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ABSTRACT
By suitable reformulations, we review the mathematical frameworks of six different approaches to the description of non-
equilibrium dynamics with the purpose to set up a unified formulation of the Maximum Entropy Production (MEP) principle
valid in all these contexts. In this way, we extend to such frameworks the concept of Steepest Entropy Ascent dynamics in-
troduced by the present author in previous work on quantum thermodynamics. Actually, the present formulation constitutes a
generalization also in the quantum thermodynamics framework. The analysis emphasizes that in the SEA-inspired implemen-
tation of the MEP principle, a key role is played by the geometrical metric with respect to which to measure the length of a
trajectory in state space. The metric tensor turns out to be directly related to the inverse of the Onsager’s generalized conduc-
tivity tensor. We conclude that in most of the existing theories of non-equilibrium the time evolution of the state representative
can be seen to actually follow in state space the path of SEA with respect to a suitable metric connected with the generalized
conductivities. The resulting unified family of SAE/MEP dynamical models are all intrinsically consistent with the second law
of thermodynamics. The nonnegativity of the entropy production is a general and readily proved feature of SEA dynamics. In
several of the different approaches to non-equilibrium description we consider here, the SEA concept has not been investigated
before. Therefore, it is hoped that the present unifying approach may prove useful in providing a fresh basis for effective, thermo-
dynamically consistent, numerical models and theoretical treatments of irreversible conservative relaxation towards equilibrium
from far non-equilibrium states. The six mathematical frameworks are: A) Classical Statistical Mechanics; B) Small-Scale
and Rarefied Gases Dynamics (i.e., kinetic models for the Boltzmann equation); C) Statistical or Information Theoretic Models
of Relaxation; D) Rational Extended Thermodynamics, Macroscopic Non-Equilibrium Thermodynamics, and Chemical Kinet-
ics; E) Mesoscopic Irreversible Thermodynamics; F) Quantum Statistical Mechanics, Quantum Thermodynamics, Mesoscopic
Non-Equilibrium Quantum Thermodynamics, and Intrinsic Quantum Thermodynamics.

INTRODUCTION

The problem of understanding entropy and irreversibility has
been tackled by a large number of preeminent scientists during
the past century. Schools of thought have formed and flourished
around different perspectives of the problem. Several modeling
approaches have been developed in various frameworks to deal
with the many facets of non-equilibrium.

In this paper, we show how to construct Steepest Entropy As-
cent (SEA) and Maximum Entropy Production (MEP) models
of non-equilibrium dynamics by adopting a unified mathemati-
cal formulation that allows us to do it at once in several different
well-known frameworks of non-equilibrium description.

To avoid doing inevitable injustices to the many pioneers of
all these approaches and to the many and growing fields of their
application, here we skip a generic introduction and given no
references nor a review of previous work. Rather, we dig im-
mediately into the mathematical reformulations of the different
frameworks in such a way that then the construction of the pro-
posed SEA dynamics becomes formally a single geometrical
problem that can be treated at once.

Our reformulations here not only allow a unified treatment
of the MEP principle (for a recent review see [1]) in the various
frameworks, but also extends to all frameworks an observation
that we have been developing in the quantum thermodynamics

framework for the last three decades [2; 3; 4; 5]. In doing so,
we introduce an important generalization also in the quantum
thermodynamics framework.

The observation is that we cannot simply maximize the en-
tropy production subject to a set of conservation constraints or
boundary conditions, but in order to identify a SEA path in state
space we must equip it with a metric with respect to which to
compute the distance traveled in state space during the time evo-
lution.

The generalization is as follows. In our previous work, we
adopted the proper uniform metric for probability distributions,
namely, the Fisher-Rao metric, because in quantum thermody-
namics the state representative, the density operator, is essen-
tially a generalized probability distribution. In other frame-
works, however, the state representative not always is a prob-
ability distribution. Moreover, the present application to the
framework of Mesoscopic Non-Equilibrium Thermodynamics
[6; 7] shows that standard results such as the Fokker-Planck
equation and Onsager theory emerge as straightforward results
of SEA/MEP dynamics with respect to a metric characterized by
a generalized metric tensor that is directly related to the inverse
of the generalized conductivity tensor. Since the generalized
conductivities represent, at least in the near-equilibrium regime,
the strength of the system’s reaction when pulled out of equilib-
rium, it appear that their inverse, i.e., the generalized resistivity
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tensor, represents the metric with respect to which the time evo-
lution, at least in the near equilibrium, is locally SEA/MEP.

But the local SEA/MEP construction does much more, be-
cause it offers a strongly thermodynamically consistent way to
extend the well-known near-equilibrium theories to the treat-
ment of non-equilibrium states.

An investigation of the interrelations between the SEA and
MEP concepts and Ziegler’s [8] and Edelen’s [9] formulations
for the study of highly non-equilibrium dynamics in the nonlin-
ear domain is under way and will be communicated elsewhere.

The unified formulation of the local SAE/MEP variational
problem is as follows and it is not restricted to near equilib-
rium: the time evolution and transport equations advance the
local state representative in the direction of maximal entropy
production per unit of distance traveled in state space compati-
ble with the conservation constraints. The measure of distance
traveled in state space requires the choice of a metric defined
over the state space. The standard near-equilibrium results ob-
tain when the local metric tensor is proportional to the inverse
of the local matrix of generalized conductivities.

In the next six sections we introduce slightly nonstandard
notations in several non-equilibrium contexts with the purpose
to formulating, in the seventh section, a unified construction and
implementation of the SAE/MEP concept.

FRAMEWORK A: CLASSICAL STATISTICAL ME-
CHANICS

Let Ω be the classical position-momentum q–p phase space,
and L the set of real, square-integrable functions A,B, . . . on Ω,
equipped with the inner product (·|·) defined by

(A|B) = Tr(AB) =
∫

Ω
AB dΩ (1)

where Tr(·) in this framework denotes
∫

Ω
·dΩ, with dΩ =

dqdp.
In Classical Statistical Mechanics, the index of statistics from

a generally heterogeneous ensemble of identical systems (with
associated phase space Ω) distributed over a range of possi-
ble classical mechanical states is represented by a nonnegative
(Gibbs) density-of-phase distribution function fG = fG(q,p, t)
in L .

