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ABSTRACT 

The equation of motion of steepest-entropy-ascent quantum 
thermodynamics (SEA-QT) was first postulated in the early 
1980s with the intent of modeling the non-linear dynamic 
behavior encountered in nature, which the unitary (linear) 
dynamics of the Schrödinger-von Neumann equation cannot. 
The SEA-QT equation is used here to model the decoherence 
phenomenon between two distinguishable and indivisible 
elementary constituents of type spin–½ (e.g., quantum bits or 
qubits). The resulting set of non-linear, first-order differential 
equations is solved with a fourth-order-Runge-Kutta routine 
provided by Matlab®. The time evolution of the state of the 
composite system as well as that of the reduced and locally-
perceived states of the two constituents are traced from an initial 
non-equilibrium state of the composite along its relaxation 
towards stable equilibrium at constant system energy. An 
entangled and generally coherent, initial non-equilibrium state of 
the composite quantum system is prepared using a heuristic 
approach, which consists of randomly and homogeneously 
generating an initial point on the Bloch sphere for each of the 
constituents and then using a weighted average of their 
projections to arrive at an initial state for the composite. Results 
show how the initial entanglement and coherence between the 
two spin–½ constituents are reduced during relaxation towards a 
state of stable equilibrium. When the two particles are non-
interacting, the initial coherence is lost once stable equilibrium 
is reached. When they are interacting, the coherence in the final 
stable equilibrium state is only that due to the interaction. 
 
Keywords: non-equilibrium thermodynamics, steepest-entropy-
ascent modeling, maximum-entropy-production modeling, 
entanglement, decoherence. 

1. Introduction 

Non-equilibrium thermodynamics is an important field of 
study within the scientific community and has as its general aim 
the development of a deeper understanding of how nature 
behaves and as a consequence, how new technologies can be 
more effectively developed. This applies at all spatial and 
temporal scales of analysis. Lately, of particular interest has been 
a consideration of the non-equilibrium phenomena which occur 
at the nanoscale, particularly in relation to quantum computing 
and nanometric devices [1-4] where entanglement, coherence, 
and decoherence are of great importance. The entanglement of 
zero-entropy states or the coherence of non-zero-entropy states 
is present when the local state of one constituent is correlated to 
that of another. The loss of correlation among the local states of 
the constituents of a composite system is known as decoherence. 

The analysis (both experimental and numerical) of the 
creation and loss of correlations has significance for explaining 
the transition between the microscopic and macroscopic worlds 
[5, 6]. In addition, the manipulation of these communication-
type phenomena can be used for the development of nanometric 
devices, which rely for their operation (e.g., a quantum computer 
[7]) on the correlation of states among the different subsystems, 
which make up the composite system. 

A common approach to modeling these phenomena is to use 
linear Markovian quantum master equations (i.e., those of the 
Lindblad type [8-10]), which are based on the so-called “open-
system model”, which assumes that the system is attached to 
(and weakly interacts with) a thermal bath or reservoir 
(environment). It is assumed that entanglement or coherence 
continually builds up due to the weak interactions between the 
system and the reservoir, while at the same time decoherence 
results from a dissipation or loss of quantum entanglement or 
coherence. Of course, under this assumption, the dissipation 
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phenomenon is the result of a loss of information. Although as is 
widely known these Markov quantum master equations fit the 
dissipative behavior of such simple systems well, they fail 
among other things to provide a proper description of the time 
evolution of the state of the system for more general or strongly 
coupled (and, thus, complicated) microscopic systems [11, 12]. 

In this paper, an alternative and comprehensive model is 
presented based on SEA-QT and its dynamical law of time 
evolution along the locally perceived direction of SEA, which 
effectively implements on a local basis the maximal entropy 
production (LMEP) [13]. This is used to model the non-linear 
dynamic behavior of a general (closed and adiabatic) 
microscopic system as its state evolves in time towards stable 
equilibrium, resulting in the loss of correlations among the 
constituents of the composite microscopic system. In general, the 
non-linear SEA-QT equation of motion consists of two terms, 
the first of which captures the unitary, Hamiltonian dynamics of 
the Schrödinger-von Neumann equation, and the second which 
models the non-linear dynamics of dissipative evolution in state 
based on the principle of SEA subject to the relevant dynamical 
constraints [14-17]. In particular, for the case of a system 
composed of two or more distinguishable (separable or non-
separable, i.e., interacting or non-interacting) subsystems, we 
adopt the form of the SEA-QT equation which ensures that the 
evolution in state follows in correlated or uncorrelated local 
states the path of locally-perceived SEA [18]. 

