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ABSTRACT 

The Rate-Controlled Constrained-Equilibrium (RCCE) 

model reduction scheme for chemical kinetics provides 

acceptable accuracies in predicting hydrocarbon ignition delays 

by solving a smaller number of differential equations than the 

number of species in the underlying Detailed Kinetic Model 

(DKM). To yield good approximations, the method requires 

accurate identification of the rate controlling constraints. Until 

recently, a drawback of the RCCE scheme has been the absence 

of a fully automatable and systematic procedure capable of 

identifying the best constraints for a given range of 

thermodynamic conditions and a required level of 

approximation. A recent paper [1] has proposed a new 

methodology for such identification based on a simple 

algebraic analysis of the results of a preliminary simulation of 

the underlying DKM, focused on the behaviour of the degrees 

of disequilibrium (DoD) of the individual chemical reactions. 

The new methodology is based on computing an Approximate 

Singular Value Decomposition of the Actual Degrees of 

Disequilibrium (ASVDADD) obtained from the DKM 

simulation. The effectiveness and robustness of the method has 

been demonstrated in [1] for some cases of methane/oxygen 

ignition by considering a C1/H/O (29 species/133 reactions) 

sub-mechanism of the GRI-Mech 3.0 scheme and comparing 

the results of a DKM simulation with those of RCCE 

simulations based on increasing numbers of ASVDADD 

constraints. The RCCE results are in excellent agreement with 

DKM predictions for relatively small numbers of RCCE 

constraints. Here we provide a demonstration of the new 

method for some cases of shock-tube ignition of a natural 

gas/air mixture, with higher hydrocarbons approximately 

represented by propane according to the full (53 species/325 

reactions) GRI-Mech 3.0 scheme. 

 

 

1   INTRODUCTION 

 In the framework of modeling the ignition of a 

homogeneous methane/air mixture, the purpose of this paper is 

to present a validation of the recently proposed [1] ASVDADD 

method (Approximate Singular Value Decomposition of the 

Actual Degrees of Disequilibrium) for automatic constraint 

selection for use in the RCCE (Rate-Controlled Constrained-

Equilibrium) method of model order reduction [2-14]. The 

ASVDADD method requires a preliminary full DKM (Detailed 

Kinetic Model) simulation aimed at computing the time 

dependence of the DoD (Degree of Disequilibrium) of every 

individual chemical reaction in the scheme. It then extracts the 

selection of RCCE constraints from the Singular Value 

Decomposition (SVD) of a matrix that contains the information 

about the DoD-time traces of all reactions. 

In Section 2, we review the assumptions of a typical DKM for 

gas-phase combustion. In Section 3, we recall the meaning of 

DoD-time trace analysis. In Section 4, we review the RCCE 

fundamentals. In Section 5, we outline the general logic of 

automatic constraint selection and in Section 6, the particular 

logic of the ASVDADD algorithm based on DoD analysis. In 

Section 7, we present the results of the numerical validation and 

in Section 8 our conclusions. 

 

2 STANDARD DKM FORMULATION 

 A Detailed Kinetic Model for gas-phase combustion is 

typically defined by: 

- A list of    chemical species. 

- A kinetic scheme with r chemical reactions (we denote the 

forward and reverse stoichiometric coefficients of the  -th 

reaction by    
  and    

 , respectively). 

- The kinetic parameters that determine the forward reaction 

rate constants 

   
         

    
 
        

      (1) 

(typically in mol-cm-s-K units with the forward activation 

energy   
  in cal/mol). 

- The principle of detailed balance to determine the backward 

reaction rate constants according to  

   
       

       
      (2) 

where the equilibrium constant based on concentrations is 

   
                         

          (3) 
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where         
     

    and    
                   

  
    is 

the Gibbs free energy of the  -th reaction at standard pressure  

    and temperature  . In the present paper, we use the notation 

of [11], which differs only slightly from that of [15], whereby 

        (with the double subscript) refers to the Gibbs free 

energy of pure substance  , whereas the symbol       (with a 

single subscript), used below, represents instead the partial 

Gibbs free energy, i.e., the chemical potential, of species    in 

the mixture. 