Borrowing from the formalism we originally developed for
the quantum framework [2; 3] (later introduced also in [4; 10]),
in order to easily impose the constraint of preservation of the
nonnegativity of fG during its time evolution, we adopt as state
representative not fG itself but its square root, that we assume
is a function in L that denote by γ = γ(q,p, t). Normalization
is not imposed at this stage but later as one of the constraints.
Therefore, we clearly have

fG = γ
2 ,

∂ fG

∂ t
= 2γ

∂γ

∂ t
(2)

∂ fG

∂q
= 2γ

∂γ

∂q
,

∂ fG

∂q
= 2γ

∂γ

∂q
, {H, fG}= 2γ{H,γ} (3)

where {·, ·} denotes the Poisson bracket.
Among the phase-space functions that represent physical ob-

servables we focus on the conserved ones that we denote syn-
thetically by the set

{Ci}=
{

H,Mx,My,Mz,N1, . . . ,Nr, I
}

(4)

where H is the classical Hamiltonian function, M j the momen-
tum function for the j-th component, Ni the number-of-particle
function for particles of type i, and I = 1 is the constant unity
function, so that Tr(γ2H) represents the mean energy, Tr(γ2M)

the mean momentum vector, Tr(γ2Ni) the mean number of par-
ticles of type i, and Tr(γ2I) the normalization condition on fG.

The description of an irreversible diffusion-relaxation pro-
cess in this framework can be done by assuming a evolution
equation for the state fG given by

dγ

dt
= Πγ where

d
dt

=
∂

∂ t
−{H, ·} (5)

It is easy to verify that for Πγ = 0 Eq. (5) reduces to Liouville’s
equation of classical reversible evolution. We do not make this
assumption because we are interested in modeling irreversible
evolution with energy, momentum, and particle numbers redis-
tribution towards equilibrium, subject to the overall conserva-
tion of energy, momentum, number of particles of each kind,
and normalization

ΠCi =
d
dt

Tr(γ2Ci) = (2γCi|Πγ) = 0 (6)

The entropy state functional in this context is represented by

S(γ) =−kTr( fG ln fG) = (−kγ lnγ
2|γ) (7)

so that the rate of entropy production under a time evolution that
preserves the normalization of fG is given by

ΠS =−k
d
dt

Tr( fG ln fG) = (−2kγ lnγ
2|Πγ) (8)

Below, in the section on SAE/MEP dynamics, we construct
an equation of motion for the square-root-of-density-of-phase
distribution γ such that ΠS is maximal subject to the conserva-
tion constraints ΠCi = 0 and a suitable additional constraint we
discuss therein.

FRAMEWORK B: SMALL-SCALE AND RAREFIED
GASES DYNAMICS

Let Ωc be the classical one-particle velocity space, and L the
set of real, square-integrable functions A,B, . . . on Ωc, equipped
with the inner product (·|·) defined by

(A|B) = Tr(AB) =
∫

Ωc
AB dΩc (9)

where Tr(·) in this framework denotes
∫

Ωc
·dΩc, with dΩc =

dcx dcy dcz.
In the Kinetic Theory of Rarefied Gases and Small-Scale Hy-

drodynamics [11], the probability to find a particle at position
x with velocity between c and c + dc [where of course c =
(cx,cy,cz)] is given by f (x,c, t)dΩc/

∫
Ωc

f dΩc where f (x,c, t)
is the local phase-density distribution which for every position
x and time instant t is a function in L .

Also in this framework, in order to easily impose the con-
straint of preservation of the nonnegativity of f during its time
evolution, we introduce the local one-particle state representa-
tion not by f itself but by its square root, that we assume is a
function in L that we denote by γ = γ(x,c, t). Therefore, we
have

f = γ
2 ,

∂ f
∂ t

= 2γ
∂γ

∂ t
,

∂ f
∂x

= 2γ
∂γ

∂x
,

∂ f
∂c

= 2γ
∂γ

∂c
(10)

Again, among the velocity-space functions that represent
physical observables we focus on the conserved ones that we
denote synthetically by the set

{Ci}=
{

H = ½ mc · c,Mx = mcx,My = mcy,Mz = mcz,m
}
(11)

of functions in Lc where H is the local kinetic energy function,
Mx, My, Mz the components of the local momentum function,
and m the particle mass, so that Tr(γ2H) represents the local
kinetic energy density, Tr(γ2Mi) the i-th component of the local
momentum density, and Tr(γ2m) the local mass density.
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The time evolution of the distribution function f is given by
the Boltzmann equation or some equivalent simplified kinetic
model equation, which in terms of the square-root distribution
may be written in the form

Dγ

Dt
= Πγ where

D
Dt

=
∂

∂ t
+ c · ∂

∂x
+a · ∂

∂c
(12)

and a denotes the particle acceleration due to external body
forces.

In order to satisfy the constraints of energy, momentum, and
mass conservation the collision term Πγ must be such that

ΠCi =
∂Tr( fCi)

∂ t
+∇ ·Tr( f cCi) = (2γCi|Πγ) = 0 (13)

The local entropy density functional in this context is repre-
sented by

S(x, t) =−kTr( f ln f ) = (−kγ lnγ
2|γ) (14)

so that the rate of entropy production under a time evolution that
preserves the normalization of f is given by

ΠS =−k
∂Tr( f ln f )

∂ t
− k∇ ·Tr( f c ln f ) = (−2kγ lnγ

2|Πγ)

(15)
Below, in the section on SAE/MEP dynamics, we construct

a new family of models for the collision term Πγ such that ΠS
is maximal subject to the conservation constraints ΠCi = 0 and
a suitable additional constraint we discuss therein.

The resulting new family of SEA kinetic models of the col-
lision integral in the Boltzmann equation is currently under in-
vestigation by comparing it with standard models such as the
well-known BGK model as well as with Monte Carlo simula-
tions of the original Boltzmann equation for hard spheres [12].
In addition to the strong thermodynamics consistency even far
from stable equilibrium, Ref. [12] gives a proof that in the near-
equilibrium limit the SEA model reduces to the BGK model.

FRAMEWORK C: STATISTICAL OR INFORMATION
THEORETIC MODELS OF RELAXATION TO EQUI-
LIBRIUM

Let L be the set of all n× n real, diagonal matrixes A =
diag(a j), B = diag(b j), . . . ( n ≤ ∞ ), equipped with the inner
product (·|·) defined by

(A|B) = Tr(AB) = ∑
n
j=1a j b j (16)

In Information Theory [13], the probability assignment to a
set of n events, p j being the probability of occurrence of the
j-th event is represented by ρ = diag(p j). Again, in order to
easily impose the constraint of preservation of the nonnegativity
of the probabilities during their time evolution, we adopt the
description in terms of the square-root of ρ that we denote by

