We call normal system any system A that, starting from
every state, can be changed to a non-equilibrium state with higher energy by means of a weight process for A in
which the regions of space RRRA occupied by the constituents of A have no net change. From here on, we consider
only normal systems.
Comment. In traditional treatments of thermodynamics, Assumption 1 is not stated explicitly, but it is used,
for example when one states that any amount of work can be transferred to a thermal reservoir by a stirrer.

Theorem 1. Impossibility of a PMM2. If a normal system A is in a stable equilibrium state, it is
impossible to lower its energy by means of a weight process for A in which the regions of space RRRA occupied by
the constituents of A have no net change.
Proof. (Figure 1) Suppose that, starting from a stable equilibrium state Ase of A, by means of a weight process
Π1 with positive work WA→ = W > 0, the energy of A is lowered and the regions of space RRRA occupied by the
constituents of A have no net change. On account of Assumption 1, it would be possible to perform a weight
process Π2 for A in which the regions of space RRRA occupied by the constituents of A have no net change, the
weight M is restored to its initial state so that the positive amount of energy WA← = W > 0 is supplied back
to A, and the final state of A is a nonequilibrium state, namely, a state clearly different from Ase. Thus, the
zero-work sequence of weight processes (Π1, Π2) would violate the definition of stable equilibrium state.

Second Law. Among all the states of a system A such that the constituents of A are contained in a given set
of regions of space RRRA, there is a unique stable equilibrium state for every value of the energy EA.

Lemma 1. Any stable equilibrium state As of a system A is accessible via an irreversible zero-work weight
process from any other state A1 with the same regions of space RRRA and the same value of the energy EA.
Proof. By the first law and the definition of energy, As and A1 can be interconnected by a zero-work weight
process for A. However, a zero-work weight process from As to A1 would violate the definition of stable
equilibrium state. Therefore, the process must be in the direction from A1 to As. The absence of a zero-work
weight process in the opposite direction, implies that any zero-work weight process from A1 to As is irreversible.

Mutual stable equilibrium states. We say that two stable equilibrium states Ase and Bse are mutual sta-
ble equilibrium states if, when A is in state Ase and B in state Bse, the composite system AB is in a stable
equilibrium state. The definition holds also for a pair of states of the same system: in this case, system AB is
composed of A and of a duplicate of A.

Thermal reservoir. We call thermal reservoir a closed and always separable system R with a single con-
stituent, contained in a fixed region of space, with a vanishing external force field, and with values of the energy
restricted to a finite range such that all the stable equilibrium states of R are mutual stable equilibrium states.

Comment. Every single-constituent system without internal boundaries and applied external fields, and with a
number of particles of the order of one mole (so that the simple system approximation as defined in Ref. [1,
p.263] applies), when restricted to a fixed region of space of appropriate volume and to the range of energy
values corresponding to the so-called triple-point stable equilibrium states, is a thermal reservoir.

Assumption 2. Equivalent thermal reservoirs. If R′ and R′′ are thermal reservoirs with the same con-
stituent, then every stable equilibrium state of R′ is in mutual stable equilibrium with any stable equilibrium
state of R′′. Then, R′ and R′′ are called equivalent thermal reservoirs.

∗Università di Brescia, Italy, beretta@ing.unibs.it
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Figure 1: Schematic illustration of the proof
of Theorem 1.
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Figure 2: Schematic illustration of the processes used to
define the temperature of a thermal reservoir.

Reference thermal reservoir. A thermal reservoir with a constituent chosen once and for all, will be called
a reference thermal reservoir. To fix ideas, we will choose water as the constituent of our reference thermal
reservoir.

Standard weight process. Given a pair of states (A1, A2) of a system A and a thermal reservoir R, we call
standard weight process for AR from A1 to A2 a weight process for the composite system AR in which the end
states of R are stable equilibrium states. We denote by (A1R1 → A2R2)sw a standard weight process for AR
from A1 to A2 and by (∆ER)swA1A2

the corresponding energy change of the thermal reservoir R.

Assumption 3. Every pair of states (A1, A2) of a system A can be interconnected by a reversible standard
weight process for AR, where R is an arbitrarily chosen thermal reservoir.

Theorem 2. For a given system A and a given reservoir R, among all the standard weight processes for AR
between a given pair of states (A1, A2) of A, the energy change (∆ER)swA1A2

of the thermal reservoir R has a
lower bound which is reached if and only if the process is reversible.
The proof of Theorem 2 is omitted here, for brevity.

