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1. Introduction

Thermodynamics and Quantum Theory are among the few sciences involving fundamental
concepts and universal content that are controversial and have been so since their birth, and
yet continue to unveil new possible applications and to inspire new theoretical unification.
The basic issues in Thermodynamics have been, and to a certain extent still are: the range of
validity and the very formulation of the Second Law of Thermodynamics, the meaning and
the definition of entropy, the origin of irreversibility, and the unification with Quantum Theory
(Hatsopoulos & Beretta, 2008). The basic issues with Quantum Theory have been, and to a
certain extent still are: the meaning of complementarity and in particular the wave-particle
duality, understanding the many faces of the many wonderful experimental and theoretical
results on entanglement, and the unification with Thermodynamics (Horodecki et al., 2001).
Entropy has a central role in this situation. It is astonishing that after over 140 years since
the term entropy has been first coined by Clausius (Clausius, 1865), there is still so much
discussion and controversy about it, not to say confusion. Two recent conferences, both
held in October 2007, provide a state-of-the-art scenario revealing an unsettled and hard to
settle field: one, entitled Meeting the entropy challenge (Beretta et al., 2008), focused on the
many physical aspects (statistical mechanics, quantum theory, cosmology, biology, energy
engineering), the other, entitled Facets of entropy (Harremöes, 2007), on the many different
mathematical concepts that in different fields (information theory, communication theory,
statistics, economics, social sciences, optimization theory, statistical mechanics) have all been
termed entropy on the basis of some analogy of behavior with the thermodynamic entropy.
Following the well-known Statistical Mechanics and Information Theory interpretations of
thermodynamic entropy, the term entropy is used in many different contexts wherever the
relevant state description is in terms of a probability distribution over some set of possible
events which characterize the system description. Depending on the context, such events may
be microstates, or eigenstates, or configurations, or trajectories, or transitions, or mutations, and
so on. Given such a probabilistic description, the term entropy is used for some functional
of the probabilities chosen as a quantifier of their spread according to some reasonable set
of defining axioms (Lieb & Yngvason, 1999). In this sense, the use of a common name for
all the possible different state functionals that share such broad defining features, may have
some unifying advantage from a broad conceptual point of view, for example it may suggest
analogies and inter-breeding developments between very different fields of research sharing
similar probabilistic descriptions.
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2 Thermodynamics

However, from the physics point of view, entropy — the thermodynamic entropy — is a
single definite property of every well-defined material system that can be measured in
every laboratory by means of standard measurement procedures. Entropy is a property of
paramount practical importance, because it turns out (Gyftopoulos & Beretta, 2005) to be
monotonically related to the difference E− Ψ between the energy E of the system, above the
lowest-energy state, and the adiabatic availability Ψ of the system, i.e., the maximum work
the system can do in a process which produces no other external effects. It is therefore very
important that whenever we talk or make inferences about physical (i.e., thermodynamic)
entropy, we first agree on a precise definition.
In our opinion, one of the most rigorous and general axiomatic definitions of thermodynamic
entropy available in the literature is that given in (Gyftopoulos & Beretta, 2005), which extends
to the nonequilibrium domain one of the best traditional treatments available in the literature,
namely that presented by Fermi (Fermi, 1937).
In this paper, the treatment presented in (Gyftopoulos & Beretta, 2005) is assumed as a
starting point and the following improvements are introduced. The basic definitions of
system, state, isolated system, environment, process, separable system, and parameters of
a system are deepened, by developing a logical scheme outlined in (Zanchini, 1988; 1992).
Operative and general definitions of these concepts are presented, which are valid also in
the presence of internal semipermeable walls and reaction mechanisms. The treatment of
(Gyftopoulos & Beretta, 2005) is simplified, by identifying the minimal set of definitions,
assumptions and theorems which yield the definition of entropy and the principle of entropy
non-decrease. In view of the important role of entanglement in the ongoing and growing
interplay between Quantum Theory and Thermodynamics, the effects of correlations on the
additivity of energy and entropy are discussed and clarified. Moreover, the definition of a
reversible process is given with reference to a given scenario; the latter is the largest isolated
system whose subsystems are available for interaction, for the class of processes under exam.
Without introducing the quantum formalism, the approach is nevertheless compatible with it
(and indeed, it was meant to be so, see, e.g., Hatsopoulos & Gyftopoulos (1976); Beretta et al.
(1984; 1985); Beretta (1984; 1987; 2006; 2009)); it is therefore suitable to provide a basic
logical framework for the recent scientific revival of thermodynamics in Quantum Theory
[quantum heat engines (Scully, 2001; 2002), quantum Maxwell demons (Lloyd, 1989; 1997;
Giovannetti et al., 2003), quantum erasers (Scully et al., 1982; Kim et al., 2000), etc.] as well as
for the recent quest for quantum mechanical explanations of irreversibility [see, e.g., Lloyd
(2008); Bennett (2008); Hatsopoulos & Beretta (2008); Maccone (2009)].
The paper is organized as follows. In Section 2 we discuss the drawbacks of the traditional
definitions of entropy. In Section 3we introduce and discuss a full set of basic definitions, such
as those of system, state, process, etc. that form the necessary unambiguous background on
which to build our treatment. In Section 4we introduce the statement of the First Law and the
definition of energy. In Section 5we introduce and discuss the statement of the Second Law
and, through the proof of three important theorems, we build up the definition of entropy.
In Section 6we briefly complete the discussion by proving in our context the existence of the
fundamental relation for the stable equilibrium states and by defining temperature, pressure,
and other generalized forces. In Section 7we extend our definitions of energy and entropy to
the model of an open system. In Section 8we prove the existence of the fundamental relation
for the stable equilibrium states of an open system. In Section 9we draw our conclusions and,
in particular, we note that nowhere in our construction we use or need to define the concept
of heat.
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Rigorous and General Definition of Thermodynamic Entropy 3

2. Drawbacks of the traditional definitions of entropy

In traditional expositions of thermodynamics, entropy is defined in terms of the concept of
heat, which in turn is introduced at the outset of the logical development in terms of heuristic
illustrations based onmechanics. For example, in his lectures on physics, Feynman (Feynman,
1963) describes heat as one of several different forms of energy related to the jigglingmotion of
particles stuck together and tagging along with each other (pp. 1-3 and 4-2), a form of energy
which really is just kinetic energy — internal motion (p. 4-6), and is measured by the random
motions of the atoms (p. 10-8). Tisza (Tisza, 1966) argues that such slogans as “heat is motion”,
in spite of their fuzzy meaning, convey intuitive images of pedagogical and heuristic value.
There are at least three problemswith these illustrations. First, work and heat are not stored in
a system. Each is a mode of transfer of energy from one system to another. Second, concepts of
mechanics are used to justify and make plausible a notion — that of heat — which is beyond
the realm of mechanics; although at a first exposure one might find the idea of heat as motion
harmless, and even natural, the situation changes drastically when the notion of heat is used
to define entropy, and the logical loop is completed when entropy is shown to imply a host
of results about energy availability that contrast with mechanics. Third, and perhaps more
important, heat is a mode of energy (and entropy) transfer between systems that are very
close to thermodynamic equilibrium and, therefore, any definition of entropy based on heat
is bound to be valid only at thermodynamic equilibrium.
The first problem is addressed in some expositions. Landau and Lifshitz (Landau & Lifshitz,
1980) define heat as the part of an energy change of a body that is not due to work done on
it. Guggenheim (Guggenheim, 1967) defines heat as an exchange of energy that differs from
work and is determined by a temperature difference. Keenan (Keenan, 1941) defines heat as
the energy transferred from one system to a second system at lower temperature, by virtue of
the temperature difference, when the two are brought into communication. Similar definitions
are adopted in most other notable textbooks that are too many to list.
None of these definitions, however, addresses the basic problem. The existence of exchanges
of energy that differ from work is not granted by mechanics. Rather, it is one of the striking
results of thermodynamics, namely, of the existence of entropy as a property of matter.
As pointed out by Hatsopoulos and Keenan (Hatsopoulos & Keenan, 1965), without the
Second Law heat and work would be indistinguishable; moreover, the most general kind
of interaction between two systems which are very far from equilibrium is neither a heat
nor a work interaction. Following Guggenheim it would be possible to state a rigorous
definition of heat, with reference to a very special kind of interaction between two systems,
and to employ the concept of heat in the definition of entropy (Guggenheim, 1967). However,
Gyftopoulos and Beretta (Gyftopoulos & Beretta, 2005) have shown that the concept of heat is
unnecessarily restrictive for the definition of entropy, as it would confine it to the equilibrium
domain. Therefore, in agreement with their approach, we will present and discuss a definition
of entropy where the concept of heat is not employed.
Other problems are present in most treatments of the definition of entropy available in the
literature:

1. many basic concepts, such as those of system, state, property, isolated system, environment
of a system, adiabatic process are not defined rigorously;

2. on account of unnecessary assumptions (such as, the use of the concept of quasistatic
process), the definition holds only for stable equilibrium states (Callen, 1985), or for
systems which are in local thermodynamic equilibrium (Fermi, 1937);
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4 Thermodynamics

3. in the traditional logical scheme (Tisza, 1966; Landau & Lifshitz, 1980; Guggenheim, 1967;
Keenan, 1941; Hatsopoulos & Keenan, 1965; Callen, 1985; Fermi, 1937), some proofs are
incomplete.

To illustrate the third point, which is not well known, let us refer to the definition in (Fermi,
1937), which we consider one of the best traditional treatments available in the literature. In
order to define the thermodynamic temperature, Fermi considers a reversible cyclic engine
which absorbs a quantity of heat Q2 from a source at (empirical) temperature T2 and supplies
a quantity of heat Q1 to a source at (empirical) temperature T1. He states that if the engine
performs n cycles, the quantity of heat subtracted from the first source is nQ2 and the quantity
of heat supplied to the second source is nQ1. Thus, Fermi assumes implicitly that the quantity
of heat exchanged in a cycle between a source and a reversible cyclic engine is independent of
the initial state of the source. In our treatment, instead, a similar statement is made explicit,
and proved.