γ = diag(
√

p j) (17)
Typically we consider a set of conserved features of the pro-

cess
{Ci}= {H,N1, . . . ,Nr, I} (18)

of diagonal matrixes H = diag(e j), N1 = diag(n1 j), . . . , Nr =
diag(nr j), I = diag(1) in L representing characteristic features
of the events in the set, which for the j-th event take on respec-
tively the values e j, n1 j, . . . , nr j. The corresponding expec-
tation values are Tr(ρH) = ∑

n
j=1 p j e j, Tr(ρN1) = ∑

n
j=1 p j n1 j,

. . . , Tr(ρNr) = ∑
n
j=1 p j nr j, and Tr(ρI) = ∑

n
j=1 p j = 1 thus pro-

viding the normalization condition on ρ .
The time evolution of the square-root probability distribution

γ is the solution of the rate equation
dγ

dt
= Πγ (19)

where in order to satisfy the constraints of conservation of the
expectation values Tr(ρCi) the term Πγ must be such that

ΠCi =
d
dt

Tr(ρCi) = (2γCi|Πγ) = 0 (20)

The entropy functional in this context is represented by

S(γ) =−kTr(ρ lnρ) = (−kγ lnγ
2|γ) (21)

so that the rate of entropy production under a time evolution that
preserves the normalization of ρ is given by

ΠS =−k
d
dt

Tr(ρ lnρ) = (−2kγ lnγ
2|Πγ) (22)

Below, in the section on SAE/MEP dynamics, we construct
a model for the rate term Πγ such that ΠS is maximal subject
to the conservation constraints ΠCi = 0 and a suitable additional
constraint we discuss therein.

An attempt along the same lines has been presented in [14].

FRAMEWORK D: RATIONAL EXTENDED THER-
MODYNAMICS, MACROSCOPIC NON-EQUILIBRIUM
THERMODYNAMICS, AND CHEMICAL KINETICS

Let L be the set of all n× n real, diagonal matrixes A =
diag(a j), B = diag(b j), . . . ( n ≤ ∞ ), equipped with the inner
product (·|·) defined by

(A|B) = Tr(AB) = ∑
n
j=1a j b j (23)

In Rational Extended Thermodynamics [15], the local state
at position x and time t of the continuum under study is repre-
sented by an element γ in L , i.e.,

γ(x, t) = diag[α(x, t)] (24)

Thus, γ(x, t) represents the set of fields which represent the
instantaneous spatial distributions within the continuum of the
local densities that define all its other local properties. In partic-
ular, for the conserved properties energy, momentum, and mass
it is assumed that their local densities and their local fluxes are
all given by particular functions of γ that we denote syntheti-
cally by

{Ci(γ)}=
{

E(γ),Mx(γ),My(γ),Mz(γ),m(γ)
}

(25)

{JCi(γ)}=
{

JE(γ),JMx(γ),JMy(γ),JMz(γ),Jm(γ)
}

(26)

so that the energy, momentum, and mass balance equations take
the form

DCi

Dt
=

∂Ci

∂ t
+∇ ·JCi = ΠCi = 0 (27)

Moreover, also for the local entropy density and the local en-
tropy flux it is assumed that they are given by particular func-
tions of γ that we denote respectively by

S(γ) and JS(γ) (28)

so that the entropy balance equation takes the form
DS
Dt

=
∂S
∂ t

+∇ ·JS = ΠS (29)

where ΠS is the local production density.
In general the balance equation for each of the underlying

field properties is
Dα j

Dt
=

∂α j

∂ t
+∇ ·Jα j = Πα j (30)

where Jα j and Πα j are the corresponding flux and production
density, respectively. Equivalently, this set of balance equations
may be written synthetically as

Dγ

Dt
=

∂γ

∂ t
+∇ ·Jγ = Πγ (31)
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where Jγ = diag[Jα j ] and Πγ = diag[Πα j ].
It is then further assumed that there exist functions Φα j(γ)

(Liu’s Lagrange multipliers [16]) that we denote here in matrix
form by

Φ = diag(Φα j) (32)

such that the local entropy production density can be written as

ΠS =
n

∑
j=1

Φα j Πα j = (Φ|Πγ) (33)

and must be nonnegative everywhere.
For our development in this paper we shall additionally as-

sume that there also exist functions Ψiα j(γ) that we denote in
vector form by

Ψi = diag(Ψiα j) (34)

such that the production density of each conserved property Ci
can be written as

ΠCi =
n

∑
j=1

Ψiα j Πα j = (Ψi|Πγ) (35)

Typically, but not necessarily, the first five underlying fields
α j(x, t) for j = 1, . . . ,5 are conveniently chosen to coincide with
the energy, momentum, and mass densities, so that Eqs. (30) for
j = 1, . . . ,5 coincide with Eqs. (27) because Πα j = 0 for this
subset of conserved fields.

The above framework reduces to the traditional Onsager the-
ory of macroscopic Non-Equilibrium Thermodynamics (NET)
[6] if the α j’s are taken to represent the local deviations of the
underlying fields from their equilibrium values. In this context,
the usual notation calls the functions Xα j =−Φα j the “thermo-
dynamic forces” and Πα j the “thermodynamic currents”.

The same framework reduces to the standard scheme of
Chemical Kinetics (CK) if the α j’s are taken to represent the
local reaction coordinates, Πα j the local rate of advancement
of reaction j, Φα j its entropic affinity, Ci the local concentra-
tion of atomic elements of kind i, ΠCi = 0 their local production
density.

Below, in the section on SAE/MEP dynamics, we construct
an equation of motion for γ such that ΠS is maximal subject to
the conservation constraints ΠCi = 0 and a suitable additional
constraint we discuss therein.

FRAMEWORK E. MESOSCOPIC NON-EQUILIBRIUM
THERMODYNAMICS

Let L be the set of all n × n diagonal matrixes A =
diag(a j(γ)), B = diag(b j(γ)), . . . whose entries a j(γ), b j(γ),
. . . are real, square-integrable functions of a set of mesoscopic
properties usually denoted by α1, . . . ,αm that here we denote
synthetically by defining the matrix

γ = diag(α1, . . . ,αm) (36)

and denoting its m-dimensional range by Ωγ , usually called the
ααα-space. Let L be equipped with the inner product (·|·) defined
by

(A|B) =
n

∑
i=1

Tr(aibi) =
n

∑
i=1

∫
Ωγ

ai(γ)bi(γ) dΩγ (37)

where Tr(·) in this framework denotes
∫

Ωγ
·dΩγ , with dΩγ =

dα1 · · ·dαm.
In Mesoscopic Non-Equilibrium Thermodynamics (MNET)

(see, e.g., [6]) the α j’s are the set of mesoscopic (coarse
grained) local extensive properties assumed to represent the lo-
cal non-equilibrium state of the portion of continuum under

study. The mesoscopic description of the local state at position
x and time t is in terms of a probability density on the ααα-space
Ωγ , that we denote by P(γ;x, t). P(γ;x, t)dΩγ represents the
probability that the values of the underlying fields are between
γ and γ +dγ .