-  The relation  

 
  
    

          
   
 

  
         (4) 

to compute the forward and reverse reaction rates,   
  and   

 , 

respectively, where      is the concentration of species j. From 

these we compute the chemical production density terms in the 

species balance equations (consumption density if negative) 

              
    

  
  
         (5) 

and the chemical contribution to the entropy production density  

            
    

  
  
         

    
        (6) 

- The local equilibrium assumption whereby the so-called 

"surrogate system" [16-17] obtained by instantaneously 

"freezing" all reactions can be assumed to have the properties 

of a stable thermodynamic equilibrium at temperature   and 

pressure   of the non-reacting mixture (hence the "off" 

subscript, below) with mole fractions 

            ,     where            
  
         (7) 

For convenience, we introduce the vector of mole fractions 

               (8) 

- The assumption of ideal Gibbs-Dalton mixture of ideal gases 

whereby         and the chemical potential of species   in 

the "surrogate system" is given by 

                                              (9) 

For convenience, we introduce the entropic chemical potentials  

                                    (10) 

and, for shorthand, the vectors 

               (11) 

                      (12) 

                     (13) 

so that Eq. (9) rewrites in either of the following forms 

                             (14) 

                    (15) 

 

3 DEGREES OF DISEQUILIBRIUM 

The degree of disequilibrium (DoD) of reaction   is defined as 

         
    

    (16) 

For convenience of discussion, below we refer to the degree of 

disequilibrium of reaction   also by     . Under the set of 

assumptions outlined in the preceding sections, it is easy to 

verify that      is related to       via the equation 

                        
  
     (17) 

and to        via the non-equilibrium law of mass action  

      
     

      
                (18) 

In view of Eqs. (4), some DoD's are    when some of the 

    's are zero. We exclude such cases from our treatment, 

meaning that for all practical purposes, when the concentration 

of a species j is initially zero, we substitute the zero with a very 

small value, like               . 

The mathematical interpretation of Eq. (17) is that the DoD of a 

reaction is a linear combination of the rows of the 

stoichiometric matrix, with the       's as coefficients of the 

linear combination. Thus, if some columns of the stoichiometric 

matrix are linearly dependent, then so are the corresponding 

DoD's.   

We also observe that Eq. (17) may be rewritten as the scalar 

product of the vector   with the vector 

                   (19) 

whose entries correspond to the  -th column of the matrix 

        of the stoichiometric coefficients, i.e., we may write 

           
  
            (20) 

where            
 
    denotes the scalar product of two 

vectors              and              in the vector space 

    consisting of all ordered   -tuples of real numbers.  

From Eq. (5) and defining the overall production density vector  

                 (21) 

the entropy production density may also be written as 

           
  
          

    
  

  
                (22) 

In general the reactions in a given DKM are not all 

independent. Element conservation requires the stoichiometric 

coefficients to satisfy the following     balance conditions 

     
       

  
           for i=1,...,    and   =1,...,   (23) 

where of course    
   represents the number of atoms of type i in 

a molecule of species j. These conditions guarantee that the 

chemical production/consumption terms in the species balances 

equations satisfy the element conservation constraints  

     
     

  
                for i=1,...,    (24) 

Defining the     linearly independent vectors 

    
       

         
       for i=1,...,    (25) 

the stoichiometric balance conditions (23) become 

orthogonality conditions 

    
         (26) 

implying that the column space            of the 

stoichiometric matrix  , i.e., the linear span of the set of 

stoichiometric vectors    whose entries are given by its 
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columns, often called the reactive subspace, is orthogonal to 

the    -dimensional linear span          of the elemental 

constraint vectors    
   , often called the inhert subspace. This 

also implies that the matrix     of stoichiometric coefficients has 

rank         . The reactive subspace and the inhert 

subspace are orthogonal complements in the    -dimensional 

real vector space    , i.e., we may write  

                         (27) 

meaning that any vector             in     may be 

decomposed as                         with             in 

          ,           in         , and of course 

                           Therefore, applying such 

decomposition to the vector   we may write 

           (28) 

where for shorthand we introduced the notation 

                                            (29) 