3. Basic definitions

Level of description, constituents, amounts of constituents, deeper level of description.
We will call level of description a class of physical models whereby all that can be said about
the matter contained in a given region of space R, at a time instant t, can be described
by assuming that the matter consists of a set of elementary building blocks, that we call
constituents, immersed in the electromagnetic field. Examples of constituents are: atoms,
molecules, ions, protons, neutrons, electrons. Constituents may combine and/or transform
into other constituents according to a set of model-specific reaction mechanisms.
For instance, at the chemical level of description the constituents are the different chemical
species, i.e., atoms, molecules, and ions; at the atomic level of description the constituents are
the atomic nuclei and the electrons; at the nuclear level of description they are the protons, the
neutrons, and the electrons.
The particle-like nature of the constituents implies that a counting measurement procedure is
always defined and, when performed in a region of space delimited by impermeable walls, it
is quantized in the sense that the measurement outcome is always an integer number, that
we call the number of particles. If the counting is selective for the i-th type of constituent
only, we call the resulting number of particles the amount of constituent i and denote it by
ni. When a number-of-particle counting measurement procedure is performed in a region of
space delimited by at least one ideal-surface patch, some particles may be found across the
surface. Therefore, an outcome of the procedure must also be the sum, for all the particles in
this boundary situation, of a suitably defined fraction of their spatial extensionwhich is within
the given region of space. As a result, the number of particles and the amount of constituent iwill
not be quantized but will have continuous spectra.
A level of description L2 is called deeper than a level of description L1 if the amount of every
constituent in L2 is conserved for all the physical phenomena considered, whereas the same
is not true for the constituents in L1. For instance, the atomic level of description is deeper
than the chemical one (because chemical reaction mechanisms do not conserve the number of
molecules of each type, whereas they conserve the number of nuclei of each type as well as
the number of electrons).
Levels of description typically have a hierarchical structure whereby the constituents of a
given level are aggregates of the constituents of a deeper level.
Region of space which contains particles of the i-th constituent. We will call region of space
which contains particles of the i-th constituent a connected region Ri of physical space (the

26 Thermodynamics

www.intechopen.com



Rigorous and General Definition of Thermodynamic Entropy 5

three-dimensional Euclidean space) in which particles of the i-th constituent are contained.
The boundary surface ofRi may be a patchwork ofwalls, i.e., surfaces impermeable to particles
of the i-th constituent, and ideal surfaces (permeable to particles of the i-th constituent). The
geometry of the boundary surface of Ri and its permeability topology nature (walls, ideal
surfaces) can vary in time, as well as the number of particles contained in Ri.

Collection of matter, composition. We will call collection of matter, denoted by CA, a set of
particles of one or more constituents which is described by specifying the allowed reaction
mechanisms between different constituents and, at any time instant t, the set of r connected
regions of space,RRRA = R

A
1 , . . . , R

A
i , . . . , R

A
r , each of which contains nA

i particles of a single kind

of constituent. The regions of space RRRA can vary in time and overlap. Two regions of space
may contain the same kind of constituent provided that they do not overlap. Thus, the i-th
constituent could be identical with the j-th constituent, provided that RA

i and RA
j are disjoint.

If, due to time changes, two regions of space which contain the same kind of constituent begin
to overlap, from that instant a new collection of matter must be considered.
Comment. This method of description allows to consider the presence of internal walls and/or
internal semipermeable membranes, i.e., surfaces which can be crossed only by some kinds of
constituents and not others. In the simplest case of a collection of matter without internal
partitions, the regions of space RRRA coincide at every time instant.
The amount ni of the constituent in the i-th region of space can vary in time for two reasons:

– matter exchange: during a time interval in which the boundary surface of Ri is not entirely
a wall, particles may be transferred into or out of Ri; we denote by ṅ

A← the set of rates at
which particles are transferred in or out of each region, assumed positive if inward, negative
if outward;

– reaction mechanisms: in a portion of space where two or more regions overlap, the
allowed reaction mechanisms may transform, according to well specified proportions (e.g.,
stoichiometry), particles of one or more regions into particles of one or more other regions.

Compatible compositions, set of compatible compositions. We say that two compositions,

n
1A and n

2A of a given collection of matter CA are compatible if the change between n
1A and

n
2A or viceversa can take place as a consequence of the allowed reaction mechanisms without

matter exchange. We will call set of compatible compositions for a system A the set of all the
compositions of A which are compatible with a given one. We will denote a set of compatible
compositions for A by the symbol (n0A, νννA). By this wemean that the set of τ allowed reaction
mechanisms is defined like for chemical reactions by a matrix of stoichiometric coefficients

νννA = [ν
(ℓ)
k ], with ν

(ℓ)
k representing the stoichiometric coefficient of the k-th constituent in the

ℓ-th reaction. The set of compatible compositions is a τ-parameter set defined by the reaction
coordinates εεεA = εA1 , . . . , ε

A
ℓ
, . . . , εAτ through the proportionality relations

n
A = n

0A + νννA · εεεA , (1)

where n
0A denotes the composition corresponding to the value zero of all the reaction

coordinates εεεA. To fix ideas and for convenience, we will select εεεA = 0 at time t= 0 so that n0A

is the composition at time t= 0 and we may call it the initial composition.
In general, the rate of change of the amounts of constituents is subject to the amounts balance
equations

ṅ
A = ṅ

A← + νννA · ε̇εεA . (2)

External force field. Let us denote by F a force field given by the superposition of a
gravitational field G, an electric field E, and a magnetic induction field B. Let us denote by
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6 Thermodynamics

ΣA
t the union of all the regions of spaceRRRA

t in which the constituents of CA are contained, at a

time instant t, which we also call region of space occupied by CA at time t. Let us denote by
ΣA the union of the regions of space ΣA

t , i.e., the union of all the regions of space occupied by

C
A during its time evolution.

We call external force field for CA at time t, denoted by FAe,t , the spatial distribution of Fwhich is

measured at time t in ΣA
t if all the constituents and the walls of CA are removed and placed

far away from ΣA
t . We call external force field for CA, denoted by FAe , the spatial and time

distribution of F which is measured in ΣA if all the constituents and the walls of CA are
removed and placed far away from ΣA.

System, properties of a system. We will call system A a collection of matter CA defined by the
initial composition n

0A, the stoichiometric coefficients νννA of the allowed reactionmechanisms,
and the possibly time-dependent specification, over the entire time interval of interest, of:

– the geometrical variables and the nature of the boundary surfaces that define the regions of
space RRRA

t ,

– the rates ṅA←
t at which particles are transferred in or out of the regions of space, and

– the external force field distribution FAe,t for C
A,

provided that the following conditions apply:

1. an ensemble of identically prepared replicas of CA can be obtained at any instant of time t,
according to a specified set of instructions or preparation scheme;

2. a set of measurement procedures, PA
1 , . . . ,PA

n , exists, such that when each PA
i is applied

on replicas of CA at any given instant of time t: each replica responds with a numerical
outcome which may vary from replica to replica; but either the time interval Δt employed
to perform the measurement can be made arbitrarily short so that the measurement
outcomes considered for PA

i are those which correspond to the limit as Δt → 0, or the
measurement outcomes are independent of the time interval Δt employed to perform the
measurement;

3. the arithmetic mean 〈PA
i 〉t of the numerical outcomes of repeated applications of any of

these procedures, PA
i , at an instant t, on an ensemble of identically prepared replicas, is

a value which is the same for every subensemble of replicas of CA (the latter condition
guarantees the so-called statistical homogeneity of the ensemble); 〈PA

i 〉t is called the value of

PA
i for CA at time t;

4. the set of measurement procedures, PA
1 , . . . ,PA

n , is complete in the sense that the set of

values {〈PA
1 〉t, . . . , 〈P

A
n 〉t} allows to predict the value of any other measurement procedure

satisfying conditions 2 and 3.

Then, each measurement procedure satisfying conditions 2 and 3 is called a property of system
A, and the set PA

1 , . . . ,PA
n a complete set of properties of system A.

Comment. Although in general the amounts of constituents, nnnA
t , and the reaction rates, ε̇εεt,

are properties according to the above definition, we will list them separately and explicitly
whenever it is convenient for clarity. In particular, in typical chemical kinetic models, ε̇εεt is
assumed to be a function of nnnA

t and other properties.
State of a system. Given a system A as just defined, we call state of system A at time t, denoted
by At, the set of the values at time t of
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Rigorous and General Definition of Thermodynamic Entropy 7

– all the properties of the system or, equivalently, of a complete set of properties,
{〈P1〉t, . . . , 〈Pn〉t},

– the amounts of constituents, nnnA
t ,

– the geometrical variables and the nature of the boundary surfaces of the regions of space
RRR

A
t ,

– the rates ṅA←
t of particle transfer in or out of the regions of space, and

– the external force field distribution in the region of space ΣA
t occupied by A at time t, FAe,t.

With respect to the chosen complete set of properties, we can write

At ≡
{

〈P1〉t, . . . , 〈Pn〉t;nnn
A
t ;RRR

A
t ; ṅ

A←
t ;FAe,t

}

. (3)

For shorthand, states At1 , At2 ,. . . , are denoted by A1, A2,. . . . Also, when the context allows it,
the value 〈PA〉t1 of property PA of system A at time t1 is denoted depending on convenience
by the symbol PA

1 , or simply P1.
Closed system, open system. A system A is called a closed system if, at every time instant t, the
boundary surface of every region of space RA

it is a wall. Otherwise, A is called an open system.

Comment. For a closed system, in each region of space RA
i , the number of particles of the i-th

constituent can change only as a consequence of allowed reaction mechanisms.
Composite system, subsystems. Given a system C in the external force field FCe , we
will say that C is the composite of systems A and B, denoted AB, if: (a) there exists a
pair of systems A and B such that the external force field which obtains when both A
and B are removed and placed far away coincides with FCe ; (b) no region of space RA

i

overlaps with any region of space RB
j ; and (c) the rC = rA + rB regions of space of C are

RRR
C = R

A
1 , . . . , R

A
i , . . . , R

A
rA ,R

B
1 , . . . , R

B
j , . . . , R

B
rB . Then we say that A and B are subsystems of the

composite system C, and we write C = AB and denote its state at time t by Ct = (AB)t.
Isolated system. We say that a closed system I is an isolated system in the stationary external
force field FI

e , or simply an isolated system, if, during the whole time evolution of I: (a) only
the particles of I are present in ΣI ; (b) the external force field for I, FI

e , is stationary, i.e., time
independent, and conservative.
Comment. In simpler words, a system I is isolated if, at every time instant: no other material
particle is present in the whole region of space ΣI which will be crossed by system I during
its time evolution; if system I is removed, only a stationary (vanishing or non-vanishing)
conservative force field is present in ΣI .
Separable closed systems. Consider a composite system AB, with A and B closed subsystems.
We say that systems A and B are separable at time t if:

– the force field external to A coincides (where defined) with the force field external to AB,
i.e., FAe,t = FAB

e,t ;

– the force field external to B coincides (where defined) with the force field external to AB,
i.e., FBe,t = FAB

e,t .