It is assumed that the probability density P obeys a continuity
equation that we may write as follows

DP
Dt

=
∂P
∂ t

+ c ·∇P =−∇γ ·Πγ (38)

where c = c(γ) is the particle velocity expressed in terms of the
underlying fields (usually it is convenient to take the first three
α j’s to coincide with the velocity components) and we define
for shorthand

Πγ = diag(Πα j) and ∇γ = diag
(

∂

∂α j

)
(39)

where the Πα j ’s are interpreted as the components of a stream-
ing flux in Ωγ , i.e., a current in the space of mesoscopic coordi-
nates.

The conserved fields Ci(x, t) have an associated underlying
extensive property which can be expressed in terms of the meso-
scopic coordinates as ψi(γ). They obey the balance equation

DCi

Dt
=

∂Ci

∂ t
+∇ ·JCi = ΠCi = 0 (40)

where local density Ci(x, t), the local flux JCi(x, t) and the local
production density ΠCi(x, t) are defined as follows

Ci(x, t) =
∫

Ωγ

ψi(γ)P(γ;x, t)dΩγ

JCi(x, t) =
∫

Ωγ

ψi(γ)c(γ)P(γ;x, t)dΩγ

ΠCi(x, t) =
∫

Ωγ

ψi(γ)
DP
Dt

(γ;x, t)dΩγ

= −
∫

Ωγ

ψi(γ)∇γ ·Πγ dΩγ

=
∫

Ωγ

Πγ ·∇γ ψi(γ) dΩγ

= (Ψi|Πγ) (41)
where in the next to the last equation we integrated by parts and
assumed that currents in ααα-space decay sufficiently fast to zero
as the γ j’s→ ∞, and we defined

Ψi = ∇γ ψi(γ) (42)
The entropy balance equation takes the form

DS
Dt

=
∂S
∂ t

+∇ ·JS = ΠS (43)

where the local density S(x, t), the local flux JS(x, t) and the lo-
cal production density ΠS(x, t) are defined in terms of the asso-
ciated extensive property expressed in terms of the mesoscopic
coordinates as

φ(γ) =−k lnP(γ) (44)
as follows

S(x, t) =
∫

Ωγ

φ(γ)P(γ;x, t)dΩγ

JS(x, t) =
∫

Ωγ

φ(γ)c(γ)P(γ;x, t)dΩγ

ΠS(x, t) =
∫

Ωγ

φ(γ)
DP
Dt

(γ;x, t)dΩγ

= −
∫

Ωγ

φ(γ)∇γ ·Πγ dΩγ

=
∫

Ωγ

Πγ ·∇γ φ(γ) dΩγ

= (Φ|Πγ) (45)
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where again in the next to the last equation we integrated by
parts and we defined

Φ = ∇γ φ(γ) (46)

Below, in the section on SAE/MEP dynamics, we construct
an equation of motion for γ such that ΠS is maximal subject to
the conservation constraints ΠCi = 0 and a suitable additional
constraint we discuss therein. The result, when introduced in
Eq. (38) will yield the Fokker-Planck equation for P(γ;x, t)
which is also related (see, e.g., [17]) to the GENERIC structure
[18]. The formalism can also be readily extended to the fam-
ily of Tsallis [19] entropies in the frameworks of non-extensive
thermodynamic models [20].

FRAMEWORK F: QUANTUM STATISTICAL ME-
CHANICS, QUANTUM INFORMATION THEORY,
QUANTUM THERMODYNAMICS, MESOSCOPIC NON-
EQUILIBRIUM QUANTUM THERMODYNAMICS, AND
INTRINSIC QUANTUM THERMODYNAMICS

Let H be the Hilbert space (dim H ≤ ∞) associated with
the physical system, and L the set of all linear operators A, B,
. . . on H , equipped with the real inner product (·|·) defined by

(A|B) = Tr
(
A†B+B†A

)
/2 (47)

where A† denotes the adjoint of operator A and Tr(·) the trace
functional.

In the quantum frameworks that we consider in this section,
the state representative is the density operator ρ , i.e., a unit-
trace, self-adjoint, and nonnegative-definite element of L .

Instead, also here we will adopt the state representation in
terms of the generalized square root of the density operator, that
we developed in this context [2; 3; 4; 5] in order to easily impose
the constraints of preservation of both the nonnegativity and the
self-adjointness of ρ during its time evolution. Therefore, we
assume that the state representative is an element γ in L from
which we can compute the density operator as follows

ρ = γγ
† (48)

In other words, we adopt as state representative not the density
operator ρ itself but its generalized square root γ . Therefore, we
clearly have

dρ

dt
= γ

dγ†
dt

+
dγ

dt
γ

† (49)

We then consider the set of operators corresponding to the
conserved properties, denoted synthetically as

{Ci}=
{

H,Mx,My,Mz,N1, . . . ,Nr, I
}

(50)

Here we assume that these are self-adjoint operators in L , that
each M j and Ni commutes with H, i.e., HM j = M jH for j =
x,y,z and HNi = NiH for i = 1, . . . ,r, and that I is the identity
operator.1

1In simplified models, the set {Ci} is often restricted to only {H, I}. Oper-
ators Mx, My, Mz are the components of the momentum operator. Operator Ni,
for i = 1, . . . , r, is the number operator for particles of type i in the system. If
the system is closed to particle exchange, it has a fixed number ni of particles
of type i, then Ni = niI, i.e., it is a c-number operator, where I is the identity
operator on H . If the system is open to particle exchange, then the Hilbert
space H is a Fock space, i.e.,

H =
∞⊕

j1=0

· · ·
∞⊕

jr=0

H j1 j2 ... jr and Ni =
∞

∑
j1=0
· · ·

∞

∑
jr=0

ji I j1 j2 ... jr

where I j1 j2 ... jr is the projector operator onto the subspace H j1 j2 ... jr belonging
to the composition with j1 particles of type 1, j2 particles of type 2, and so on.