Within the SEA-QT model, the dissipative aspects of the time 
evolution emerge from the non-Hamiltonian term in the SEA-QT 
equation of motion. Thus, instead of focusing on the non-
Hamiltonian effects of the interactions between the microscopic 
system and its surroundings, the SEA-QT description assumes 
the composite system to be isolated and its time evolution to be 
intrinsically non-Hamiltonian. In so doing, the equation predicts 
a loss of quantum entanglement or coherence consistent with that 
observed in recent experiments [19-22]. This is illustrated here 
via the evolution in state of a microscopic system composed of 
two spin-½ particles. Direct comparisons with experiments are 
given in [23, 24]. 
2. Model description 

2.1. Two spin-½-particles composite system 

The composite system considered here is depicted in Figure 
1. It consists of two interacting, spin-½-type particles. This 
represents the smallest composite system that can be formed in 
Nature and can, for example, be used to analyze the entangled or 
coherent states obtained when physically measuring the state of 
an atom in which one constituent represents the particle and the 
other the measuring device treated as a two-level-type subsystem 
[25]. 

For the analysis here, the state of constituent A and that of B 
are fully represented in subspaces AH  and BH , respectively. 
The Hilbert space corresponding to the composite system is 
given as the outer product of the two subspaces such that 

BA HHH   (1) 

When the particles interact, their states become correlated 
and the state (density) operator ρ  for the composite system may 
be written as 

ζρρρ BA   (2) 

Here ρ  is formed from the outer product of the local state 
operators represented by the reduced state operators ρρ BA Tr  
and ρρ AB Tr , and a correlation operator, ζ , which is the null 
operator only in the absence of correlations. 

The Hamiltonian operator on H , representing the total 
energy of the composite system, is 

VHIIHH BABA   (3) 

where the operators 

z
AAH 02

1
  (4a) 

z
BBH 02

1
  (4b) 

are the Hamiltonians on subspaces AH  and BH , respectively, 

0  is the transition frequency between the exited and ground 
energy levels of each constituent, and   is the reduced Planck 
constant. The coupling operator on H , given by 

 BAV 


  (5) 

represents the interaction between constituents, i


 ( BAi , ) 
are three-dimensional vectors of Pauli operators, and   is the 
strength of the coupling between the subsystems. For the system 
under consideration, the Hamiltonian of Eq. (3) becomes 

   BA
z
BAB

z
A IImH 


  (6) 

where   021 m  is the unit strength of a uniform 
externally applied magnetic field in the z-direction. The strength 
of the field given by ẑmM 


 is small with respect to the Zeeman 

interaction splitting effects. For simplicity and without loss of 
generality, m  and   are set to 1, while   is set to 0.02. 

 

Figure 1. Schematic representation of a composite system in which the 
constituents interact with each other. 
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(a) (b) 

Figure 2. Bloch sphere representation of a qubit. (a) Construction of a 
non-zero-entropy state and (b) initial state for the system under analysis. 

 
Important ingredients of the SEA-QT model are the local 

observables given by the linear local operators defined as follows 
[18] 

    HρIH BAB
A  Tr  (7a) 

    HIρH BAA
B  Tr  (7b) 

which represent the “local effective perception” of the overall 
Hamiltonian operator and whose local mean values can be 
interpreted as the overall system’s energy as “locally perceived” 
by each constituent, and the local observables given by the 
nonlinear local operators defined as follows [18] 

    ρBρIkS BABB
A lnTr   (8a) 

    ρBIρkS BAAB
B lnTr   (8b) 

which represent the “local effective perception” of the overall 
ρkB ln  operator and whose local mean values can be 

interpreted as the overall system’s entropy as “locally perceived” 
by each constituent. 

