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INTRODUCTION
In traditional expositions of thermodynamics, entropy is defined in terms of the concept of heat, which in turn
is introduced at the outset of the logical development in terms of heuristic illustrations based on mechanics.
For example, in his lectures on physics, Feynman [1] describes heat as one of several different forms of energy
related to the jiggling motion of particles, a form of energy which really is just kinetic energy. Tisza [2] argues
that such slogans as “heat is motion,” in spite of their fuzzy meaning, convey intuitive images of pedagogical
and heuristic value.
There are at least three problems with these illustrations. First, work and heat are not stored in a system: each
is a mode of transfer of energy from one system to another. Second, concepts of mechanics are used to justify
and make plausible a notion—that of heat—which is beyond the realm of mechanics. Indeed, as pointed out by
Hatsopoulos and Keenan [3], without the Second Law heat and work would be indistinguishable. Third, heat
is a mode of energy transfer between systems that are very close to thermodynamic equilibrium, so that any
definition of entropy based on heat is bound to be valid only at thermodynamic equilibrium.
The first problem is addressed in some expositions. Landau and Lifshitz [4] define heat as the part of an energy
change of a body that is not due to work done on it. Guggenheim [5] defines heat as an exchange of energy
that differs from work and is determined by a temperature difference. Keenan [6] defines heat as that which
transfers from one system to a second system at lower temperature, by virtue of the temperature difference,
when the two are brought into communication. Following Guggenheim it would be possible to state a rigorous
definition of heat, with reference to a very special kind of interaction between two systems, and to employ the
concept of heat in the definition of entropy [5]. However, Gyftopoulos and Beretta [7, 8] have shown that the
concept of heat is unnecessarily restrictive for the definition of entropy, as it would confine it to the equilibrium
domain. Therefore, in agreement with Ref. [7], we will present and discuss a definition of entropy where the
concept of heat is not employed.
Other problems are present in the traditional scheme for the definition of entropy [5, 6, 9]: many basic concepts,
such as those of system, state, property, isolated system, environment of a system, adiabatic process are not
defined rigorously; the unnecessary concept of quasistatic process is employed; it is assumed implicitly that the
quantity of heat exchanged in a cycle between a source and a reversible cyclic engine is independent of the
initial state of the source.
In this paper, a rigorous and general definition of entropy is presented, which is based on operative definitions
of all the concepts employed and involves neither the concept of heat nor that of quasistatic process; it applies
to both equilibrium and nonequilibrium states and considers also systems with movable internal walls and/or
semipermeable walls, with chemical reactions and/or external force fields, with small numbers of particles. In
Part I, the definitions of the basic concepts and of energy are presented. In part II, entropy and thermodynamic
temperature are defined and the principle of entropy non-decrease is proved.

BASIC DEFINITIONS
Constituents, amounts of constituents. We call constituents the material particles chosen to describe the
matter contained in any region of space R, at a time instant t. Examples of constituents are: atoms, molecules,
ions, protons, neutrons, electrons. Constituents may combine and/or transform into other constituents according
to a set of model-specific reaction mechanisms. We call amount of constituent i in any region of space R, at a
time instant t, the number of particles of constituent i contained in R, at time t.
Region of space which contains particles of the i-th constituent. We will call region of space which
contains particles of the i-th constituent a connected region Ri of physical space (the three-dimensional Euclidean
space) in which particles of the i-th constituent are contained. The boundary surface of Ri may be a patchwork
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of walls, i.e., surfaces impermeable to particles of the i-th constituent, and ideal surfaces (permeable to particles
of the i-th constituent). The geometry of the boundary surface of Ri and its permeability topology nature
(walls, ideal surfaces) can vary in time, as well as the number of particles contained in Ri.
Collection of matter, composition. We call collection of matter, denoted by CA, a set of particles of
one or more constituents which is described by specifying the allowed reaction mechanisms between different
constituents and, at any time instant t, the set of r connected regions of space, RRRA = RA

1 , . . . , RA
i , . . . , RA

r , each
of which contains nA

i particles of a single kind of constituent. The regions of space RRRA can vary in time and
overlap. Two regions of space may contain the same kind of constituent provided that they do not overlap.
Thus, the i-th constituent could be identical with the j-th constituent, provided that RA

i and RA
j are disjoint.