The semi-empirical description of an irreversible relaxation
process is done in this framework by assuming an evolution
equation for the state γ given by the equations

dγ

dt
+

i
h̄

Hγ = Πγ (51)

dγ†

dt
− i

h̄
γ

†H = Π
γ† (52)

As a result, it is easy to verify that for the density operator the
dynamical equation is

dρ

dt
+

i
h̄
[H,ρ] = Πγ γ

† + γ Π
γ† (53)

where [·, ·] denotes the commutator. From this we see that in
order to preserve hermiticity of ρ the dissipative terms Πγ and
Π

γ† must satisfy the conditions

Π
γ† = Π

†
γ and Πγ = Π

†
γ† (54)

In order to satisfy the constraints of conservation of the ex-
pectation values Tr(ρCi), recalling that each Ci commutes with
H, the term Πγ must be such that

ΠCi =
d
dt

Tr(ρCi) = Tr(CiΠγ γ
† + γ Π

γ†Ci) = (2Ciγ|Πγ) = 0
(55)

The entropy functional in this context is represented by
S(γ) =−kTr(ρ lnρ) = (−k(lnγγ

†)γ|γ) (56)
so that the rate of entropy production under a time evolution that
preserves the normalization of ρ is given by

ΠS =−k
d
dt

Tr(ρ lnρ) = (−2k(lnγγ
†)γ|Πγ) (57)

In Quantum Statistical Mechanics (QSM) and Quantum In-
formation Theory (QIT), ρ is the von Neumann statistical or
density operator which represents the index of statistics from a
generally heterogeneous ensemble of identical systems (same
Hilbert space H and operators {H,N1, . . . ,Nr}) distributed
over a range of generally different quantum mechanical states.
If each individual member of the ensemble is isolated and un-
correlated from the rest of the universe, its state is described
according to Quantum Mechanics by an idempotent density op-
erator (ρ2 = ρ = P|ψ〉 =

|ψ〉〈ψ|
〈ψ|ψ〉 ), i.e., a projection operator onto

the span of some vector |ψ〉 in H . If the ensemble is heteroge-
neous, its individual member systems may be in different states,
P|ψ1〉, P|ψ2〉, and so on, and the ensemble statistics is captured
by the von Neumann statistical operator ρ = ∑ j w jP|ψ j〉. The
entropy functional here represents a measure of the informa-
tional uncertainty as to which homogeneous subensemble the
next system will be drawn from, i.e., as to which will be the
actual pure quantum state among those present in the heteroge-
neous ensemble.

In this framework, unless the statistical weights w j change
for some extrinsic reason, the quantum evolution of the en-
semble is given by Eq. (53) with Πγ = 0 so that Eq. (53) re-
duces to von Neumann’s equation of quantum reversible evolu-
tion, corresponding to ρ(t) =∑ j w jP|ψ j(t)〉 where the underlying
pure states |ψ j(t)〉 evolve according to the Schrödinger equation
d|ψ j〉/dt =−iH|ψ j〉/h̄.

In the framework of QSM and QIT, the SEA equation of
motion we construct in the next sections for ρ represents a
model for the rates of change of statistical weights w j in such a
way that ΠS is maximal subject to the conservation constraints
ΠCi = 0 (and a suitable additional constraint, see below), thus
essentially extends to the quantum landscape the same statis-
tical or information theoretic non-equilibrium problem we de-
fined above as Framework C.
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In Quantum Thermodynamics (QT), instead, the density op-
erator takes on a more fundamental physical meaning. It is not
any longer related to the heterogeneity of the ensemble, and it
is not any longer assumed that the individual member systems
of the ensemble are in pure states.

The prevailing interpretation of QT is the so-called open-
system model whereby the quantum system under study (each
individual system of a homogeneous ensemble) is always
viewed as in contact (weak or strong) with a thermal reservoir
or ’heat bath’, and its not being in a pure state is an indication of
its being correlated with the reservoir. The overall system-plus-
bath composite is assumed to be in a pure quantum mechanical
state H ⊗HR and reduces to the density operator ρ on the sys-
tem’s space H when we partial trace over the bath’s space HR.

The semi-empirical description of an irreversible relaxation
process is done in this framework by assuming for Πρ in Eq.
(53) the Lindblad-Gorini-Kossakowski-Sudarshan (LGKS) [21;
22]

Πρ = ∑
j

(
VjρV †

j −½ {V †
j Vj,ρ}

)
(58)

where {·, ·} denotes the anticommutator and operators Vj are to
be chosen so as to properly model the system-bath interaction.
The justification and modeling assumptions that lead to the gen-
eral form of Eq. (58) are well known.

In the framework of QT the SEA equation of motion we con-
struct in the next sections for ρ represents an alternative model
for Πρ (or for a term additional to the LGKS term) such that ΠS
is maximal subject to the conservation constraints ΠCi = 0 (and
a suitable additional constraint, see below). In some cases this
could be simpler than the LGKS model and it has the advantage
of a strong built-in thermodynamics consistency.

Mesoscopic Non-Equilibrium Quantum Thermodynamics
(MNEQT) [7] starts from the formalism of QSM but attempts
to extend the Onsager NET theory and MNET to the quantum
realm. We will show elsewhere that the present SEA formula-
tion reduces to MNEQT in the near-equilibrium limit, and can
therefore be viewed as the natural extension of MNEQT. The es-
sential elements of this proof have actually already been given
[4], but only for the particular case corresponding to Eq. (62)
below (Fisher-Rao metric).

An even more fundamental physical meaning is assumed
within the theory that we originally called Quantum Thermo-
dynamics [2; 3; 23; 24; 25; 26] but more recently renamed
Intrinsic Quantum Thermodynamics (IQT) to avoid confusion
with the QT model just outlined.

IQT assumes that the second law of thermodynamics should
complement the laws of mechanics even at the single particle
level [23]. This can be done if we accept that the true individual
quantum state of a system, even if fully isolated and uncorre-
lated from the rest of the universe, requires density operators ρ

that are not necessarily idempotent. Over the set of idempotent
ρ’s, QT coincides with Quantum Mechanics (QM), but it dif-
fers fundamentally from QM because it assumes a broader set
of possible states, corresponding to the set of non-idempotent
ρ’s. This way, the entropy functional S(ρ) becomes in IQT an
intrinsic fundamental property.2

In the framework of IQT the SEA equation of motion (53)

2In a sense it accomplishes the conceptual program, so intensely sought for
also by Ilya Prigogine and coworkers [27], of answering the following questions
[2]: What if entropy, rather than a statistical, information theoretic, macro-
scopic or phenomenological concept, were an intrinsic property of matter in
the same sense as energy is universally understood to be an intrinsic property
of matter? What if irreversibility were an intrinsic feature of the fundamental

for ρ which results from the expression for Πγ we construct in
the next section represents a strong implementation of the MEP
principle at the fundamental quantum level and generalizes the
original framework in which we developed the SEA formalism
about 30 years ago by making it compatible, at least in the near-
equilibrium limit with MNEQT.

Even the brief discussion above shows clearly that the dif-
ferences between QSM, QIT, QT, and IQT are important on the
interpretational and conceptual levels. Nevertheless, it is also
clear that they all share the same basic mathematical framework.
Hence, we believe that the SEA dynamical model, which they
share on the mathematical basis, can find in the different theo-
ries different physical interpretations and applications.