Comment. In simpler words, system A is separable from B at time t, if at that instant the force
field produced by B is vanishing in the region of space occupied by A and viceversa. During
the subsequent time evolution of AB, A and B need not remain separable at all times.
Subsystems in uncorrelated states. Consider a composite system AB such that at time t the
states At and Bt of the two subsystems fully determine the state (AB)t, i.e., the values of all
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the properties of AB can be determined by localmeasurements of properties of systems A and
B. Then, at time t, we say that the states of subsystems A and B are uncorrelated from each other,
and we write the state of AB as (AB)t = AtBt. We also say, for brevity, that A and B are systems
uncorrelated from each other at time t.
Correlated states, correlation. If at time t the states At and Bt do not fully determine the state
(AB)t of the composite system AB, we say that At and Bt are states correlated with each other.
We also say, for brevity, that A and B are systems correlated with each other at time t.
Comment. Two systems A and Bwhich are uncorrelated from each other at time t1 can undergo
an interaction such that they are correlated with each other at time t2 > t1.
Comment. Correlations between isolated systems. Let us consider an isolated system I = AB such
that, at time t, system A is separable and uncorrelated from B. This circumstance does not
exclude that, at time t, A and/or B (or both) may be correlated with a system C, even if the
latter is isolated, e.g. it is far away from the region of space occupied by AB. Indeed our
definitions of separability and correlation are general enough to be fully compatible with the
notion of quantum correlations, i.e., entanglement, which plays an important role in modern
physics. In other words, assume that an isolated system U is made of three subsystems A, B,
and C, i.e.,U = ABC, with C isolated and AB isolated. The fact that A is uncorrelated from B,
so that according to our notation we may write (AB)t = AtBt, does not exclude that A and C
may be entangled, in such a way that the states At and Ct do not determine the state of AC,
i.e., (AC)t �= AtCt, norwe can write Ut = (A)t(BC)t.
Environment of a system, scenario. If for the time span of interest a system A is a subsystem
of an isolated system I = AB, we can choose AB as the isolated system to be studied. Then,
we will call B the environment of A, and we call AB the scenario under which A is studied.
Comment. The chosen scenario AB contains as subsystems all and only the systems that are
allowed to interact with A; thus all the remaining systems in the universe, even if correlated
with AB, are considered as not available for interaction.
Comment. A system uncorrelated from its environment in one scenario, may be correlated with
its environment in a broader scenario. Consider a system A which, in the scenario AB, is
uncorrelated from its environment B at time t. If at time t system A is entangled with an
isolated system C, in the scenario ABC, A is correlated with its environment BC.
Process, cycle. We call process for a system A from state A1 to state A2 in the scenario AB,
denoted by (AB)1 → (AB)2, the change of state from (AB)1 to (AB)2 of the isolated system
AB which defines the scenario. We call cycle for a system A a process whereby the final state
A2 coincides with the initial state A1.
Comment. In every process of any system A, the force field FAB

e external to AB, where B is the
environment of A, cannot change. In fact, AB is an isolated system and, as a consequence, the
force field external to AB is stationary. Thus, in particular, for all the states in which a system
A is separable:

– the force field FAB
e external to AB, where B is the environment of A, is the same;

– the force field FAe external to A coincides, where defined, with the force field FAB
e external

to AB, i.e., the force field produced by B (if any) has no effect on A.

Process between uncorrelated states, external effects. A process in the scenario AB in which
the end states of system A are both uncorrelated from its environment B is called process

between uncorrelated states and denoted by Π
A,B
12 ≡ (A1 → A2)B1→B2

. In such a process, the
change of state of the environment B from B1 to B2 is called effect external to A. Traditional
expositions of thermodynamics consider only this kind of process.
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Rigorous and General Definition of Thermodynamic Entropy 9

Composite process. A time-ordered sequence of processes between uncorrelated states of

a system A with environment B, Π
A,B
1k = (ΠA,B

12 , Π
A,B
23 ,. . . , Π

A,B
(i−1)i

,. . . , Π
A,B
(k−1)k

) is called a

composite process if the final state of AB for process Π
A,B
(i−1)i

is the initial state of AB for

process Π
A,B
i(i+1)

, for i = 1,2, . . . ,k− 1. When the context allows the simplified notation Πi for

i = 1,2, . . . ,k − 1 for the processes in the sequence, the composite process may also be denoted
by (Π1, Π2,. . . , Πi,. . . , Πk−1).
Reversible process, reverse of a reversible process. A process for A in the scenario AB,
(AB)1 → (AB)2, is called a reversible process if there exists a process (AB)2 → (AB)1 which
restores the initial state of the isolated system AB. The process (AB)2 → (AB)1 is called reverse
of process (AB)1 → (AB)2. With different words, a process of an isolated system I = AB is
reversible if it can be reproduced as a part of a cycle of the isolated system I. For a reversible

process between uncorrelated states, Π
A,B
12 ≡ (A1 → A2)B1→B2

, the reverse will be denoted by

−Π
A,B
12 ≡ (A2 → A1)B2→B1

.
Comment. The reverse process may be achieved in more than one way (in particular, not
necessarily by retracing the sequence of states (AB)t, with t1 ≤ t≤ t2, followed by the isolated
system AB during the forward process).
Comment. The reversibility in one scenario does not grant the reversibility in another. If the smallest
isolated system which contains A is AB and another isolated system C exists in a different
region of space, one can choose as environment of A either B or BC. Thus, the time evolution
of A can be described by the process (AB)1 → (AB)2 in the scenario AB or by the process
(ABC)1 → (ABC)2 in the scenario ABC. For instance, the process (AB)1 → (AB)2 could
be irreversible, however by broadening the scenario so that interactions between AB and C
become available, a reverse process (ABC)2 → (ABC)1 may be possible. On the other hand,
a process (ABC)1 → (ABC)2 could be irreversible on account of an irreversible evolution
C1 → C2 of C, even if the process (AB)1 → (AB)2 is reversible.
Comment. A reversible process need not be slow. In the general framework we are setting up, it is
noteworthy that nowhere we state nor we need the concept that a process to be reversible
needs to be slow in some sense. Actually, as well represented in (Gyftopoulos & Beretta,
2005) and clearly understood within dynamical systems models based on linear or nonlinear
master equations, the time evolution of the state of a system is the result of a competition
between (hamiltonian) mechanisms which are reversible and (dissipative) mechanisms which
are not. So, to design a reversible process in the nonequilibrium domain, we most likely need
a fast process, whereby the state is changed quickly by a fast hamiltonian dynamics, leaving
negligible time for the dissipative mechanisms to produce irreversible effects.
Weight. We call weight a system M always separable and uncorrelated from its environment,
such that:

– M is closed, it has a single constituent contained in a single region of space whose shape
and volume are fixed,

– it has a constant mass m;

– in any process, the difference between the initial and the final state of M is determined
uniquely by the change in the position z of the center of mass of M, which can move only
along a straight line whose direction is identified by the unit vector k =∇z;

– along the straight line there is a uniform stationary external gravitational force field Ge =
−gk, where g is a constant gravitational acceleration.
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As a consequence, the difference in potential energy between any initial and final states of M
is given by mg(z2 − z1).
Weight process, work in a weight process. A process between states of a closed system A in
which A is separable and uncorrelated from its environment is called a weight process, denoted
by (A1 → A2)W , if the only effect external to A is the displacement of the center of mass of a
weight M between two positions z1 and z2. We call work performed by A (or, done by A) in the
weight process, denoted by the symbolWA→

12 , the quantity

WA→
12 = mg(z2 − z1) . (4)

Clearly, thework done by A is positive if z2 > z1 and negative if z2 < z1. Two equivalent symbols
for the opposite of this work, called work received by A, are −WA→

12 =WA←
12 .

Equilibrium state of a closed system. A state At of a closed system A, with environment B,
is called an equilibrium state if:

– A is a separable system at time t;

– state At does not change with time;

– state At can be reproduced while A is an isolated system in the external force field FAe ,
which coincides, where defined, with FAB

e .

Stable equilibrium state of a closed system. An equilibrium state of a closed system A in
which A is uncorrelated from its environment B, is called a stable equilibrium state if it cannot
be modified by any process between states in which A is separable and uncorrelated from
its environment such that neither the geometrical configuration of the walls which bound the
regions of spaceRRRA where the constituents of A are contained, nor the state of the environment
B of A have net changes.
Comment. The stability of equilibrium in one scenario does not grant the stability of equilibrium in
another. Consider a system A which, in the scenario AB, is uncorrelated from its environment
B at time t and is in a stable equilibrium state. If at time t system A is entangled with
an isolated system C, then in the scenario ABC, A is correlated with its environment BC,
therefore, our definition of stable equilibrium state is not satisfied.

4. Definition of energy for a closed system

First Law. Every pair of states (A1, A2) of a closed system A in which A is separable and
uncorrelated from its environment can be interconnected by means of a weight process for A.
The works performed by the system in any two weight processes between the same initial and
final states are identical.
Definition of energy for a closed system. Proof that it is a property. Let (A1, A2) be any pair
of states of a closed system A in which A is separable and uncorrelated from its environment.
We call energy difference between states A2 and A1 either the work WA←

12 received by A in any

weight process from A1 to A2 or the work WA→
21 done by A in any weight process from A2 to

A1; in symbols:

EA
2 − EA

1 =WA←
12 or EA

2 − EA
1 =WA→

21 . (5)

The first law guarantees that at least one of the weight processes considered in Eq. (5) exists.
Moreover, it yields the following consequences:
(a) if both weight processes (A1 → A2)W and (A2 → A1)W exist, the two forms of Eq. (5) yield
the same result (WA←

12 =WA→
21 );

(b) the energy difference between two states A2 and A1 in which A is separable and
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uncorrelated from its environment depends only on the states A1 and A2;
(c) (additivity of energy differences for separable systems uncorrelated from each other) consider a
pair of closed systems A and B; if A1B1 and A2B2 are states of the composite system AB such
that AB is separable and uncorrelated from its environment and, in addition, A and B are
separable and uncorrelated from each other, then

EAB
2 − EAB

1 = EA
2 − EA

1 + EB
2 − EB

1 ; (6)

(d) (energy is a property for every separable system uncorrelated from its environment) let A0 be
a reference state of a closed system A in which A is separable and uncorrelated from its
environment, to which we assign an arbitrarily chosen value of energy EA

0 ; the value of
the energy of A in any other state A1 in which A is separable and uncorrelated from its
environment is determined uniquely by the equation

EA
1 = EA

0 +WA←
01 or EA

1 = EA
0 +WA→

10 (7)

whereWA←
01 orWA→

10 is the work in any weight process for A either from A0 to A1 or from A1

to A0; therefore, energy is a property of A.
Rigorous proofs of these consequences can be found in (Gyftopoulos & Beretta, 2005;
Zanchini, 1986), and will not be repeated here. In the proof of Eq. (6), the restrictive condition
of the absence of correlations between AB and its environment as well as between A and B,
implicit in (Gyftopoulos & Beretta, 2005) and (Zanchini, 1986), can be released by means of an
assumption (Assumption 3) which is presented and discussed in the next section. As a result,
Eq. (6) holds also if (AB)1 e (AB)2 are arbitrarily chosen states of the composite system AB,
provided that AB, A and B are separable systems.