Comment. This method of description allows to consider the presence of internal walls and/or internal semiper-
meable membranes, i.e., surfaces which can be crossed only by some kinds of constituents and not others. In
the simplest case of a collection of matter without internal partitions, the regions of space RRRA coincide at every
time instant. The amount ni of the constituent in the i-th region of space can vary in time for two reasons:
matter exchange; reaction mechanisms.
Compatible compositions, set of compatible compositions. We say that two compositions, n1A and
n2A of a given collection of matter CA are compatible if the change between n1A and n2A or viceversa can
take place as a consequence of the allowed reaction mechanisms without matter exchange. We will call set of
compatible compositions for a system A the set of all the compositions of A which are compatible with a given
one, n0A. We will denote a set of compatible compositions by the symbol (n0A, νννA), where νννA is the matrix of
the stoichiometric coefficients.
External force field. Let us denote by F a force field given by the superposition of the gravitational field G,
the electric field E and the magnetic field H. Let us denote by ΣA

t the union of the regions of space RA
t in which

the constituents of CA are contained, at a time instant t, which will also be called region of space occupied by
CA at time t. We call external force field for CA at time t, denoted by FA

e,t , the spatial distribution of F which
is measured at time t in ΣA

t if all the constituents and the walls of CA are removed and placed far away from
ΣA

t .
System, properties of a system. We will call system A a collection of matter CA defined by the initial
composition n0A, the stoichiometric coefficients νννA of the allowed reaction mechanisms, and the possibly time-
dependent specification, over the entire time interval of interest, of:

• the geometrical variables and the nature of the boundary surfaces that define the regions of space RRRA
t ,

• the rates ṅA←
t at which particles are transferred in or out of the regions of space, and

• the external force field distribution FA
e,t for CA,

provided that the following conditions apply:

1. an ensemble of identically prepared replicas of CA can be obtained at any instant of time t, according to
a specified set of instructions or preparation scheme;

2. a set of measurement procedures, PA
1 , . . . , PA

n , exists, such that when each PA
i is applied on replicas

of CA at any given instant of time t, the arithmetic mean 〈PA
i 〉t of the numerical outcomes of repeated

applications of PA
i is a value which is the same for every subensemble of replicas of CA (the latter condition

guarantees the so-called statistical homogeneity of the ensemble); 〈PA
i 〉t is called the value of PA

i for CA

at time t;
3. the set of measurement procedures, PA

1 , . . . , PA
n , is complete in the sense that the set of values {〈PA

1 〉t,. . . ,
〈PA

n 〉t} allows to predict the value of any other measurement procedure satisfying conditions 2 and 3.

Then, each measurement procedure satisfying conditions 2 and 3 is called a property of system A, and the set
PA

1 , . . . , PA
n a complete set of properties of system A.

State of a system. Given a system A as just defined, we call state of system A at time t, denoted by At, the
set of the values at time t of

• all the properties of the system or, equivalently, of a complete set of properties, {〈P1〉t, . . . , 〈Pn〉t},
• the amounts of constituents, nnnA

t ,
• the geometrical variables and the nature of the boundary surfaces of the regions of space RRRA

t ,
• the rates ṅA←

t of particle transfer in or out of the regions of space, and
• the external force field distribution in the region of space ΣA

t occupied by A at time t, FA
e,t.

Closed system, open system. A system A is called a closed system if, at every time instant t, the boundary
surface of every region of space RA

it is a wall. Otherwise, A is called an open system.
Comment. For a closed system, in each region of space RA

i , the number of particles of the i-th constituent can
change only as a consequence of allowed reaction mechanisms.
Composite system, subsystems. If systems A and B, defined in the same time interval, are such that no
region of space RA

i overlaps with any region of space RB
j , we will say that that the system C whose regions of



space of are RRRC = RA
1 , . . . , RA

i , . . . , RA
rA

, RB
1 , . . . , RB

j , . . . , RB
rB

is the composite of systems A and B, and that A
and B are subsystems of C. Then, we write C = AB and denote its state at time t by Ct = (AB)t.
Isolated system. We say that a closed system I is an isolated system in the stationary external force field FI

e,
or simply an isolated system, if during the whole time evolution of I: (a)I is surrounded by a region of space in
which no material particle is present, and (b) the external force field FI

e is stationary, i.e., time independent.
Separable closed systems. Consider a composite system AB, with A and B closed subsystems. We say that
systems A and B are separable at time t if:

• the force field external to A coincides (where defined) with the force field external to AB, i.e., FA
e,t = FAB

e,t ;
• the force field external to B coincides (where defined) with the force field external to AB, i.e. FB

e,t = FAB
e,t .

Subsystems in uncorrelated states. Consider a composite system AB such that at time t the states At and
Bt of the two subsystems fully determine the state (AB)t, i.e., the values of all the properties of AB can be
determined by local measurements of properties of systems A and B. Then, at time t, we say that the states
of subsystems A and B are uncorrelated from each other, and we write the state of AB as (AB)t = AtBt. We
also say, for brevity, that A and B are systems uncorrelated from each other at time t.