Clearly, Eqs. (14) and (15) rewrite as 

                                   (30) 

                          (31) 

We call      the overall degree of disequilibrium vector 

(ODoD). In general we can write 

        
    

     
     (32) 

Since          , we can rewrite Eqs. (20) and (22) as 

follows 

           
  
                  for   =1,...,   (33) 

                      (34) 

Moreover, importantly, we can construct a (non orthogonal) 

basis for the  -dimensional             by choosing a subset of 

  linearly independent columns of the stoichiometric matrix 

identified by the column numbers   , for        . With 

respect to this basis we can write  

         
 
        (35) 

It is also worth noting that the component    lies in the    -
dimensional linear span of the elemental constraints and is all 

that remains of vector   at complete chemical equilibrium 

where all the DoD's are zero and, therefore,       .  

We now substitute Eq. (35) into Eq. (33) for       to obtain 

         
 
            

   (36) 

which can be viewed as a linear system of equations that we 

can solve for the   's because the     matrix       

         
  is non-singular by virtue of the linear independence 

of the basis vectors    . Hence, denoting its inverse by 

     , we can write the solution of the system as  

         
 
          (37) 

Substituting into Eq. (35), we obtain 

           
 
        

 
                    

 
    

 
    

which shows that we can transform to a more convenient (still 

non orthogonal) basis for           , defined by the 

transformation 

             
 
      (38) 

with respect to which the coordinates of      are the DoD's of 

the chosen   linearly independent reactions    , for        , 

i.e.,  

             
 
     (39) 

It is important to note that the basis vectors     can be 

computed once and for all, for the given DKM, by simple 

algebraic operations based exclusively on the matrix   of 

stoichiometric coefficients. Note also that the same procedure 

may yield different linearly independent sets of reactions and 

basis vectors     if the columns of the stoichiometric matrix are 

sorted in a different order.  

Relation (39) is very important for the ASVDADD algorithm of 

automatic selection of RCCE constraints. It is also important in 

general for the analysis of results obtained from a DKM 

simulation because it allows to construct the ODoD vector 

     from the values     of the DoD's of only a subset of   

independent reactions.  

In this paper, we consider the unsteady problem of predicting 

the ignition delay time of a homogeneous gas mixture. 

Therefore, the results of a DKM simulation will be functions of  

time   only, i.e., Eq. (39) rewrites as 

     
          

 
        

 
 
     (40) 

 

4   RATE-CONTROLLED CONSTRAINED-
EQUILIBRIUM APPROXIMATION 

The main assumption of the RCCE modeling approximation is 

that the gas mixture evolves along a low-dimensional manifold 

in composition space where the associated local equilibrium 

states of the "surrogate system", i.e., the stable equilibrium state 

obtained by instantaneously "freezing" all reactions, have the 

constrained equilibrium composition     that minimizes the 

Gibbs free energy for the instantaneous local values of the 

temperature  , the pressure  , the element concentrations 

   
   , and a set of        rate-controlling constraint densities 

       , defined as linear combinations of the local species 

concentration via the relations  

     
      

   
   

    
                                          (41) 

      
      

   
   

                             (42) 

where the constraint matrix         
     plays a crucial role 

and must be chosen so that Eqs. (42) possibly represent the 

slowest varying linear combinations of the local concentrations, 

in principle associated with the main rate-controlling 

bottlenecks of the underlying DKM at the local conditions. The 

composition     defined by such constrained minimization is 

    
               

        
     

       
     

    
     (43) 

Introducing as in the previous section the following notation,  
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     (44) 

      
      

    
    

     (45) 

    
       

         
       for i=1,...,   (46) 

            
          

        (47) 

we may rewrite Eq. (43) in the following form 

      
                

         (48) 

suitable for comparison with the ODoD vector resulting from a 

full DKM simulation, which according to Eq. (31) is 

      
                 

            (49) 

Subtracting these two equations, if the composition     is a 

good approximation of     , we may write the following 

formal expression for the vector of relative errors 

        

    
    

   

    
     

    
        

       
         