5. Definition of thermodynamic entropy for a closed system

Assumption 1: restriction to normal system. We will call normal system any system A that,
starting from every state in which it is separable and uncorrelated from its environment, can
be changed to a non-equilibrium state with higher energy by means of a weight process for A
in which the regions of space RRRA occupied by the constituents of A have no net change (and
A is again separable and uncorrelated from its environment).
From here on, we consider only normal systems; even when we say only system we mean a
normal system.
Comment. For a normal system, the energy is unbounded from above; the system can
accommodate an indefinite amount of energy, such as when its constituents have translational,
rotational or vibrational degrees of freedom. In traditional treatments of thermodynamics,
Assumption 1 is not stated explicitly, but it is used, for example when one states that any amount
of work can be transferred to a thermal reservoir by a stirrer. Notable exceptions to this
assumption are important quantum theoretical model systems, such as spins, qubits, qudits,
etc. whose energy is bounded from above. The extension of our treatment to such so-called
special systems is straightforward, but we omit it here for simplicity.
Theorem 1. Impossibility of a PMM2. If a normal system A is in a stable equilibrium state,
it is impossible to lower its energy by means of a weight process for A in which the regions of
space RRRA occupied by the constituents of A have no net change.
Proof. Suppose that, starting from a stable equilibrium state Ase of A, by means of a weight
process Π1 with positive work WA→ =W > 0, the energy of A is lowered and the regions of
spaceRRRA occupied by the constituents of A have no net change. On account of Assumption 1,
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it would be possible to perform a weight process Π2 for A in which the regions of space RRRA

occupied by the constituents of A have no net change, the weight M is restored to its initial
state so that the positive amount of energy WA← = W > 0 is supplied back to A, and the
final state of A is a nonequilibrium state, namely, a state clearly different from Ase. Thus, the
zero-work composite process (Π1, Π2) would violate the definition of stable equilibrium state.
Comment. Kelvin-Planck statement of the Second Law. As noted in (Hatsopoulos & Keenan, 1965)
and (Gyftopoulos & Beretta, 2005, p.64), the impossibility of a perpetual motion machine of
the second kind (PMM2), which is also known as the Kelvin-Planck statement of the Second Law,
is a corollary of the definition of stable equilibrium state, provided that we adopt the (usually
implicitly) restriction to normal systems (Assumption 1).
Second Law. Among all the states in which a closed system A is separable and uncorrelated
from its environment and the constituents of A are contained in a given set of regions of space
RRR

A, there is a stable equilibrium state for every value of the energy EA.
Lemma 1. Uniqueness of the stable equilibrium state. There can be no pair of different stable
equilibrium states of a closed system Awith identical regions of spaceRRRA and the same value
of the energy EA.
Proof. Since A is closed and in any stable equilibrium state it is separable and uncorrelated
from its environment, if two such states existed, by the first law and the definition of energy
they could be interconnected by means of a zero-workweight process. So, at least one of them
could be changed to a different state with no external effect, and hence would not satisfy the
definition of stable equilibrium state.
Comment. Recall that for a closed system, the composition nnnA belongs to the set of compatible
compositions (n0A, νννA) fixed once and for all by the definition of the system.
Comment. Statements of the Second Law. The combination of our statement of the Second
Law and Lemma 1 establishes, for a closed system whose matter is constrained into given
regions of space, the existence and uniqueness of a stable equilibrium state for every value
of the energy; this proposition is known as the Hatsopoulos-Keenan statement of the Second
Law (Hatsopoulos & Keenan, 1965). Well-known historical statements of the Second Law,
in addition to the Kelvin-Planck statement discussed above, are due to Clausius and to
Carathéodory. In (Gyftopoulos & Beretta, 2005, p.64, p.121, p.133) it is shown that each of
these historical statements is a logical consequence of the Hatsopoulos-Keenan statement
combined with a further assumption, essentially equivalent to our Assumption 2 below.
Lemma 2. Any stable equilibrium state As of a closed system A is accessible via an irreversible
zero-work weight process from any other state A1 in which A is separable and uncorrelated
with its environment and has the same regions of space RRRA and the same value of the energy
EA.
Proof. By the first law and the definition of energy, As and A1 can be interconnected by
a zero-work weight process for A. However, a zero-work weight process from As to A1

would violate the definition of stable equilibrium state. Therefore, the process must be in the
direction from A1 to As. The absence of a zero-work weight process in the opposite direction,
implies that any zero-work weight process from A1 to As is irreversible.
Corollary 1. Any state in which a closed system A is separable and uncorrelated from its
environment can be changed to a unique stable equilibrium state by means of a zero-work
weight process for A in which the regions of spaceRRRA have no net change.
Proof. The thesis follows immediately from the Second Law, Lemma 1 and Lemma 2.
Mutual stable equilibrium states. We say that two stable equilibrium states Ase and Bse are
mutual stable equilibrium states if, when A is in state Ase and B in state Bse, the composite system
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AB is in a stable equilibrium state. The definition holds also for a pair of states of the same
system: in this case, system AB is composed of A and of a duplicate of A.
Identical copy of a system. We say that a system Ad, always separable from A and
uncorrelated with A, is an identical copy of system A (or, a duplicate of A) if, at every time
instant:

– the difference between the set of regions of spaceRRRAd
occupied by the matter of Ad and that

RRR
A occupied by the matter of A is only a rigid translation Δr with respect to the reference

frame considered, and the composition of Ad is compatible with that of A;

– the external force field for Ad at any position r+ Δr coincides with the external force field
for A at the position r.

Thermal reservoir. We call thermal reservoir a system R with a single constituent, contained in
a fixed region of space, with a vanishing external force field, with energy values restricted to a
finite range such that in any of its stable equilibrium states, R is in mutual stable equilibrium
with an identical copy of R, Rd, in any of its stable equilibrium states.
Comment. Every single-constituent system without internal boundaries and applied external
fields, and with a number of particles of the order of one mole (so that the simple system
approximation as defined in (Gyftopoulos & Beretta, 2005, p.263) applies), when restricted to
a fixed region of space of appropriate volume and to the range of energy values corresponding
to the so-called triple-point stable equilibrium states, is an excellent approximation of a thermal
reservoir.
Reference thermal reservoir. A thermal reservoir chosen once and for all, will be called a
reference thermal reservoir. To fix ideas, we will choose as our reference thermal reservoir one
having water as constituent, with a volume, an amount, and a range of energy values which
correspond to the so-called solid-liquid-vapor triple-point stable equilibrium states.
Standard weight process. Given a pair of states (A1,A2) of a closed system A, in which A is
separable and uncorrelated from its environment, and a thermal reservoir R, we call standard
weight process for AR from A1 to A2 a weight process for the composite system AR in which
the end states of R are stable equilibrium states. We denote by (A1R1 → A2R2)

sw a standard
weight process for AR from A1 to A2 and by (ΔER)swA1A2

the corresponding energy change of
the thermal reservoir R.
Assumption 2. Every pair of states (A1, A2) in which a closed system A is separable and
uncorrelated from its environment can be interconnected by a reversible standard weight
process for AR, where R is an arbitrarily chosen thermal reservoir.
Theorem 2. For a given closed system A and a given reservoir R, among all the standard
weight processes for AR between a given pair of states (A1, A2) in which system A is separable
and uncorrelated from its environment, the energy change (ΔER)swA1A2

of the thermal reservoir
R has a lower bound which is reached if and only if the process is reversible.
Proof. Let ΠAR denote a standard weight process for AR from A1 to A2, and ΠARrev a
reversible one; the energy changes of R in processes ΠAR and ΠARrev are, respectively,
(ΔER)swA1A2

and (ΔER)swrev
A1A2

. With the help of Figure 1, we will prove that, regardless of the
initial state of R:
a) (ΔER)swrev

A1A2
≤ (ΔER)swA1A2

;

b) if also ΠAR is reversible, then (ΔER)swrev
A1A2

= (ΔER)swA1A2
;

c) if (ΔER)swrev
A1A2

= (ΔER)swA1A2
, then also ΠAR is reversible.

Proof of a). Let us denote by R1 and by R2 the initial and the final states of R in process
ΠARrev. Let us denote by Rd the duplicate of R which is employed in process ΠAR, by Rd

3
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Fig. 1. Illustration of the proof of
Theorem 2: standard weight
processes ΠARrev (reversible) and
ΠAR; R

d is a duplicate of R; see text.
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Fig. 2. Illustration of the proof of
Theorem 3, part a): reversible
standard weight processes ΠAR′ and
ΠAR′′ , see text.

and by Rd
4 the initial and the final states of Rd in this process. Let us suppose, ab absurdo, that

(ΔER)swrev
A1A2

> (ΔER)swA1A2
. Then, the composite process (−ΠARrev, ΠAR) would be a weight

process for RRd in which, starting from the stable equilibrium state R2R
d
3, the energy of RRd

is lowered and the regions of space occupied by the constituents of RRd have no net change,
in contrast with Theorem 1. Therefore, (ΔER)swrev

A1A2
≤ (ΔER)swA1A2

.

Proof of b). If ΠAR is reversible too, then, in addition to (ΔER)swrev
A1A2

≤ (ΔER)swA1A2
, the relation

(ΔER)swA1A2
≤ (ΔER)swrev

A1A2
must hold too. Otherwise, the composite process (ΠARrev, −ΠAR)

would be a weight process for RRd in which, starting from the stable equilibrium state R1R
d
4 ,

the energy of RRd is lowered and the regions of space occupied by the constituents of RRd

have no net change, in contrast with Theorem 1. Therefore, (ΔER)swrev
A1A2

= (ΔER)swA1A2
.