The entropy of the overall, composite, microscopic system is 
given by the von Neumann entropy relation [26] 

 ρρkS B lnTr  (9) 

where Bk  is Boltzmann’s constant. 

 

2.2. Construction of the initial entangled and 
correlated density operators in non-
equilibrium states 

Let us consider Figure 2a for visualization purposes where 
the state (either of zero entropy or of non-zero entropy) of a spin-
½ particle is represented as a vector in the Bloch sphere [7]. If 
the state is a zero-entropy state, the tip of its vector 
representation, 1P


, is on the surface of the sphere ( 1|| 1 P


). A 

non-zero-entropy state, on the other hand, lies within the sphere 
and can, for example, be constructed as a statistical mix of two 
zero-entropy states [25] such that 

 


 21 )1(
2

1
PPIρ  (10) 

where the tip of the non-pure vector state, P


, is on a line 
connecting the tips of the two unit-norm pure vector states, 1P


 

and 2P


, and 1|P|


.   is a real constant satisfying 10    . 
Note that Eq. (10) represents the density operator for a single 
qubit. However, if instead of a single qubit two distinguishable 
qubits, A and B, on AH  and BH , respectively, are considered, a 
state operator on H may be obtained by using a development 
similar to that for Eq. (10), i.e., by employing the weighted sum 
of the outer products of sets of local pure (zero-entropy) state 
operators, namely, 

BABABABA ρρωρρωρρωρρωρ 124213222111   (11) 

where A
1  and A

2  for constituent A (or B
1  and B

2  for 
constituent B) are two pure (zero-entropy) state operators whose 
vector tips on the respective Bloch spheres are   ,P1  and 

   ,2P , and are in opposite directions along a diameter 
of the Bloch sphere. We generate random initial states by 
randomly choosing the real positive constants, i , such that 

1
i

i   and  10  i  (12) 

In an attempt to preserve the generality of the approach, 
random points with equal probability density are selected from 
the surface of the unit sphere [27] to represent the pure states 
  ,Pi  for 2,1i  where   and   are the rotational and 

azimuthal angle, respectively. Figure 2b shows the initial vector 
states representing the reduced density operator on AH  and BH  
for particles A and B, respectively, obtained for the particular 
case provided in this paper. 

The state operator obtained with Eq. (11) is for the initial 
non-equilibrium state of the composite microscopic system 
given by Eq. (2) [28]. In contrast, the final stable equilibrium 
state, reached at the end of the relaxation evolution, takes the 
canonical form 

 kTH

kTH

se e

e
ρ

/

/

Tr 



  (13) 

where the Hamiltonian operator is given by Eq. (6). The energy 
eigenlevel occupation probabilities showing the energy 
redistribution within the energy eigenlevels of the system 

  jjjp Tr  (14) 

are obtained in accordance with the eigenprojectors of the 
Hamiltonian operator, jjj   . 

2.3. Locally SEA state evolution dynamics 

The generators of the motion for the isolated two-particle 
spin-½ composite system are given by the set  HIR ,  with 
the identity operator I expressed as BA III   and the 

Spin‐A

Spin‐B

x

y

zz

y
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
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Hamiltonian operator by Eq. (6). The locally SEA-QT equation 
of motion is [18] 

  







 BA

B
BA

A

DD,H
i

dt

d 





 11


 (15) 

where the first term on the right-hand side describes the unitary 
Hamiltonian dynamics of the system and the second the non-
Hamiltonian dissipation dynamics. The operator 
  HH,H    is the commutator between the Hamiltonian 
and density or state operator. A  and B  are internal-relaxation 
times particular to each constituent, considered to be real 
constants or functionals. For the case presented here, they are 
assumed to be real constants with a value of 1 BA  . The 
operators JD  ( BAJ , ) are the nonlinear functions of the 
overall density operator defined explicitly in [18] and take the 
form 

 †
2
1 )

~
(

~
JJJJJ DDD    (16a) 

JJ

JJ

JJJ

JJJ

J
A

J
A

J
J

J

HHIH

HIII

HHIHBH

HIIIBI

HIB

D

),(),(

),(),(

),(),()ln,(

),(),()ln,(

)()()ln(

~ 




  (16b) 

where B  is the idempotent operator obtained by substituting 
unity for each nonzero eigenvalue of  ,   denotes a 
determinant, JJ

J
J

J
J GFGF ))()((),(  , and 

)(Tr)( ††
2
1

JJJJJ
J

JJ FGGFGF  . 
 