Theorem 3. Let R′ and R′′ be any two thermal reservoirs and consider the energy changes, (∆ER′
)swrev
A1A2

and (∆ER′′
)swrev
A1A2

respectively, in the reversible standard weight processes ΠAR′ = (A1R
′
1 → A2R

′
2)swrev and

ΠAR′′ = (A1R
′′
1 → A2R

′′
2 )swrev, where (A1, A2) is an arbitrarily chosen pair of states of any closed system A.

Then the ratio (∆ER′
)swrev
A1A2

/(∆ER′′
)swrev
A1A2

:
a) is positive;
b) depends only on R′ and R′′, i.e., it is independent of (i) the initial stable equilibrium states of R′ and R′′,
(ii) the choice of system A, and (iii) the choice of states A1 and A2;
c) is unity if R′ and R′′ are equivalent thermal reservoirs.
The proof of Theorem 3 is omitted here, for brevity.

Temperature of a thermal reservoir. (Figure 2) Let R be a given thermal reservoir and Ro a reference
thermal reservoir. Select an arbitrary pair of states (A1, A2) of a system A and consider the energy changes
(∆ER)swrev

A1A2
and (∆ERo

)swrev
A1A2

in two reversible standard weight processes from A1 to A2, one for AR and the
other for ARo, respectively. We call temperature of R the positive quantity

TR = TRo

(∆ER)swrev
A1A2

(∆ERo)swrev
A1A2

, (1)

where TRo is a positive constant associated arbitrarily with the reference thermal reservoir Ro. If for Ro we
select a thermal reservoir having water as constituent and we set TRo = 273.16 K, we obtain the Kelvin tem-
perature scale. Clearly, the temperature TR of R is defined only up to an arbitrary multiplicative constant.

Corollary 2. The ratio of the temperatures of two thermal reservoirs, R′ and R′′, is independent of the choice
of the reference thermal reservoir and can be measured directly as

TR′

TR′′
=

(∆ER′
)swrev
A1A2

(∆ER′′ )swrev
A1A2

, (2)

where (∆ER′
)swrev
A1A2

and (∆ER′′
)swrev
A1A2

are the energy changes of R′ and R′′ in two reversible standard weight
processes, one for AR′ and the other for AR′′, which interconnect the same pair of states (A1, A2).
Proof. Let (∆ERo

)swrev
A1A2

be the energy change of the reference thermal reservoir Ro in any reversible standard



weight process for ARo which interconnects the same states (A1, A2) of A. From Eq. (1) we have

TR ′ = TRo

(∆ER′
)swrev
A1A2

(∆ERo)swrev
A1A2

, TR ′′ = TRo

(∆ER′′
)swrev
A1A2

(∆ERo)swrev
A1A2

, (3)

so that the ratio TR ′/TR ′′ is given by Eq. (2).

Corollary 3. Let (A1, A2) be any pair of states of system A, and let (∆ER)swrev
A1A2

be the energy change of
a thermal reservoir R with temperature TR, in any reversible standard weight process for AR from A1 to A2.
Then, for the given system A, the ratio (∆ER)swrev

A1A2
/ TR depends only on the pair of states (A1, A2), i.e., it is

independent of the choice of reservoir R and of its initial stable equilibrium state R1.
Proof. Let us consider two reversible standard weight processes from A1 to A2, one for AR′ and the other for
AR′′, where R′ is a thermal reservoir with temperature TR′ and R′′ is a thermal reservoir with temperature
TR′′ . Then, equation (2) yields

(∆ER′
)swrev
A1A2

TR′
=

(∆ER′′
)swrev
A1A2

TR′′
. (4)

Definition of (thermodynamic) entropy, proof that it is a property. Let (A1 , A2) be any pair of states
of a system A, and let R be an arbitrarily chosen thermal reservoir placed in the environment B of A. We call
entropy difference between A2 and A1 the quantity

SA
2 − SA

1 = − (∆ER)swrev
A1A2

TR
(5)

where (∆ER)swrev
A1A2

is the energy change of R in any reversible standard weight process for AR from A1 to A2,
and TR is the temperature of R. On account of Corollary 3, the right hand side of Eq. (5) is determined
uniquely by states A1 and A2; therefore, entropy is a property of A.
Let A0 be a reference state of A, to which we assign an arbitrarily chosen value of entropy SA

0 . Then, the value
of the entropy of A in any other state A1 of A is determined uniquely by the equation

SA
1 = SA

0 − (∆ER)swrev
A1A0

TR
, (6)

where (∆ER)swrev
A1A0

is the energy change of R in any reversible standard weight process for AR from A0 to A1,
and TR is the temperature of R. Such a process exists for every state A1, on account of Assumption 3.