Proof of c). Let ΠAR be a standard weight process for AR, from A1 to A2, such that
(ΔER)swA1A2

= (ΔER)swrev
A1A2

, and let R1 be the initial state of R in this process. Let ΠARrev be
a reversible standard weight process for AR, from A1 to A2, with the same initial state R1

of R. Thus, Rd
3 coincides with R1 and Rd

4 coincides with R2. The composite process (ΠAR,
−ΠARrev) is a cycle for the isolated system ARB, where B is the environment of AR. As a
consequence, ΠAR is reversible, because it is a part of a cycle of the isolated system ARB.
Theorem 3. Let R′ and R′′ be any two thermal reservoirs and consider the energy changes,

(ΔER′
)swrev
A1A2

and (ΔER′′
)swrev
A1A2

respectively, in the reversible standard weight processes ΠAR′ =

(A1R
′
1 → A2R

′
2)

swrev and ΠAR′′ = (A1R
′′
1 → A2R

′′
2 )

swrev, where (A1, A2) is an arbitrarily
chosen pair of states of any closed system A in which A is separable and uncorrelated from

its environment. Then the ratio (ΔER′
)swrev
A1A2

/(ΔER′′
)swrev
A1A2

:
a) is positive;
b) depends only on R′ and R′′, i.e., it is independent of (i) the initial stable equilibrium states
of R′ and R′′, (ii) the choice of system A, and (iii) the choice of states A1 and A2.

Proof of a). With the help of Figure 2, let us suppose that (ΔER′
)swrev
A1A2

< 0. Then, (ΔER′′
)swrev
A1A2

cannot be zero. In fact, in that case the composite process (ΠAR′ , −ΠAR′′), which is a cycle
for A, would be a weight process for R′ in which, starting from the stable equilibrium state
R′
1, the energy of R′ is lowered and the regions of space occupied by the constituents of R′

have no net change, in contrast with Theorem 1. Moreover, (ΔER′′
)swrev
A1A2

cannot be positive. In

fact, if it were positive, the work performed by R′R′′ as a result of the overall weight process
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Fig. 3. Illustration of the proof of Theorem 3, part b): composite processes ΠA and ΠA′ ), see
text.

(ΠAR′ , −ΠAR′′) for R′R′′ would be

WR′R′′→ = −(ΔER′
)swrev
A1A2

+ (ΔER′′
)swrev
A1A2

, (8)

where both terms are positive. On account of Assumption 1 and Corollary 1, after the process
(ΠAR′ , −ΠAR′′), one could perform a weight process ΠR′′ for R′′ in which a positive amount

of energy equal to (ΔER′′
)swrev
A1A2

is given back to R′′ and the latter is restored to its initial stable
equilibrium state. As a result, the composite process (ΠAR′ , −ΠAR′′ , ΠR′′) would be a weight
process for R′ in which, starting from the stable equilibrium state R′

1, the energy of R′ is
lowered and the region of space occupied by occupied by R′ has no net change, in contrast

with Theorem 1. Therefore, the assumption (ΔER′
)swrev
A1A2

< 0 implies (ΔER′′
)swrev
A1A2

< 0.

Let us suppose that (ΔER′
)swrev
A1A2

> 0. Then, for process −ΠAR′ one has (ΔER′
)swrev
A2A1

< 0. By

repeating the previous argument, one proves that for process−ΠAR′′ one has (ΔER′′
)swrev
A2A1

< 0.

Therefore, for process ΠAR′′ one has (ΔER′′
)swrev
A1A2

> 0.
Proof of b). Given a pair of states (A1, A2) of a closed system A, consider the reversible
standard weight process ΠAR′ = (A1R

′
1 → A2R

′
2)

swrev for AR′, with R′ initially in state R′
1,

and the reversible standard weight process ΠAR′′ = (A1R
′′
1 → A2R

′′
2 )

swrev for AR′′, with R′′

initially in state R′′
1 . Moreover, given a pair of states (A′

1, A′
2) of another closed system

A′, consider the reversible standard weight process ΠA′R′ = (A′
1R

′
1 → A′

2R
′
2)

swrev for A′R′,
with R′ initially in state R′

1, and the reversible standard weight process ΠA′R′′ = (A′
1R

′′
1 →

A′
2R

′′
2 )

swrev for A′R′′, with R′′ initially in state R′′
1 .

With the help of Figure 3, we will prove that the changes in energy of the reservoirs in these
processes obey the relation

(ΔER′
)swrev
A1A2

(ΔER′′)swrev
A1A2

=
(ΔER′

)swrev
A′

1A
′
2

(ΔER′′)swrev
A′

1A
′
2

. (9)

Let us assume: (ΔER′
)swrev
A1A2

> 0 and (ΔER′
)swrev
A′

1A
′
2
> 0, which implies, (ΔER′′

)swrev
A1A2

> 0 and

(ΔER′′
)swrev
A′

1A
′
2
> 0 on account of part a) of the proof. This is not a restriction, because it is

possible to reverse the processes under exam. Now, as is well known, any real number
can be approximated with an arbitrarily high accuracy by a rational number. Therefore, we

will assume that the energy changes (ΔER′
)swrev
A1A2

and (ΔER′
)swrev
A′

1A
′
2
are rational numbers, so

that whatever is the value of their ratio, there exist two positive integers m and n such that

(ΔER′
)swrev
A1A2

/(ΔER′
)swrev
A′

1A
′
2
= n/m, i.e.,

m (ΔER′
)swrev
A1A2

= n (ΔER′
)swrev
A′

1A
′
2

. (10)
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Therefore, as sketched in Figure 3, let us consider the composite processes ΠA and Π′
A defined

as follows. ΠA is the following composite weight process for system AR′R′′: starting from the
initial state R′

1 of R
′ and R′′

2 of R′′, system A is brought from A1 to A2 by a reversible standard
weight process for AR′, then from A2 to A1 by a reversible standard weight process for AR′′;
whatever the new states of R′ and R′′ are, again system A is brought from A1 to A2 by a
reversible standard weight process for AR′ and back to A1 by a reversible standard weight
process for AR′′, until the cycle for A is repeatedm times. Similarly, ΠA′ is a composite weight
processes for system A′R′R′′ whereby starting from the end states of R′ and R′′ reached by
ΠA, system A′ is brought from A′

1 to A′
2 by a reversible standard weight process for A′R′′,

then from A′
2 to A′

1 by a reversible standard weight process for A′R′; and so on until the cycle
for A′ is repeated n times.
Clearly, the whole composite process (ΠA, ΠA

′) is a cycle for AA′. Moreover, it is a cycle also
for R′. In fact, on account of Theorem 2, the energy change of R′ in each process ΠAR′ is equal

to (ΔER′
)swrev
A1A2

regardless of its initial state, and in each process −ΠA′R′ the energy change of

R′ is equal to −(ΔER′
)swrev
A′

1A
′
2
. Therefore, the energy change of R′ in the composite process (ΠA,

Π′
A) is m (ΔER′

)swrev
A1A2

− n (ΔER′
)swrev
A′

1A
′
2
and equals zero on account of Eq. (10). As a result, after

(ΠA, Π′
A), reservoir R

′ has been restored to its initial state, so that (ΠA, Π′
A) is a reversible

weight process for R′′.
Again on account of Theorem 2, the overall energy change of R′′ in (ΠA, Π′

A) is

−m (ΔER′′
)swrev
A1A2

+ n (ΔER′′
)swrev
A′

1A
′
2
. If this quantity were negative, Theorem 1 would be

violated. If this quantity were positive, Theorem 1 would also be violated by the reverse

of the process, (−Π′
A, −ΠA). Therefore, the only possibility is that −m (ΔER′′

)swrev
A1A2

+

n (ΔER′′
)swrev
A′

1A
′
2
= 0, i.e.,

m (ΔER′′
)swrev
A1A2

= n (ΔER′′
)swrev
A′

1A
′
2

. (11)

Finally, taking the ratio of Eqs. (10) and (11), we obtain Eq. (9) which is our conclusion.
Temperature of a thermal reservoir. Let R be a given thermal reservoir and Ro a reference
thermal reservoir. Select an arbitrary pair of states (A1, A2) in which an arbitrary closed
system A is separable and uncorrelated from its environment, and consider the energy
changes (ΔER)swrev

A1A2
and (ΔERo

)swrev
A1A2

in two reversible standard weight processes from A1

to A2, one for AR and the other for ARo, respectively. We call temperature of R the positive
quantity

TR = TRo

(ΔER)swrev
A1A2

(ΔERo)swrev
A1A2

, (12)

where TRo is a positive constant associated arbitrarily with the reference thermal reservoir Ro .
If for Ro we select a thermal reservoir having water as constituent, with energy restricted to
the solid-liquid-vapor triple-point range, and we set TRo = 273.16 K, we obtain the unit kelvin
(K) for the thermodynamic temperature, which is adopted in the International System of Units
(SI). Clearly, the temperature TR of R is defined only up to an arbitrary multiplicative constant.
Corollary 2. The ratio of the temperatures of two thermal reservoirs, R′ and R′′, is
independent of the choice of the reference thermal reservoir and can be measured directly
as

TR′

TR′′
=

(ΔER′
)swrev
A1A2

(ΔER′′)swrev
A1A2

, (13)
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where (ΔER′
)swrev
A1A2

and (ΔER′′
)swrev
A1A2

are the energy changes of R′ and R′′ in two reversible

standard weight processes, one for AR′ and the other for AR′′, which interconnect the same
but otherwise arbitrary pair of states (A1, A2) in which a closed system A is separable and
uncorrelated from its environment.
Proof. Let (ΔERo

)swrev
A1A2

be the energy change of the reference thermal reservoir Ro in any
reversible standard weight process for ARo which interconnects the same states (A1, A2) of A.
From Eq. (12) we have

TR ′ = TRo

(ΔER′
)swrev
A1A2

(ΔERo)swrev
A1A2

, (14)

TR ′′ = TRo

(ΔER′′
)swrev
A1A2

(ΔERo)swrev
A1A2

, (15)

therefore the ratio of Eqs. (14) and (15) yields Eq. (13).
Corollary 3. Let (A1, A2) be any pair of states in which a closed system A is separable and
uncorrelated from its environment, and let (ΔER)swrev

A1A2
be the energy change of a thermal

reservoir Rwith temperature TR, in any reversible standard weight process for AR from A1 to
A2. Then, for the given system A, the ratio (ΔER)swrev

A1A2
/TR depends only on the pair of states

(A1, A2), i.e., it is independent of the choice of reservoir R and of its initial stable equilibrium
state R1.
Proof. Let us consider two reversible standard weight processes from A1 to A2, one for AR′

and the other for AR′′, where R′ is a thermal reservoir with temperature TR′ and R′′ is a
thermal reservoir with temperature TR′′ . Then, equation (13) yields

(ΔER′
)swrev
A1A2

TR′
=

(ΔER′′
)swrev
A1A2

TR′′
. (16)