        
     

     (50) 

where of course we introduced the shorthand notation 

                
    

              
     

       (51) 

        

    
  

  
     

   

  
      

   
      

   

   
   

   (52) 

Also, for the entropy production density the error is 

      
        

         
        

       (53) 

 

5   SELECTION OF RCCE CONSTRAINTS 

The general idea behind the RCCE method [1-14] is that for 

each set of conditions and a given degree of acceptable 

approximation there is a threshold time scale which essentially 

separates the "relatively fast" equilibrating mechanisms from 

those that slow down and control the spontaneous relaxation 

towards stable chemical equilibrium. The "relatively slow" 

mechanisms control the interesting part of the non-equilibrium 

dynamics in that they effectively identify a low-dimensional 

manifold in composition space, where, for the chosen level of 

approximation, the dynamics can be assumed to take place. In 

general, as shown in [18], time-scale based methods for the 

selection of constraints do not necessarily identify the most 

effective set of constraints, whereas it was shown in [12] that 

the analysis of DoD traces provides important information. Ref. 

[1] developed the idea into a truly algorithmic method for 

automatic RCCE-constraint selection based on choosing, for a 

preset value of   , the    constraint vectors   
   that minimize a 

suitably weighted average of the relative error between the 

ODoD vector time-traces     
          and     

       obtained 

respectively from the RCCE simulation and the DKM 

simulation, starting from the same initial conditions.   

A weighted average of the relative error may be defined as 

      
      

           
          

 

         
      
        

      
       

 
         

      
        

 (54) 

where           
    

   
 and the weight function       is to be 

chosen so as to emphasize the important features of the time 

traces, in particular, where the solution varies rapidly. 

A DKM or RCCE simulation requires the numerical integration 

of a set of (stiff) differential equations for       or       or 

     . Typically, we use a differential equation solver which 

chooses variable integration time steps so as to meet efficiently 

the prescribed error tolerances. For the homogeneous ignition 

problem at hand, the resulting time-discretization grid is 

typically a non-uniform time sequence,            where the 

index   labels the   points and   is usually a large integer. The  

ODoD vector that results from such a DKM simulation is an 

     matrix, 

       
                

     (55) 

that using Eq. (39) we can write as 

     
           

 
          

 
     (56) 

Therefore, this       matrix has rank          .  

The RCCE method seeks to approximate this matrix with one 

of smaller rank       

      
              

        
    

     (57) 

where the constraint vectors   
   are chosen so as to minimize 

an error measure such as that defined in Eq. (54). 

 

6   ASVDADD ALGORITHM BASED ON DOD 
ANALYSIS OF A DKM SIMULATION 

The ASVDADD algorithm bases the selection of constraints on 

the singular value decomposition [19] (SVD) of the      

matrix     
        obtained from a preliminary DKM simulation 

for the problem at hand. The canonical form of the SVD is  

     
             (58) 

The          nonzero singular values    are in decreasing 

order in the      diagonal matrix   followed by the zero 

ones. The first   columns of the       orthogonal matrix   

identify an orthonormal basis for the  -dimensional co-kernel 

of     
       .  

For a chosen number      of constraints, let us define the 

     diagonal matrix         obtained from   by setting to 

zero its diagonal elements with index      . By the Eckart–

Young theorem of linear algebra, the      matrix 

     
                      (59) 

represents the 'best approximation' to     
        that can be 

achieved by a matrix of rank   , in the sense of minimizing the 

Frobenius measure      of the approximation defined by 
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(60) 

which turns out to be equal to the ratio 

 
         

   
 
      

   
 
   

 (61) 

where        is the first neglected singular value.  

The ASVDADD algorithm adopts  

                  
      (62) 

This error measure corresponds to accepting in Eq. (54) the 

weight function       that has been implicitly chosen by the 

differential equation solver we used for the DKM simulation so 

as to adapt and refine the time discretization grid where the 

solution changes rapidly. 