STEEPEST-ENTROPY-ASCENT/MAXIMAL-ENTROPY-
PRODUCTION DYNAMICS. UNIFIED VARIATIONAL
FORMULATION FOR FRAMEWORKS A TO F

In the preceding sections we formulated the non-equilibrium
problem in various different frameworks in a unifying way that
allows us to represent their dissipative parts in a single formal
way. In essence, the state is represented by an element γ of a
suitable vector space L equipped with an inner product (·|·).
The term in the dynamical equation for γ which is responsible
for dissipative irreversible relaxation and hence entropy gener-
ation is another element Πγ of L which determines the rate of
entropy production according to the relation

ΠS = (Φ|Πγ) (59)
and the rates of production of the conserved properties Ci ac-
cording to the relation

ΠCi = (Ψi|Πγ) (60)
Except for the RET Framework D, where we have no explicit
expressions for Φ and Ψi, in Frameworks A, B, C we found that
Φ =−k(lnγ2)γ and Ψi = 2Ciγ , in Framework F we found that
Φ =−k(lnγγ†)γ and Ψi = 2Ciγ .

The formulation in terms of square roots of probabilities in
Framework C, of the phase density in Frameworks A and B, of
the density operator in Framework F takes care of the important
condition that for the evolution law to be well defined it must
conserve the nonnegativity of probabilities, phase densities and
density operators (which must also remain self adjoint).

Our next objective is to implement the MEP principle. We
do this by assuming that the time evolution of the state γ fol-
lows the path of steepest entropy ascent in L . So, for any given
state γ , we must find the Πγ which maximizes the entropy pro-
duction ΠS subject to the constraints ΠCi = 0. But in order to
identify the SEA path we are not interested in the unconditional
increase in ΠS that we can trivially obtain by simply increasing
the “norm” of Πγ while keeping its direction fixed. Rather, the
SEA path is identified by the direction of Πγ which maximizes
ΠS subject to the constraints, regardless of norm of Πγ . Hence,
we must do the maximization at constant norm of Πγ .

The norm of Πγ represents the square of the distance d` trav-
eled by γ in the state space L in the time interval dt, the square
of the “length” of the infinitesimal bit of path traveled in state
space in the interval dt. The variational problem that identi-
fies the SAE/MEP direction at each state γ looks at all possible

dynamical laws obeyed by all physical objects, macroscopic and microscopic,
complex and simple, large and small? What if the second law of thermodynam-
ics, in the hierarchy of physical laws, were at the same level as the fundamental
laws of mechanics, such as the great conservation principles? When viewed
from such extreme perspective, the IQT conceptual scheme remains today as
“adventurous” as it was acutely perceived by John Maddox in 1985 [28].105



paths through γ , each characterized by a possible choice for Πγ .
Among all these paths it selects the one with the highest en-
tropy produced in the interval dt, ΠS dt per unit of distance d`
traveled by γ .

It is therefore apparent that we cannot identify a SAE/MEP
path until we equip the space L with a metric with respect to
which to compute the distance d` traveled and the norm of Πγ .

In our previous work [5], we selected the Fisher-Rao metric
based on the inner product (·|·) defined on L . Indeed, in deal-
ing with probability distributions it has been argued by several
authors that the Fisher-Rao metric is the proper unique metric
for the purpose of computing the distance between two prob-
ability distributions (see e.g. [29; 30; 31]). According to this
metric, the distance between two states γ1 and γ2 is given by

d(γ1,γ2) =
√

2arccos(γ1|γ2) (61)
which implies that the distance traveled along a trajectory in
state space is

d`= 2
√
(Πγ |Πγ)dt (62)

As a result, for Framework F the SEA dynamics we have origi-
nally proposed is most straightforward.

However, here we will adopt a more general metric, which
in Framework F generalizes our previous work and in the other
frameworks provides a most general formulation. We assume
the following expression for the distance traveled along a tra-
jectory in state space

d`=
√
(Πγ | Ĝ |Πγ)dt (63)

where Ĝ is a real, symmetric, and positive-definite operator
on L that we call the metric tensor, (super)matrix, or (su-
per)operator depeding on the framework. In Framework F, since
L is the space of operators on the Hilbert space H of the quan-
tum system, Ĝ is a superoperator on H . However, a simple case
is when Ĝ|A) = |GA) with G some self-adjoint positive-definite
operator in L .

We may now finally state the SAE/MEP variational prob-
lem and solve it. The problem is to find the instantaneous
“direction” of Πγ which maximizes the entropy production
rate ΠS subject to the constraints ΠCi = 0. We solve it by
maximizing the entropy production rate ΠS subject to the con-
straints ΠCi = 0 and the additional constraint (d`/dt)2 = ε̇2 =
prescribed. The last constraint keeps the norm of Πγ constant
so that we maximize only with respect to its direction. From
Eq. (63) it amounts to keeping fixed the value of (Πγ | Ĝ |Πγ) at
some small positive constant ε̇2. The solution is easily obtained
by the method of Lagrange multipliers. We seek the uncon-
strained maximum, with respect to Πγ , of the Lagrangian

ϒ = ΠS−∑
i

βi ΠCi − τ [(Πγ | Ĝ |Πγ)− ε̇
2] (64)

where βi and τ are the Lagrange multipliers. They must be in-
dependent of Πγ but can be functions of the state γ . Using Eqs.
(59) and (60), we rewrite (64) as follows

ϒ = (Φ|Πγ)−∑
i

βi (Ψi|Πγ)− τ [(Πγ | Ĝ |Πγ)− ε̇
2] (65)

Taking the variational derivative of ϒ with respect to |Πγ) and
setting it equal to zero we obtain

δϒ

|δΠγ)
= |Φ)−∑

i
βi |Ψi)− τĜ|Πγ) = 0 (66)

Thus, we obtain the SEA/MEP general evolution equation (the
main result of this paper)

|Πγ) = L̂ |Φ−∑
j

β j Ψ j) (67)

where we define for convenience

L̂ =
1
τ

Ĝ−1 (68)

Since in the various frameworks L̂ can be connected with
the generalized Onsager conductivity (super)matrix in the near
equilibrium regime, we see here that τL̂ is the inverse of the
metric (super)matrix Ĝ with respect to which the dynamics is
SEA/MEP. In other words, denoting the generalized Onsager
resistivity (super)matrix by R̂ we have: R̂ = τ Ĝ. Since, Ĝ is
positive definite and symmetric, so are L̂ and R̂. In other words,
the SEA assumption entails Onsager reciprocity.

Inserting Eq. (67) into the conservation constraints (60)
yields the important system of equations which defines the val-
ues of the Lagrange multipliers β j,

∑
j
(Ψi| L̂ |Ψ j)β j = (Ψi| L̂ |Φ) (69)

This system can be readily solved for the β j’s (for example by
Cramer’s rule) because the functionals (Ψi|L̂|Ψ j) and (Ψi|L̂|Φ)
are readily computable for the current state γ . When Cramer’s
rule is worked out explicitly, the SEA equation (67) takes the
form of a ratio of determinants with which we presented it in
the IQT framework [24; 25; 26; 5].