Definition of (thermodynamic) entropy for a closed system. Proof that it is a property. Let
(A1 , A2) be any pair of states in which a closed system A is separable and uncorrelated from
its environment B, and let R be an arbitrarily chosen thermal reservoir placed in B. We call
entropy difference between A2 and A1 the quantity

SA
2 − SA

1 = −
(ΔER)swrev

A1A2

TR
(17)

where (ΔER)swrev
A1A2

is the energy change of R in any reversible standard weight process for AR
from A1 to A2, and TR is the temperature of R. On account of Corollary 3, the right hand side
of Eq. (17) is determined uniquely by states A1 and A2.
Let A0 be a reference state in which A is separable and uncorrelated from its environment,
to which we assign an arbitrarily chosen value of entropy SA

0 . Then, the value of the entropy
of A in any other state A1 in which A is separable and uncorrelated from its environment, is
determined uniquely by the equation

SA
1 = SA

0 −
(ΔER)swrev

A1A0

TR
, (18)

where (ΔER)swrev
A1A0

is the energy change of R in any reversible standard weight process for AR
from A0 to A1, and TR is the temperature of R. Such a process exists for every state A1, on
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account of Assumption 2. Therefore, entropy is a property of A and is defined for every state
of A in which A is separable and uncorrelated from its environment.
Theorem 4. Additivity of entropy differences for uncorrelated states. Consider the pairs
of states (C1 = A1B1,C2 = A2B2) in which the composite system C = AB is separable and
uncorrelated from its environment, and systems A and B are separable and uncorrelated from
each other. Then,

SAB
A2B2

− SAB
A1B1

= SA
2 − SA

1 + SB2 − SB1 . (19)

Proof. Let us choose a thermal reservoir R, with temperature TR, and consider the composite
process (ΠAR, ΠBR) where ΠAR is a reversible standard weight process for AR from A1 to
A2, while ΠBR is a reversible standard weight process for BR from B1 to B2. The composite
process (ΠAR, ΠBR) is a reversible standard weight process for CR from C1 to C2, in which
the energy change of R is the sum of the energy changes in the constituent processes ΠAR and
ΠBR, i.e., (ΔER)swrev

C1C2
= (ΔER)swrev

A1A2
+ (ΔER)swrev

B1B2
. Therefore:

(ΔER)swrev
C1C2

TR
=

(ΔER)swrev
A1A2

TR
+

(ΔER)swrev
B1B2

TR
. (20)

Equation (20) and the definition of entropy (17) yield Eq. (19).
Comment. As a consequence of Theorem 4, if the values of entropy are chosen so that they
are additive in the reference states, entropy results as an additive property. Note, however,
that the proof of additivity requires that (A1,B1) and (A2,B2) are pairs of states such that the
subsystems A and B are uncorrelated from each other.
Theorem 5. Let (A1, A2) be any pair of states in which a closed system A is separable and
uncorrelated from its environment and let R be a thermal reservoir with temperature TR. Let
ΠARirr be any irreversible standard weight process for AR from A1 to A2 and let (ΔER)swirr

A1A2

be the energy change of R in this process. Then

−
(ΔER)swirr

A1A2

TR
< SA

2 − SA
1 . (21)

Proof. Let ΠARrev be any reversible standard weight process for AR from A1 to A2 and let
(ΔER)swrev

A1A2
be the energy change of R in this process. On account of Theorem 2,

(ΔER)swrev
A1A2

< (ΔER)swirr
A1A2

. (22)

Since TR is positive, from Eqs. (22) and (17) one obtains

−
(ΔER)swirr

A1A2

TR
< −

(ΔER)swrev
A1A2

TR
= SA

2 − SA
1 . (23)

Theorem 6. Principle of entropy nondecrease. Let (A1,A2) be a pair of states in which a
closed system A is separable and uncorrelated from its environment and let (A1 → A2)W be
any weight process for A from A1 to A2. Then, the entropy difference SA

2 − SA
1 is equal to zero

if and only if the weight process is reversible; it is strictly positive if and only if the weight
process is irreversible.
Proof. If (A1 → A2)W is reversible, then it is a special case of a reversible standard weight
process for AR in which the initial stable equilibrium state of R does not change. Therefore,
(ΔER)swrev

A1A2
= 0 and by applying the definition of entropy, Eq. (17), one obtains

SA
2 − SA

1 = −
(ΔER)swrev

A1A2

TR
= 0 . (24)
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If (A1 → A2)W is irreversible, then it is a special case of an irreversible standard weight
process for AR in which the initial stable equilibrium state of R does not change. Therefore,
(ΔER)swirr

A1A2
= 0 and Equation (21) yields

SA
2 − SA

1 > −
(ΔER)swirr

A1A2

TR
= 0 . (25)

Moreover: if a weight process (A1 → A2)W for A is such that SA
2 − SA

1 = 0, then the process

must be reversible, because we just proved that for any irreversible weight process SA
2 − SA

1 >

0; if a weight process (A1 → A2)W for A is such that SA
2 − SA

1 > 0, then the process must be

irreversible, because we just proved that for any reversible weight process SA
2 − SA

1 = 0.
Corollary 4. If states A1 and A2 can be interconnected by means of a reversible weight process
for A, they have the same entropy. If states A1 and A2 can be interconnected by means of a
zero-work reversible weight process for A, they have the same energy and the same entropy.
Proof. These are straightforward consequences of Theorem 6 together with the definition of
energy.
Theorem 7. Highest-entropy principle. Among all the states of a closed system A such that
A is separable and uncorrelated from its environment, the constituents of A are contained in
a given set of regions of space RRRA and the value of the energy EA of A is fixed, the entropy of
A has the highest value only in the unique stable equilibrium state Ase determined byRRRA and
EA.
Proof. Let Ag be any other state of A in the set of states considered here. On account of the
first law and of the definition of energy, Ag and Ase can be interconnected by a zero work
weight process for A, either (Ag → Ase)W or (Ase → Ag)W . However, the existence of a zero
work weight process (Ase → Ag)W would violate the definition of stable equilibrium state.
Therefore, a zero work weight process (Ag → Ase)W exists and is irreversible, so that Theorem

6 implies SA
se > SA

g .
Assumption 3. Existence of spontaneous decorrelations and impossibility of spontaneous
creation of correlations. Consider a system AB composed of two closed subsystems A and
B. Let (AB)1 be a state in which AB is separable and uncorrelated from its environment and
such that in the corresponding states A1 and B1, systems A and B are separable but correlated;
let A1B1 be the state of AB such that the corresponding states A1 and B1 of A and B are the
same as for state (AB)1, but A and B are uncorrelated. Then, a zero work weight process
((AB)1 → A1B1)W for AB is possible, while a weight process (A1B1 → (AB)1)W for AB is
impossible.
Corollary 5. Energy difference between states of a composite system in which subsystems
are correlated with each other. Let (AB)1 and (AB)2 be states of a composite system AB in
which AB is separable and uncorrelated from its environment, while systems A and B are
separable but correlated with each other. We have

EAB
(AB)2

− EAB
(AB)1

= EAB
A2B2

− EAB
A1B1

= EA
2 − EA

1 + EB
2 − EB

1 . (26)

Proof. Since a zero work weight process ((AB)1 → A1B1)W for AB exists on account of
Assumption 3, states (AB)1 and A1B1 have the same energy. In other words, the energy of a
composite system in state (AB)1 with separable but correlated subsystems coincides with the
energy of the composite system in state A1B1 where its separable subsystems are uncorrelated
in the corresponding states A1 and A2.
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Definition of energy for a state in which a system is correlated with its environment. On
account of Eq. (26), we will say that the energy of a system A in a state A1 in which A is
correlated with its environment is equal to the energy of system A in the corresponding state
A1 in which A is uncorrelated from its environment.
Comment. Equation (26) and the definition of energy for a state in which a system is correlated
with its environment extend the definition of energy and the proof of the additivity of energy
differences presented in (Gyftopoulos & Beretta, 2005; Zanchini, 1986) to the case in which
systems A and B are separable but correlated with each other.
To our knowledge, Assumption 3 (never made explicit) underlies all reasonable models of
relaxation and decoherence.
Corollary 6. De-correlation entropy. Given a pair of (different) states (AB)1 and A1B1 as
defined in Assumption 3, then we have

σAB
(AB)1

= SAB
A1B1

− SAB
(AB)1

> 0 , (27)

where the positive quantity σAB
1 is called the de-correlation entropy1 of state (AB)1. Clearly, if

the subsystems are uncorrelated, i.e., if (AB)1 = A1B1, then σAB
(AB)1

= σAB
A1B1

= 0.

Proof. On account of Assumption 3, a zero work weight process ΠAB = ((AB)1 → A1B1)W
for AB exists. Process ΠAB is irreversible, because the reversibility of ΠAB would require the
existence of a zero work weight process for AB from A1B1 to (AB)1, which is excluded by
Assumption 3. Since ΠAB is irreversible, Theorem 6 yields the conclusion.
Comment. Let (AB)1 and (AB)2 be a pair of states of a composite system AB such that AB
is separable and uncorrelated from its environment, while subsystems A and B are separable
but correlated with each other. Let A1B1 and A2B2 be the corresponding pairs of states of AB,
in which the subsystems A and B are in the same states as before, but are uncorrelated from
each other. Then, the entropy difference between (AB)2 and (AB)1 is not equal to the entropy
difference between A2B2 and A1B1 and therefore, on account of Eq. (19), it is not equal to the
sum of the entropy difference between A2 and A1 and the entropy difference between B2 and
B1, evaluated in the corresponding states in which subsystems A and B are uncorrelated from
each other. In fact, combining Eq. (19) with Eq. (27), we have

SAB
(AB)2

− SAB
(AB)1

= (SA
2 − SA

1 ) + (SB2 − SB1 )− (σAB
(AB)2

− σAB
(AB)1

) . (28)

6. Fundamental relation, temperature, and Gibbs relation for closed systems

Set of equivalent stable equilibrium states. We will call set of equivalent stable equilibrium
states of a closed system A, denoted ESEA, a subset of its stable equilibrium states such that
any pair of states in the set:

– differ from one another by some geometrical features of the regions of space RRRA;

– have the same composition;

– can be interconnected by a zero-work reversible weight process for A and, hence, by
Corollary 4, have the same energy and the same entropy.

Comment. Let us recall that, for all the stable equilibrium states of a closed system A in a
scenario AB, system A is separable and the external force field FA

e = FAB
e is the same; moreover,

all the compositions of A belong to the same set of compatible compositions (n0A,νA).