By construction, the first    columns of the       orthogonal 

matrix   identify an orthonormal basis for the    -dimensional 

co-kernel of      
          . This means that, if we denote these 

columns by   
  ,  we can write 

      
              

        
    

     (63) 

thus achieving the objective of the RCCE modeling 

approximation, because the first    columns of the matrix   

can be taken as the desired    'best' RCCE constraints    
   (in 

addition to the     elemental ones).  

The great advantage of the ASVDADD  procedure is that -- at 

the expense of a specific but very natural choice for the 

measure of 'approximation' and hence of 'optimality' of the 

choice of constraints -- the SVD of     
        provides at once 

the entire spectrum of optimal constraints (the first   columns 

of  ) in decreasing order of importance. The optimal set of    

constraint vectors   
   are just the first    columns of  . 

 

7   VALIDATION OF THE ASVDADD METHOD FOR AN 
IGNITION PROBLEM 

The present validation study focuses on the ignition of a 

homogeneous stoichiometric mixture of methane and air in a 

constant volume and constant energy setup, for two initial 

conditions, 900 K and 10 atm, and 1500 K and 1 atm. In Ref. 1 

a demonstration of the efficiency and robustness of the  

ASVDADD algorithm was done for a 29 species/133 reactions  

C1/H/O sub mechanism [10] of the GRI-Mech 3.0 scheme [21]. 

Here, instead, to probe the new algorithm in a more complex 

situation, we retain the full GRI-Mech 3.0 scheme, which 

considers     325 reactions between     53 species with 

     5 elements  (C,H,O,N,Ar). 

From the numerical point of view, considering our limited 

computational needs, especially the choice of the homogeneous 

ignition problem which requires no integration with CFD, we 

opted for the flexibility that could gain by rewriting the entire 

set of DKM, ASVDADD and RCCE codes in MatLab so as to 

use the built-in differential equations solvers. In particular, we 

used the ode15s for the integration of the stiff DKM and RCCE 

system of species balance and energy balance equations. 

To avoid infinite values of the DoD's, we set an initial 

composition       that is not exactly stoichiometric. We 

assume 1 mol of CH4, stoichiometric amounts of O2, N2, and Ar 

(respectively, 2 mol, 7.52 mol, and 0.08 mol), and        mol 

for each of the other 49 species.  

We proceed as follows. We first run a full DKM simulation 

with these initial amounts and the initial temperature      and 

pressure      of interest (in this study, either 1500 K and 1 atm 

or 900 K and 10 atm). Clearly, the volume is fixed by   
                and so is the energy via the specific heats 

dependence on temperature. We use the results of the DKM 

simulation to compute the      matrix      
        where the 

non-uniform sequence of    time steps has been chosen by the 

ode15s solver. We then compute the SVD of this matrix using 

svd MatLab function which returns the       orthogonal 

matrix   whose columns essentially identify all the 

ASVDADD constraints to be added to the elemental 

constraints. Thus, for a chosen value of     we take the first    

columns of the matrix   as the non-elemental constraints,   
  , 

additional to the     elemental ones,   
  . Next, we run the 

RCCE( ) simulation based on these           constraints. 

Since, as explained for example in [10-13], it is 

computationally convenient to solve the rate equations for the   

constraint potentials   
         and   

      (rather than for the 

species concentrations), we need to start the computation by 

establishing initial values   
         and   

      of the 

constraint potentials that through Eq. (43) approximate well the 

given initial composition. We do so by imposing Eq. (43) only 

for a set of    'major species', i.e., by solving the system of   

equations  

   
           

     
       

        
    

    

                    
                   

(64) 

for the   unknown values   
         and   

     , where we 

empirically selected as major species the first   in a list where 

they are ranked in decreasing order by their values of the sum 

     
     

        
    

                         (65) 

The values   
         and   

      are also used, again in Eq. 

(43), to compute the corrected initial mole fractions   
   of all 

the other species and, using              , the corrected 

initial amounts       . Finally, we use these corrected initial 

amounts to run a corrected DKM simulation that we use to 

compare results with the RCCE( ) simulations. 