We can now immediately prove the general consistence
with the thermodynamic principle of entropy non-decrease (H-
theorem in Framework B). Indeed, subtracting Eqs. (60) each
multiplied by the corresponding β j’s from Eq. (59) and then in-
serting Eq. (67) yields the following explicit expression for rate
of entropy production

ΠS = (Φ|Πγ) = (Φ−∑
j

β j Ψ j|Πγ)

= (Φ−∑
i

βi Ψi| L̂ |Φ−∑
j

β j Ψ j)≥ 0 (70)

which is clearly nonnegative-definite by virtue, again, of the
nonnegativity that must be assumed for a well defined metric
superoperator Ĝ.

It is interesting to write the expression for the (prescribed)
speed d`/dt at which the state γ evolves along the SEA/MEP
path. This amounts to inserting Eq. (67) into the additional con-
straint (d`/dt)2 = ε̇2 = prescribed. We readily find

d`2

dt2 = (Πγ | Ĝ |Πγ)

=
1
τ2 (Φ−∑

i
βi Ψi| Ĝ−1ĜĜ−1 |Φ−∑

j
β j Ψ j) (71)

=
1
τ

ΠS = ε̇
2 (72)

from which we see that the Lagrange multiplier τ is related to
the entropy production rate and the speed d`/dt. In other words,
through τ we may specify either the speed at which γ evolves
along the SEA/MEP trajectory in state space or the instanta-
neous rate of entropy production. Indeed, using Eq. (71), we
obtain

τ =

√
(Φ−∑i βi Ψi| Ĝ−1 |Φ−∑ j β j Ψ j)

d`/dt
(73)

=
(Φ−∑i βi Ψi| Ĝ−1 |Φ−∑ j β j Ψ j)

ΠS
(74)

Hence, using τ given by Eq. (74) the evolution equation Eq. (67)
will produce a SEA/MEP trajectory in state space with the pre-
scribed entropy production ΠS. Eq. (74) also clearly supports
the interpretation of τ as the “overall relaxation time”.
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In general, we may interpret the vector
|Λ) = Ĝ−1/2 |Φ−∑

i
βi Ψi) (75)

as a vector of “generalized partial affinities”. In terms of this
vector, Eq. (67) rewrites as

Ĝ1/2 |Πγ) =
1
τ
|Λ) (76)

When only some of the partial affinities in the vector Λ are zero,
the state is partially equilibrated (equilibrated with respect to
the corresponding underlying components of the state γ). When
the entries of the vector Λ are all zero, then and only then we
have an equilibrium state or a non-dissipative limit cycle. In
fact, that is when and only when the entropy production van-
ishes. (Λ|Λ), which with respect to the metric tensor Ĝ is the
norm of the vector Φ−∑ j β j Ψ j, represents a measure of the
“overall degree of disequilibrium”. It is important to note that
this definition is valid no matter how far the state is from the
(maximum entropy) stable equilibrium state, i.e., also for highly
non-equilibrium states.

Eq. (74) rewrites as

ΠS =
(Λ|Λ)

τ
(77)

which shows that the rate of entropy production is proportional
to the overall degree of disequilibrium. The relaxation time τ

may be a state functional and needs not be constant, but even if
it is, the SEA principle provides a nontrivial non-linear evolu-
tion equation that is well defined and reasonable even far from
equilibrium.

We finally note that when the only contribution to the en-
tropy change comes from the production term ΠS (for exam-
ple in Framework B in the case of homogeneous relaxation in
the absence of entropy fluxes, or in Framework F for an iso-
lated system), i.e., when the entropy balance equation reduces
to dS/dt = ΠS, Eq. (72 ) may be rewritten as

d`
dt/τ

=
dS
d`

(78)

from which we see that when time t is measured in units of τ the
”speed” along the SEA trajectory is equal to the local entropy
gradient along the trajectory.

If the state γ moves only due to the dissipative term Πγ (for
example in Framework F when [H,γγ†] = 0), then the overall
length of the trajectory in state space traveled between t = 0
and t is given by

`(t) =
∫ t

0

√
(Πγ | Ĝ |Πγ)dt (79)

and, correspondingly, we may also define the “non-equilibrium
action”

Σ =
1
2

∫ t

0
(Πγ | Ĝ |Πγ)dt =

1
2

∫ t

0

ΠS

τ
dt =

1
2

∫ t

0

(Λ|Λ)
τ2 dt (80)

where for the last two equalities we used Eq. (72) and Eq. (77),
respectively.

The explicit expressions of the SEA/MEP dynamical equa-
tions that result in the six different frameworks treated here can
be readily obtained but will be given elsewhere.

PICTORIAL REPRESENTATIONS

Let us give pictorial representations of the vectors that we
defined in the SEA/MEP construction. We consider first the
simplest scenario of a uniform metric tensor Ĝ = Î.

Figure 1 gives a pictorial representation of the linear man-
ifold spanned by the vectors |Ψi)’s and the orthogonal pro-
jection of |Φ) which defines the Lagrange multipliers βi in

Figure 1. Pictorial representation of the linear manifold spanned by the
vectors |Ψi) and the orthogonal projection of |Φ) onto this manifold
which defines the Lagrange multipliers βi in the case of a uniform metric
Ĝ = Î. The construction defines also the generalized affinity vector,
which in this case is |Λ) = |Φ−∑i βi Ψi).

Figure 2. Pictorial representation of the SEA/MEP variational construc-
tion in the case of a uniform metric Ĝ= Î. The circle represents the con-
dition (Πγ |Πγ)= ε̇2. The vector |Πγ)must be orthogonal to the |Ψi)’s
in order to satisfy the conservation constraints ΠCi = (Ψi|Πγ) = 0. In
order to maximize the scalar product (Φ−∑i βi Ψi|Πγ), |Πγ) must
have the same direction as |Φ−∑i βi Ψi).

the case of uniform metric, i.e., the orthogonality conditions
(Ψ j|Φ−∑i βi Ψi) = 0 for every j, which is Eq. (69) with L̂ = Î.
The construction defines also the generalized affinity vector,
which in this case is |Λ) = |Φ−∑i βi Ψi) and is orthogonal to
the linear manifold spanned by the vectors |Ψi)’s.

Figure 2 gives a pictorial representation of the subspace or-
thogonal to the linear manifold spanned by the |Ψi)’s that here
we denote for simplicity by {|Ψi)}. The vector |Φ) is decom-
posed into its component |∑i βi Ψi) which lies in {Ψi} and its
component |Φ−∑i βi Ψi) which lies in the orthogonal subspace.