1Explicit expressions of this property in the quantum formalism are given, e.g., in Wehrl (1978);
Beretta et al. (1985); Lloyd (1989).
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Parameters of a closed system. We will call parameters of a closed system A, denoted by
βββA = βA

1 , . . . ,β
A
s , a minimal set of real variables sufficient to fully and uniquely parametrize

all the different sets of equivalent stable equilibrium states ESEA of A. In the following, we
will consider systems with a finite number s of parameters.
Examples. Consider a system A consisting of a single particle confined in spherical region of
space of volume V; the box is centered at position r which can move in a larger region where
there are no external fields. Then, it is clear that any rotation or translation of the spherical box
within the larger region can be effected in a zero-work weight process that does not alter the
rest of the state. Therefore, the position of the center of the box is not a parameter of the system.
The volume instead is a parameter. The same holds if the box is cubic. If it is a parallelepiped,
instead, the parameters are the sides ℓ1, ℓ2, ℓ3 but not its position and orientation. For a more
complex geometry of the box, the parameters are any minimal set of geometrical features
sufficient to fully describe its shape, regardless of its position and orientation. The same if
instead of one, the box contains many particles.
Suppose now we have a spherical box, with one or many particles, that can be moved in a
larger region where there are k subregions, each much larger than the box and each with an
external electric field everywhere parallel to the x axis and with uniform magnitude Eek. As
part of the definition of the system, let us restrict it only to the states such that the box is
fully contained in one of these regions. For this system, the magnitude of Ee can be changed
in a weight process by moving A from one uniform field subregion to another, but this in
general will vary the energy. Therefore, in addition to the volume of the sphere, this system
will have k as a parameter identifying the subregion where the box is located. Equivalently,
the subregion can be identified by the parameter Ee taking values in the set {Eek}. For each
value of the energy E, system A has a set ESEA for every pair of values of the parameters (V,
Ee) with Ee in {Eek}.
Corollary 7. Fundamental relation for the stable equilibrium states of a closed system. On
the set of all the stable equilibrium states of a closed system A (in scenario AB, for given
initial composition n

0A, stoichiometric coefficients νAνAνA and external force field FA
e ), the entropy

is given by a single valued function

SA
se = SA

se(E
A,βββA) , (29)

which is called fundamental relation for the stable equilibrium states of A. Moreover, also the
reaction coordinates are given by a single valued function

εεεAse = εεεAse(E
A,βββA) , (30)

which specifies the unique composition compatible with the initial composition n
0A, called

the chemical equilibrium composition.
Proof. On account of the Second Law and Lemma 1, among all the states of a closed system
A with energy EA, the regions of space RRRA identify a unique stable equilibrium state. This
implies the existence of a single valued function Ase = Ase(EA,RRRA), where Ase denotes the
state, in the sense of Eq. (3). By definition, for each value of the energy EA, the values
of the parameters βββA fully identify all the regions of space RRRA that correspond to a set of
equivalent stable equilibrium states ESEA, which have the same value of the entropy and the
same composition. Therefore, the values of EA and βββA fix uniquely the values of SA

se and of
εεεAse. This implies the existence of the single valued functions written in Eqs. (29) and (30).
Comment. Clearly, for a non-reactive closed system, the composition is fixed and equal to the
initial, i.e., εεεAse(E

A,βββA) = 0.
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Usually (Hatsopoulos & Keenan, 1965; Gyftopoulos & Beretta, 2005), in view of the
equivalence that defines them, each set ESEA is thought of as a single state called “a stable
equilibrium state” of A. Thus, for a given closed system A (and, hence, given initial amounts
of constituents), it is commonly stated that the energy and the parameters of A determine “a
unique stable equilibrium state” of A, which is called “the chemical equilibrium state” of A if
the system is reactive according to a given set of stoichiometric coefficients. For a discussion
of the implications of Eq. (30) and its reduction to more familiar chemical equilibrium criteria
in terms of chemical potentials see, e.g., (Beretta & Gyftopoulos, 2004).
Assumption 4. The fundamental relation (29) is continuous and differentiable with respect to
each of the variables EA and βββA.
Theorem 8. For any closed system, for fixed values of the parameters the fundamental relation
(29) is a strictly increasing function of the energy.
Proof. Consider two stable equilibrium states Ase1 and Ase2 of a closed system A, with
energies EA

1 and EA
2 , entropies SA

se1 and SA
se2, and with the same regions of space occupied

by the constituents of A (and therefore the same values of the parameters). Assume EA
2 > EA

1 .
By Assumption 1, we can start from state Ase1 and, by a weight process for A in which the
regions of space occupied by the constituents of A have no net changes, add work so that
the system ends in a non-equilibrium state A2 with energy EA

2 . By Theorem 6, we must have

SA
2 ≥ SA

se1. Now, on account of Lemma 2, we can go from state A2 to Ase2 with a zero-work

irreversible weight process for A. By Theorem 6, we must have SA
se2 > SA

2 . Combining the two

inequalities, we find that EA
2 > EA

1 implies SA
se2 > SA

se1.
Corollary 8. The fundamental relation for any closed system A can be rewritten in the form

EA
se = EA

se(S
A,βββA) . (31)

Proof. By Theorem 8, for fixed βββA, Eq. (29) is a strictly increasing function of EA. Therefore, it
is invertible with respect to EA and, as a consequence, can be written in the form (31).
Temperature of a closed system in a stable equilibrium state. Consider a stable equilibrium
state Ase of a closed system A identified by the values of EA and βββA. The partial derivative of
the fundamental relation (31) with respect to SA, is denoted by

TA =

(

∂EA
se

∂SA

)

βββA

. (32)

Such derivative is always defined on account of Assumption 4. When evaluated at the values
of EA and βββA that identify state Ase, it yields a value that we call the temperature of state Ase.
Comment. One can prove (Gyftopoulos & Beretta, 2005, p.127) that two stable equilibrium
states A1 and A2 of a closed system A are mutual stable equilibrium states if and only
if they have the same temperature, i.e., if TA

1 = TA
2 . Moreover, it is easily proved

(Gyftopoulos & Beretta, 2005, p.136) that, when applied to a thermal reservoir R, Eq. (32)
yields that all the stable equilibrium states of a thermal reservoir have the same temperature
which is equal to the temperature TR of R defined by Eq. (12).
Corollary 9. For any stable equilibrium state of any (normal) closed system, the temperature
is non-negative.
Proof. The thesis follows immediately from the definition of temperature, Eq. (32), and
Theorem 8.
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Gibbs equation for a non-reactive closed system. By differentiating Eq. (31), one obtains
(omitting the superscript “A” and the subscript “se” for simplicity)

dE = TdS+
s

∑
j=1

Fj dβj , (33)

where Fj is called generalized force conjugated to the j-th parameter of A, Fj =
(

∂Ese/∂βj

)

S,βββ′ .

If all the regions of space RRRA coincide and the volume V of any of them is a parameter,
the negative of the conjugated generalized force is called pressure, denoted by p, p =
−
(

∂Ese/∂V
)

S,βββ′ .

Fundamental relation in the quantum formalism. Let us recall that the measurement
procedures that define energy and entropy must be applied, in general, to a (homogeneous)
ensemble of identically prepared replicas of the system of interest. Because the numerical
outcomes may vary (fluctuate) from replica to replica, the values of the energy and the
entropy defined by these procedures are arithmetic means. Therefore, what we have denoted
so far, for simplicity, by the symbols EA and SA should be understood as 〈EA〉 and 〈SA〉.
Where appropriate, like in the quantum formalism implementation, this more precise notation
should be preferred. Then, written in full notation, the fundamental relation (29) for a closed
system is

〈SA〉se = SA
se(〈E

A〉,βββA) , (34)

and the corresponding Gibbs relation

d〈E〉 = Td〈S〉+
s

∑
j=1

Fj dβj . (35)

7. Definitions of energy and entropy for an open system

Our definition of energy is based on the First Law, by which a weight process is possible
between any pair of states A1 and A2 in which a closed system A is separable and uncorrelated
from its environment. Our definition of entropy is based on Assumption 2, by which a
reversible standard weight process for AR is possible between any pair of states A1 and A2 in
which a closed system A is separable and uncorrelated from its environment. In both cases,
A1 and A2 have compatible compositions. In this section, we extend the definitions of energy
and entropy to a set of states in which an open system O is separable and uncorrelated from
its environment; two such states ofO have, in general, non-compatible compositions.
Separable open system uncorrelated from its environment. Consider an open systemO that

has Q as its (open) environment, i.e., the composite system OQ is isolated in F
OQ
e . We say

that system O is separable from Q at time t if the state (OQ)t of OQ can be reproduced as

(i.e., coincides with) a state (AB)t of an isolated system AB in FAB
e = F

OQ
e such that A and

B are closed and separable at time t. If the state (AB)t = AtBt, i.e., is such that A and B
are uncorrelated from each other, then we say that the open system O is uncorrelated from its
environment at time t, and we have Ot = At, Qt = Bt, and (OQ)t =OtQt.
Set of elemental species. Following (Gyftopoulos & Beretta, 2005, p.545), we will call set
of elemental species a complete set of independent constituents with the following features: (1)
(completeness) there exist reaction mechanisms by which all other constituents can be formed
starting only from constituents in the set; and (2) (independence) there exist no reaction
mechanisms that involve only constituents in the set.
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For example, in chemical thermodynamics we form a set of elemental species by selecting
among all the chemical species formed by atomic nuclei of a single kind those that have
the most stable molecular structure and form of aggregation at standard temperature and
pressure.
Energy and entropy of a separable open system uncorrelated from its environment. LetOQ

be an isolated system in F
OQ
e , with O and Q open systems, and let us choose scenario OQ, so

that Q is the environment ofO. Let us suppose thatO has r single-constituent regions of space
and a set of allowed reaction mechanisms with stoichiometric coefficients νννO. Let us consider
a stateO1 in whichO is separable and uncorrelated from its environment and has composition

nnnO1 = (nO1 , . . . ,n
O
i , . . . ,n

O
r )1. Let A

nnnO1 B be an isolated system in FA
nnnO
1 B

e = F
OQ
e , such that AnnnO1 is

closed, has the same allowed reaction mechanisms as O and compositions compatible with

nnnO1 . Let A
nnnO1
1 be a state of AnnnO1 such that, in that state, system AnnnO1 is a separable system in

FA
e
nnnO1 = FA

nnnO
1 B

e and is uncorrelated from its environment; moreover, the state A
nnnO1
1 coincides

with O1, i.e., has the same values of all the properties. We will define as energy and entropy

of O, in state O1, the energy and the entropy of AnnnO1 in state A
nnnO1
1 , namely EO

1 = EAnnnO
1

1 and

SO1 = SAnnnO
1

1 . The existence of system AnnnO1 and of state A
nnnO1
1 is granted by the definition of

separability for O in state O1.