Environment of a system, scenario. If a system A is a subsystem of an isolated system I = AB, we can
choose AB as the isolated system to be studied. Then, we call B the environment of A, and we call AB the
scenario under which A is studied.
Comment. The chosen scenario AB contains as subsystems all and only the systems that are allowed to interact
with A; all the remaining systems in the universe are considered as not available for interaction.

Process, cycle. We call process for a system A from state A1 to state A2 in the scenario AB, denoted by
(AB)1 → (AB)2, the change of state from (AB)1 to (AB)2 of the isolated system AB which defines the scenario.

Restriction. In the following (for brevity) we will consider only closed systems and only states of a closed
system A in which A is separable and uncorrelated from its environment. Moreover, for a composite system
AB, we will consider only states such that the subsystems A and B are separable and uncorrelated from each
other.

Reversible process, reverse of a reversible process. A process for A in the scenario AB, (AB)1 → (AB)2,
is called a reversible process if there exists a process (AB)2 → (AB)1 which restores the initial state of the
isolated system AB. The process (AB)2 → (AB)1 is called reverse of process (AB)1 → (AB)2.
Comment. A reversible process need not be slow. In the general framework we are setting up, it is notewor-
thy that nowhere we state nor we need the concept that a process to be reversible needs to be slow in some sense.

Weight. We call weight a system M always separable and uncorrelated from its environment, such that:

• M is closed, it has a single constituent, with fixed number of particles and mass m, contained in a single
region of space whose shape and volume are fixed;

• in any process, the difference between the initial and the final state of M is determined uniquely by the
change in the position z of the center of mass of M , which can move only along a straight line whose
direction coincides with that of a uniform stationary external gravitational force field Ge = −gk, where
g is a constant gravitational acceleration.

Weight process, work in a weight process. A process of a system A is called a weight process, denoted by
(A1 → A2)W , if the only effect external to A is the displacement of the center of mass of a weight M between
two positions z1 and z2. We call work performed by A in the weight process, denoted by the symbol WA→

12 , the
quantity

WA→
12 = mg(z2 − z1) . (1)

We will say that the work is done by A if z2 > z1 or is received by A if z2 < z1. Two equivalent symbols for
the opposite of this work are −WA→

12 = WA←
12 .

Equilibrium state of a closed system. A state At of a system A, with environment B, is called an equilibrium
state if:

• state At does not change with time;
• state At can be reproduced while A is an isolated system in the external force field FA

e , which coincides
with FAB

e .
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Figure 1: Schematic illustration
of a weight process for system A.

Stable equilibrium state of a closed system. An equilibrium state of a closed system A is called a stable
equilibrium state if it cannot be modified in any process such that neither the geometrical configuration of the
walls which bound the regions of space RRRA nor the state of the environment B of A have net changes.

DEFINITION OF ENERGY FOR A CLOSED SYSTEM
First Law. Every pair of states (A1, A2) of a system A can be interconnected by means of a weight process for
A. The works performed by the system in any two weight processes between the same initial and final states
are identical.
Definition of energy for a closed system. Proof that it is a property. Let (A1, A2) be any pair of
states of a system A. We call energy difference between states A2 and A1 either the work WA←

12 received by
A in any weight process from A1 to A2 or the work WA→

21 done by A in any weight process from A2 to A1; in
symbols:

EA
2 − EA

1 = WA←
12 or EA

2 − EA
1 = WA→

21 . (2)

The first law guarantees that at least one of the weight processes considered in Eq. 2 exists. Moreover, it yields
the following consequences:
(a) if both weight processes (A1 → A2)W and (A2 → A1)W exist, the two forms of Eq. 2 yield the same result
(WA←

12 = WA→
21 );

(b) the energy difference between two states A2 and A1 depends only on the states A1 and A2;
(c) (additivity of energy differences) consider a pair of states A1B1 and A2B2 of a composite system AB; then

EAB
2 − EAB

1 = EA
2 − EA

1 + EB
2 − EB

1 ; (3)

(d) (energy is a property) let A0 be a reference state of a system A, to which we assign an arbitrarily chosen
value of energy EA

0 ; the value of the energy of A in any other state A1 is determined uniquely by the equation

EA
1 = EA

0 + WA←
01 or EA

1 = EA
0 + WA→

10 (4)

where WA←
01 or WA→

10 is the work in any weight process for A either from A0 to A1 or from A1 to A0.
Rigorous proofs of these consequences can be found in Refs. [7, 10], and will not be repeated here.
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