The circle in Figure 2 represents the condition (Πγ |Πγ) = ε̇2

corresponding in the uniform metric to the prescribed rate of
advancement in state space, ε̇2 = (d`/dt)2. The compatibility
with the conservation constraints ΠCi = (Ψi|Πγ) = 0 requires
that |Πγ) lies in subspace orthogonal to the |Ψi)’s. To take
the SEA the direction |Πγ) must maximize the scalar product
(Φ−∑i βi Ψi|Πγ). This clearly happens when |Πγ) has the same
direction as the vector |Φ−∑i βi Ψi) which in the uniform met-
ric coincides with the generalized affinity vector |Λ).

Next, we consider the more general scenario of a non-
uniform metric tensor Ĝ. Figure 3 gives a pictorial represen-
tation of the linear manifold spanned by the vectors Ĝ−1/2 |Ψi)
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Figure 3. Pictorial representation of the linear manifold spanned by the
vectors Ĝ−1/2 Ψi and the orthogonal projection of Ĝ−1/2 |Φ) onto this
manifold which defines the Lagrange multipliers βi in the case of a non-
uniform metric Ĝ. The construction defines also the generalized affinity
vector |Λ) = Ĝ−1/2 |Φ−∑i βi Ψi).

Figure 4. Pictorial representation of the SEA/MEP variational construc-
tion in the case of a non-uniform metric Ĝ. The circle represents
the condition (Πγ | Ĝ |Πγ) = ε̇2, corresponding to the norm of vector

Ĝ1/2 |Πγ). This vector must be orthogonal to the Ĝ−1/2 |Ψi)’s in order
to satisfy the conservation constraints ΠCi = (Ψi|Πγ) = 0. In order
to maximize the scalar product ΠS = (Φ|Πγ) = (Φ−∑i βi Ψi|Πγ),

vector Ĝ1/2 |Πγ) must have the same direction as |Λ) = Ĝ−1/2 |Φ−
∑i βi Ψi).

and the orthogonal projection of Ĝ−1/2 |Φ) which defines the
Lagrange multipliers βi in the case of non-uniform metric
Ĝ, where the orthogonality conditions that define the βi’s are
(Ψ j| Ĝ−1 |Φ−∑i βi Ψi) = 0 for every j, which is Eq. (69). The
construction defines also the generalized affinity vector |Λ) =
Ĝ−1/2 |Φ−∑i βi Ψi) which is orthogonal to the linear manifold
spanned by the vectors Ĝ−1/2 |Ψi)’s.

Figure 4 gives a pictorial representation of the subspace or-
thogonal to the linear manifold spanned by the Ĝ−1/2 |Ψi)’s
that here we denote for simplicity by {Ĝ−1/2 |Ψi)}. The vector
Ĝ−1/2 |Φ) is decomposed into its component Ĝ−1/2 |∑i βi Ψi)
which lies in {Ĝ−1/2 |Ψi)} and its component |Λ) = Ĝ−1/2 |Φ−
∑i βi Ψi) which lies in the orthogonal subspace.

The circle in Figure 4 represents the more general condi-
tion (Πγ | Ĝ |Πγ) = ε̇2 corresponding in the non-uniform met-
ric to the prescribed rate of advancement in state space, ε̇2 =
(d`/dt)2. It is clear that the direction of Ĝ1/2 |Πγ) which max-
imizes the scalar product (Φ−∑i βi Ψi|Πγ), is when |Πγ) is in
the direction of the point of tangency between the ellipse and a

line orthogonal to |Φ−∑i βi Ψi).
The compatibility with the conservation constraints ΠCi =

(Ψi|Πγ) = 0 requires that Ĝ1/2 |Πγ) lies in subspace orthogonal
to the Ĝ−1/2 |Ψi)’s. To take the SEA/MEP direction, the vector
Ĝ1/2 |Πγ) must maximize the scalar product (Φ−∑i βi Ψi|Πγ),
which is equal to the entropy production ΠS = (Φ|Πγ) since
(Ψi|Πγ) = 0. This clearly happens when |Πγ) has the same
direction as the generalized affinity vector |Λ) = Ĝ−1/2 |Φ−
∑i βi Ψi).

CONCLUSIONS

In this paper, we review the essential mathematical elements
of the formulations of six different approaches to the descrip-
tion of non-equilibrium dynamics. At the price of casting some
of them in a somewhat unusual notation, we gain the possibility
to set up a unified formulation, which allows us to investigate
the locally Maximum Entropy Production (MEP) principle in all
these contexts. It is a generalization to non-homogeneous cases
of the local Steepest Entropy Ascent (SEA) concept whereby
the time evolution the state is assumed to follows a path in state
space which, with respect to an underlying metric, is always tan-
gent to the direction of maximal entropy production compatible
with the conservation constraints.

The present SEA/MEP unified formulation allows us to ex-
tend at once to all these frameworks the SEA concept which
has so far been considered only in the framework of quan-
tum thermodynamics. Actually, the present formulation con-
stitutes a generalization even in the quantum thermodynamics
framework and constitutes a natural generalization to the far-
nonequilibrium domain of Mesoscopic Non-Equilibrium Quan-
tum Thermodynamics.

The analysis emphasizes that in the SEA/MEP implementa-
tion of the MEP principle, a key role is played by the geometri-
cal metric with respect to which to measure the length of a tra-
jectory in state space. The metric tensor turns out to be directly
related to the inverse of the Onsager’s generalized conductivity
tensor.

We conclude that in most of the existing theories of non-
equilibrium the time evolution of the state representative can
be seen to actually follow in state space the path of SEA with
respect to a suitable metric connected with the generalized con-
ductivities. This is true in the near-equilibrium limit, where in
all frameworks it is possible to show that the traditional assump-
tion of linear relaxation coincides with the SEA/MEP result.
Since the generalized conductivities represent, at least in the
near-equilibrium regime, the strength of the system’s reaction
when pulled out of equilibrium, it appear that their inverse, i.e.,
the generalized resistivity tensor, represents the metric with re-
spect to which the time evolution, at least in the near equilib-
rium, is SEA/MEP.

Far from equilibrium the resulting unified family of
SAE/MEP dynamical models is a very fundamental as well as
practical starting point because it features an intrinsic consis-
tency with the second law of thermodynamics. The proof of
nonnegativity of the local entropy production density is a gen-
eral and straightforward regardless of the details of the under-
lying metric tensor. In a variety of fields of application, the
present unifying approach may prove useful in providing a new
basis for effective numerical and theoretical models of irre-
versible, conservative relaxation towards equilibrium from far
non-equilibrium states.
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