2.4. Measures of correlation and entanglement 

Since our scope is to model decoherence, we need to adopt 
some measure of entanglement and correlation. There are several 
options in the literature. For example, a correlation functional, 
which in this case is the entropy correlation function, is [18] 

       BBBAAAAB  lnTrlnTrlnTr   (17) 

Another measure of the coherence between the constituents of 
the system is the norm of the commutator operator 

 †Tr CCC   (18) 

where ],[ HiC  . It can be used as an indicator of how the 
off-diagonal elements of the matrix representing the state 
operator evolve towards zero. It can, thus, also be thought of as 
a measure of the evolution of the coherence of the constituents. 

The rate of change of the correlation functional given by Eq. 
(17) is expressed as 

 
DABHAB

AB

dt

d 
 

)(
 (19) 

where the first term on the right-hand side represents the 

contribution, which the Hamiltonian term of Eq. (15) makes to 
the rate of change of the correlation functional. The second term 
on the right-hand side represents the contribution of the 
dissipative term of Eq. (15). Based on the characteristics of Eq. 
(15), it is has been conjectured [18] that DAB |  only destroys 
correlations between the constituents, namely, it should be non-
negative at all times. 
 

 

Figure 3. Energy-entropy diagram for the state evolution of the 
composite two spin-½-particles system. States A are for the particular 
case presented in this paper, while states B are other possible initial non-
equilibrium states. 

 

Figure 4. Evolution of the norm C  of the commutator term. 

 

Figure 5. Entropy evolution of the composite system. 
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3. Results 

Figure 3 shows an energy-entropy (E-S) diagram for the state 
evolution of the system. The four points depicted inside the curve 
are possible initial non-equilibrium states obtained with the 
approach described in Section 2.2 and illustrate the fact that any 
non-equilibrium state can be modeled with the approach used in 
this paper. Although state 1A  together with states 1B , 2B , 3B  and 

4B  were all modeled in terms of their evolution towards a state 
of stable equilibrium, the focus here is on the evolution in state 
A only for which a complete set of results is presented. With this 
in mind, the system evolves at constant energy from state 1A  
towards the state of stable equilibrium at seA  that for this case 
just happen to have a high negative temperature. When the state 
of the system reaches seA , the density operator takes the 
canonical form of Eq. (13). 

Figure 4 shows the norm of the commutator operator defined 
by Eq. (18). The evolution of the norm is taken as an indicator of 
how the off-diagonal elements of the matrix representing the 
density or state operator decay; and as a result, it is also an 
indicator of how the coherence of the system disappears as the 
state of the system evolves towards seA . A drastic descent is 
observed at the beginning of the evolution because the local 
coherence within each constituent is being annihilated by the 
dissipative term of the equation of motion. This drastic descent 
is in accordance with the locally-perceived steepest entropy 
ascent ansatz upon which the dynamic model is constructed. As 
seen in Figure 5 where the evolution of the composite system 
entropy is given, the entropy increases very rapidly at the 
beginning of the evolution and then quickly slows its increase, 
asymptotically approaching its stable equilibrium value. 

Figure 6 shows the x-, y-, and z-components of the vector 
state representation for both constituents. It can be seen that 
constituent A starts its evolution closer to the surface of its 
corresponding unit sphere than constituent B (also see Figure 
2b). The red line corresponds to the z-component of the vector, 
which shows how the two constituents are coherently 
exchanging energy, i.e., when the energy of constituent A 
decreases, that of constituent B increases. The x- and y-
components evolve very fast towards a value of zero, which is 
reached at a dimensionless time of about 10. This evolution 
towards the center of the local-Bloch sphere represents the loss 
of local-coherence of the constituents. In contrast, the non-local 
coherence belonging to the off-diagonal elements of the density 
matrix of the system continues its decay but at a very gradual 
rate until it reaches a value of zero at which point the 
Hamiltonian and density operators commute and the state of the 
composite system is that of stable equilibrium (see Figure 4 
above). During this slow, non-linear and non-local decay, the 
constituents continue exchanging energy with each other. 