The values of the energy and of the entropy of AnnnO1 , in state A
nnnO1
1 , are determined by choosing

a reference state A
nnnO1
0 of AnnnO1 and by applying Eqs. (7) and (18). The reference state A

nnnO1
0 and

the reference values EAnnnO
1

0 and SAnnnO
1

0 are selected as defined below.

We choose AnnnO1 as the composite of q closed subsystems, AnnnO1 = A1A2 · · ·Ai · · ·Aq, each one

containing an elemental species, chosen so that the composition of AnnnO1 is compatible with
that of O in state O1. Each subsystem, Ai, contains ni particles of the i-th elemental species

and is constrained by a wall in a spherical box with a variable volume VAi
; each box is very

far from the others and is placed in a position where the external force field FA
e
nnnO1 is vanishing.

We choose the reference state A
nnnO1
0 to be such that each subsystem Ai is in a stable equilibrium

state Ai
0 with a prescribed temperature, T0, and a volume VAi

0 such that the pressure has a
prescribed value p0.

We fix the reference values of the energy and the entropy of the reference state A
nnnO1
0 as follows:

EAnnnO
1

0 =
q

∑
i=1

EAi

0 , (36)

SAnnnO
1

0 =
q

∑
i=1

SAi

0 , (37)

with the values of EAi

0 and SAi

0 fixed arbitrarily. Notice that by construction VAnnnO
1

0 =

∑
q
i=1V

Ai

0 and, therefore, we also have EAnnnO
1

0 + p0V
AnnnO

1

0 = ∑
q
i=1(E

Ai

0 + p0V
Ai

0 ). In chemical

thermodynamics, it is customary to set EAi

0 + p0V
Ai

0 = 0 and SAi

0 = 0 for each elemental species.
Similarly to what seen for a closed system, the definition of energy for O can be extended to
the states ofO in which O is separable but correlated with its environment.
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8. Fundamental relation for an open system

Stable equilibrium state of an open system. A state of an open system O in which O is a
separable open system in FOe and is uncorrelated from its environment Q is called a stable
equilibrium state if it can be reproduced as a stable equilibrium state of a closed system A in
FA
e = FOe .

We will consider separately the two different cases:
a) the constituents of O are non-reactive, i.e., no reaction mechanism is allowed for O;
b) reactions with stoichiometric coefficients νννO are allowed for O.
Fundamental relation for the stable equilibrium states of an open systemwith non-reactive
constituents. Let SEO be the set of all the stable equilibrium states of an open system O with
r non-reactive constituents and s parameters, βββO = βO

1 , ... , βO
s . Let us consider the subset

SEO
nnnO1

of all the states of SEO that have the composition nnnO1 , and let AnnnO1 be a closed system

with composition nnnO1 , such that its stable equilibrium states coincide with those of the subset

SEO
nnnO1

and therefore also the parameters coincide, i.e., βββAnnnO
1 = βββO. Then, every subset ESEAnnnO

1

of equivalent stable equilibrium states of AnnnO1 , which is determined by the energy EAnnnO
1 and

the parameters βββAnnnO
1 , coincides with a subset of equivalent stable equilibrium states ofO with

composition nnnO1 . The same argument can be repeated for every composition of O. Therefore,

on the whole set SEO, a relation with the form

SOse = SOse(E
O, nnnO, βββO) (38)

is defined and is called fundamental relation for O. Since the relation SOse = SOse(E
O), for fixed

values of nnnO and βββO, is strictly increasing, Eq. (38) can be rewritten as

EO
se = EO

se(S
O, nnnO, βββO) . (39)

Gibbs equation for a non-reactive open system. If the system has non-reactive constituents,
the fundamental relation given by Eq. (39) applies. By differentiating Eq. (39), one obtains
(omitting the superscript “O” and the subscript “se” for simplicity)

dE = TdS+
r

∑
i=1

μi dni +
s

∑
j=1

Fj dβj , (40)

where μi is called the total potential of i-th constituent of O.
In Eq. (40), it is assumed that Eq. (39) is continuous and differentiable also with respect to n.
For systems with very large values of the amounts of constituents this condition is fulfilled.
However, for very few particle closed systems, the variable n takes on only discrete values,
and, according to our definition, a separable state of an open system must be reproduced as
a separable state of a closed system. Thus, the extension of Eq. (40) to few particles open
systems requires an extended definition of a separable state of an open system, which includes
states with non integer numbers of particles. This extension will not be presented here.
Fundamental relation for the stable equilibrium states of an open system with reactive
constituents. Let SEO be the set of all the stable equilibrium states of an open system O with
parameters βββO and constituents which can react according to a set of reaction mechanisms
defined by the stoichiometric coefficients νννO. Let (nnn0O1 , νννO) be the set of the compositions of

O which are compatible with the initial composition nnn0O1 = (n0O1 , ...,n0Or )1. Let SEnnn
0O
1 be the
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subset of SEO with compositions compatible with (nnn0O1 , νννO) and let Annn0O1 be a closed system

with compositions compatible with (nnn0O1 , νννO) and stable equilibrium states that coincide with

those of the subset SEnnn
0O
1 so that also the parameters coincide, i.e., βββAnnn0O

1 = βββO.

Then, every subset ESEAnnn0O
1 of equivalent stable equilibrium states of Annn0O1 , which is

determined by the energy EAnnn0O
1 and the parameters βββAnnn0O

1 , coincides with a subset of

equivalent stable equilibrium states in the set SEnnn
0O
1 . The same argument can be repeated

for every set of compatible compositions of O, (nnn0O2 , νννO), (nnn0O3 , νννO), etc. Therefore, on the

whole set SEO, the following single-valued relation is defined

SOse = SOse(E
O, nnn0O, βββO) (41)

which is called fundamental relation for O. Since the relation SOse = SOse(E
O), for fixed values

of nnn0O and βββO, is strictly increasing, Eq. (41) can be rewritten as

EO
se = EO

se(S
O, nnn0O, βββO) . (42)

Comment. On the set SEO of the stable equilibrium states of O, also the reaction coordinates
are given by a single valued function

εεεOse = εεεOse(E
O, nnn0O, βββO) , (43)

which defines the chemical equilibrium composition. The existence of Eq. (43) is a
consequence of the existence of a single valued function such as Eq. (30) for each of the

closed systems Annn0O1 , Annn0O2 , ... used to reproduce the stable equilibrium states ofO with sets of
amounts of constituents compatible with the initial compositions, nnn0O1 , nnn0O2 , etc.

9. Conclusions

In this paper, a general definition of entropy is presented, based on operative definitions of all
the concepts employed in the treatment, designed to provide a clarifying and useful, complete
and coherent, minimal but general, rigorous logical framework suitable for unambiguous
fundamental discussions on Second Law implications.
Operative definitions of system, state, isolated system, environment of a system, process,
separable system, system uncorrelated from its environment and parameters of a system are
stated, which are valid also in the presence of internal semipermeable walls and reaction
mechanisms. The concepts of heat and of quasistatic process are never mentioned, so that
the treatment holds also for nonequilibrium states, both for macroscopic and few particles
systems.
The role of correlations on the domain of definition and on the additivity of energy and
entropy is discussed: it is proved that energy is defined for any separable system, even if
correlated with its environment, and is additive for separable subsystems even if correlated
with each other; entropy is defined only for a separable system uncorrelated from its
environment and is additive only for separable subsystems uncorrelated from each other; the
concept of decorrelation entropy is defined.
A definition of thermal reservoir less restrictive than in previous treatments is adopted: it is
fulfilled, with an excellent approximation, by any single-constituent simple system contained
in a fixed region of space, provided that the energy values are restricted to a suitable finite
range. The proof that entropy is a property of the system is completed by a new explicit proof
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that the entropy difference between two states of a system is independent of the initial state
of the auxiliary thermal reservoir chosen to measure it.
The definition of a reversible process is given with reference to a given scenario, i.e., the largest
isolated system whose subsystems are available for interaction; thus, the operativity of the
definition is improved and the treatment becomes compatible also with recent interpretations
of irreversibility in the quantum mechanical framework.
Rigorous extensions of the definitions of energy and entropy to open systems are stated. The
existence of a fundamental relation for the stable equilibrium states of an open system with
reactive constituents is proved rigorously; it is shown that the amounts of constituents which
correspond to given fixed values of the reaction coordinates should appear in this equation.

10. Acknowledgments

G.P. Beretta gratefully acknowledges the Cariplo–UniBS–MIT-MechE faculty exchange
program co-sponsored by UniBS and the CARIPLO Foundation, Italy under grant 2008-2290.

11. References

Bennett, C.H. (2008). The Second Law and Quantum Physics, inMeeting the Entropy Challenge,
AIP Conf. Proc. Series 1033: 66-79.

Beretta, G.P. (1984). On the Relation Between Classical and Quantum Thermodynamic
Entropy, J. Math. Phys. 25: 1507 (1984).

Beretta, G.P. (1987). Quantum Thermodynamics of Nonequilibrium. Onsager Reciprocity and
Dispersion-Dissipation Relations, Found. Phys. 17: 365-381.

Beretta, G.P. (2006). Nonlinear Model Dynamics for Closed-System, Constrained,
Maximal-Entropy-Generation Relaxation by Energy Redistribution, Phys. Rev. E 73:
026113.

Beretta, G.P. (2009). Nonlinear Quantum Evolution Equations to Model Irreversible Adiabatic
Relaxation With Maximal Entropy Production and Other Nonunitary Processes,
Reports on Mathematical Physics 64: 139-168.

Beretta, G.P.; Ghoniem, A.F. & Hatsopoulos, G.N., Editors (2008). Meeting the Entropy
Challenge, AIP Conf. Proc. Series 1033.

Beretta, G.P. & Gyftopoulos, E.P. (2004). Thermodynamic Derivations of Conditions for
Chemical Equilibrium and of Onsager Reciprocal Relations for Chemical Reactors,
J. Chem. Phys. 121: 2718-2728.

Beretta, G.P.; Gyftopoulos, E.P.; Park, J.L. & Hatsopoulos, G.N. (1984). Quantum
Thermodynamics: a New Equation of Motion for a Single Constituent of Matter,
Nuovo Cimento B 82: 169-191.

Beretta, G.P.; Gyftopoulos, E.P. & Park, J.L. (1985). Quantum Thermodynamics: a New
Equation of Motion for a General Constituent of Matter, Nuovo Cimento B 87: 77-97.

Callen, H.B. (1985). Thermodynamics and Introduction to Thermostatics, 2nd Ed., Wiley.
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