Theorem 4. Additivity of entropy differences. Consider the pairs of states (C1 = A1B1, C2 = A2B2) of
the composite system C = AB. Then,

SAB
A2B2

− SAB
A1B1

= SA
2 − SA

1 + SB
2 − SB

1 . (7)

Proof. Let us choose a thermal reservoir R, with temperature TR, and consider the sequence (ΠAR, ΠBR)
where ΠAR is a reversible standard weight process for AR from A1 to A2, while ΠBR is a reversible standard
weight process for BR from B1 to B2. The sequence (ΠAR, ΠBR) is a reversible standard weight process for CR
from C1 to C2, in which the energy change of R is the sum of the energy changes in the constituent processes
ΠAR and ΠBR, i.e., (∆ER)swrev

C1C2
= (∆ER)swrev

A1A2
+ (∆ER)swrev

B1B2
. Therefore:

(∆ER)swrev
C1C2

TR
=

(∆ER)swrev
A1A2

TR
+

(∆ER)swrev
B1B2

TR
. (8)

Equation (8) and the definition of entropy (5) yield Eq. (7).
Comment. As a consequence of Theorem 4, if the values of entropy are chosen so that they are additive in the
reference states, entropy results as an additive property.

Theorem 5. Let (A1, A2) be any pair of states of a system A and let R be a thermal reservoir with temperature
TR. Let ΠARirr be any irreversible standard weight process for AR from A1 to A2 and let (∆ER)swirr

A1A2
be the

energy change of R in this process. Then

− (∆ER)swirr
A1A2

TR
< SA

2 − SA
1 . (9)

Proof. Let ΠARrev be any reversible standard weight process for AR from A1 to A2 and let (∆ER)swrev
A1A2

be the
energy change of R in this process. On account of Theorem 2,

(∆ER)swrev
A1A2

< (∆ER)swirr
A1A2

. (10)



Since TR is positive, from Eqs. (10) and (5) one obtains

− (∆ER)swirr
A1A2

TR
< − (∆ER)swrev

A1A2

TR
= SA

2 − SA
1 . (11)

Theorem 6. Principle of entropy nondecrease. Let (A1, A2) be a pair of states of a system A and let
(A1 → A2)W be any weight process for A from A1 to A2. Then, the entropy difference SA

2 −SA
1 is equal to zero

if and only if the weight process is reversible; it is strictly positive if and only if the weight process is irreversible.
Proof. If (A1 → A2)W is reversible, then it is a special case of a reversible standard weight process for AR in
which the initial stable equilibrium state of R does not change. Therefore, (∆ER)swrev

A1A2
= 0 and by applying

the definition of entropy, Eq. (5), one obtains

SA
2 − SA

1 = − (∆ER)swrev
A1A2

TR
= 0 . (12)

If (A1 → A2)W is irreversible, then it is a special case of an irreversible standard weight process for AR in which
the initial stable equilibrium state of R does not change. Therefore, (∆ER)swirr

A1A2
= 0 and Equation (9) yields

SA
2 − SA

1 > − (∆ER)swirr
A1A2

TR
= 0 . (13)

Moreover: if a weight process (A1 → A2)W for A is such that SA
2 −SA

1 = 0, then the process must be reversible,
because we just proved that for any irreversible weight process SA

2 − SA
1 > 0; if a weight process (A1 → A2)W

for A is such that SA
2 − SA

1 > 0, then the process must be irreversible, because we just proved that for any
reversible weight process SA

2 − SA
1 = 0.

CONCLUSIONS
A general definition of thermodynamic entropy [2] is presented, based on operative definitions of all the concepts
employed in the treatment, designed to provide a clarifying and useful, complete and coherent, minimal but
general, rigorous logical framework suitable for unambiguous fundamental discussions on Second Law implica-
tions.
Operative definitions of system, state, isolated system, environment of a system, process, separable system, and
system uncorrelated from its environment are stated, which are valid also in the presence of internal semiper-
meable walls and reaction mechanisms. The concepts of heat and of quasistatic process are never mentioned,
so that the treatment holds also for nonequilibrium states, both for macroscopic and few particles systems.
A definition of thermal reservoir less restrictive than in previous treatments is adopted: it is fulfilled by any
single-constituent simple system contained in a fixed region of space, provided that the energy values are re-
stricted to a suitable finite range. The proof that entropy is a property of the system is completed by a new
explicit proof that the entropy difference between two states of a system is independent of the initial state of
the thermal reservoir chosen to measure it.
The definition of a reversible process is given with reference to a given scenario, i.e., the largest isolated sys-
tem whose subsystems are available for interaction; thus, the operativity of the definition is improved and the
treatment becomes compatible also with old [3] and recent [4] interpretations of irreversibility in the quantum
theoretical framework.
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