Figure 7 shows the evolution in time of the energy eigenlevel 
occupation probabilities given by Eq. (14). As can be seen, the 
largest redistribution of system energy takes place primarily 
between two of the four energy eigenlevels of the system, the 

majority of which occurs during a short non-dimensional time 
interval corresponding to the decay of the local-coherence of the 
constituents. After this fast initial redistribution, the 
redistribution of energy represented by changes in the eigenlevel 
occupation probabilities occurs at a much slower rate. 
 
 

 
(a) 

 

 
(b) 

Figure 6. Evolution of the components of the state vector for (a) 
constituent A and (b) constituent B. 
 
 

 

Figure 7. Evolution of the energy eigenlevel occupation probabilities of 
the composite system. 
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Figure 8. Evolution of the entropy correlation functional. 

 

Figure 9. Rate of change of the contribution of the dissipative term to 
the rate of change of the entropy correlation functional. 
 

Figure 8 depicts the evolution in time of the entropy 
correlation functional, which is a measurement of how the 
correlation between the constituents disappears when the 
composite system evolves towards a state of stable equilibrium. 
The correlation functional effectively reaches zero (within a 
certain convergence criterion) at stable equilibrium which occurs 
at about 5107  dimensionless time units and at which the value 
of the correlation functional is 0051.0AB . 

Figure 9 shows the rate of change of the dissipation term of 
the equation of motion and confirms the conjecture that it can 
only destroy and never create correlations between constituents. 
Indeed, the rate of change of the entropy correlation is always 
non-negative, and this result is reproduced in all other 
simulations performed (but not reported here) obtained by 
randomly varying the initial state. In an attempt to generalize the 
validity of this statement, many different initial non-zero-entropy 
states randomly generated as discussed above were tested (~100) 
and in each case always resulted in non-negative values of 

DAB | . The cloud of initial points tested is depicted in Figure 10 
for constituents A and B. 

Finally, additional possible measures of decoherence are 
given in Figures 11 and 12, which show the evolution of the 
difference in the locally perceived energies and the energy of the 
composite system and the difference in the locally perceived 

entropies and the entropy of the composite system, respectively. 
As can be seen, these differences decay very quickly at first and 
then very gradually, effectively going to zero at stable 
equilibrium, which occurs at about 5107  dimensionless time 
units (not depicted in the figures). 
 

 
(a) (b) 

Figure 10. Bloch sphere representation of different random 
initial states for (a) spin-A and (b) spin-B. 
 

 
Figure 11. Evolution of the difference in the locally perceived 
energies and the energy of the composite system. 
 

 
Figure 12. Evolution of the difference in the locally perceived 
entropies and the entropy of the composite system. 
 
4. Conclusions 

In this paper, an approach based on the steepest-entropy-
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the state evolution is embedded in the equation so as to describe 
in a thermodynamically consistent way the decoherence which 
occurs during relaxation to equilibrium of a simple but realistic 
quantum system consisting of two interacting, correlated 
particles of type spin-½. The results show that the local 
coherence within each constituent (particle) disappears in a very 
short period of time, whereas the non-local coherence belonging 
to the composite system takes a very long time to disappear. This 
suggests that at least one way of controlling decoherence may be 
to judiciously choose the initial state in such a way that the 
spontaneous loss of correlations between constituents is so slow 
as to be almost negligible. Another possibility as suggested by 
Levin et al. [29] may be to induce a steady state of the composite 
system via a set of constant energy fluxes with the environment. 
Limits to this control or any other must also be understood [30]. 
Of course, the first step in any control is the ability to simulate 
the process of loss of coherence, something for which we have 
demonstrated in the present paper that the SEA modeling concept 
could be used with profit. 

Finally, as shown here, the dissipation term of the proposed 
model equation of motion is capable of destroying but never 
creating correlations between constituents. In addition, the 
results obtained demonstrate that the dynamic approach utilized 
in this paper is a robust and comprehensive framework for 
simulating the non-linear dynamics encountered in complex 
quantum systems. 
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