The plots in Figures 1 compare  temperature, pressure and 

mole-fraction time-traces obtained from the DKM simulation 

with those obtained, for        1500 K and       1 atm, 

from the RCCE( ) simulations based on           
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constraints. It is noted that with a relatively small number (5 

and 8) of non-elemental constraints the RCCE results are in 

very good agreement with the DKM results, even in capturing 

fine details such as the overshoot/undershoot in the OH 

concentration at ignition time shown in one of the insets. To 

check the robustness of the ASVDADD algorithm, the plots for 

temperature show RCCE results also for    7 and 16, showing 

that to capture well also the temperature overshoot we need 11 

non-elemental constraints. 

Figure 2 shows similar comparisons for       900 K and 

      10 atm.  

For a small sample of reactions, Figures 3 and 4 compare, for 

the same simulations as in Figures 1 and 2 respectively, the 

DoD time traces obtained from the DKM simulation with those 

obtained from the RCCE( ) simulations. 

 

8   CONCLUSIONS 

 The ASVDADD algorithm for systematic RCCE constraint 

identification is based on analyzing how the degrees of 

disequilibrium (DoD) of the chemical reactions behave in a full 

DKM test simulation. Geometrically, the procedure identifies a 

low-dimensional subspace in DoD space from which the actual 

DoD traces do not depart beyond a fixed distance related to a 

preset tolerance level. 

The effectiveness and robustness of the methodology has 

already been demonstrated in [1] for several test cases of 

increasing complexity in the framework of oxy-combustion of 

hydrogen (8 species, 24 reactions) and methane (29 species, 

133 reactions). In the present paper, we provide a 

demonstration for the even more complex full GRI-Mech 3.0 

kinetic scheme (53 species, 325 reactions)  for methane/air 

combustion including nitrogen oxidation. 

The excellent performance of the ASVDADD constraints 

confirm that conclusion in [1] that the new algorithm 

essentially resolves the difficulties that have prevented the 

RCCE method from a more widespread use in model order 

reduction of detailed combustion kinetic models of 

hydrocarbon fuels.  

In future work we will show that the same model order 

reduction logic can find natural extensions also in the more 

general field of nonequilibrium thermodynamics, in particular 

in the general frameworks discussed in [22]. 
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Figure 1. Constant-      ignition of a homogeneous mixture of methane and air. Initially, the mixture is at 1500 K and 1 atm, 

with 1 mol of CH4, stoichiometric amounts of O2, N2, and Ar (respectively, 2 mol, 7.52 mol, and 0.08 mol), and very small 

amounts (between             mol) for each of the other 49 species. The plots compare temperature, pressure and mole-

fraction time traces obtained from the DKM simulation with those obtained from the RCCE( ) simulations based on       
    constraints, with    10 and 13, of which      5 are the element conservation ones (C,H,O,N,Ar) and the remaining 

          are those obtained from the ASVDADD algorithm based on the DoD traces produced by the DKM simulation. To 

check the robustness of the ASVDADD algorithm, the plots for temperature shows RCCE results also for    7 and 16. 
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Figure 2. Constant-      ignition of a homogeneous mixture of methane and air. Initially, the mixture is at 900 K and 10 atm, 

with 1 mol of CH4, stoichiometric amounts of O2, N2, and Ar (respectively, 2 mol, 7.52 mol, and 0.08 mol), and very small 

amounts (between             mol) for each of the other 49 species. The plots compare temperature, pressure and mole-

fraction time traces obtained from the DKM simulation with those obtained from the RCCE( ) simulations based on       
    constraints, with    11 and 14, of which      5 are the element conservation ones (C,H,O,N,Ar) and the remaining 

          are those obtained from the ASVDADD algorithm based on the DoD traces produced by the DKM simulation. To 

check the robustness of the ASVDADD algorithm, the plots for temperature shows RCCE results also for    8 and 17.  
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Figure 3. Constant-      ignition of a homogeneous mixture of methane and air. Initially, the mixture is at 1500 K and 1 atm, 

with 1 mol of CH4, stoichiometric amounts of O2, N2, and Ar (respectively, 2 mol, 7.52 mol, and 0.08 mol), and very small 

amounts (between             mol) for each of the other 49 species. Same simulations as in Figure 1. The plots compare, for a 

small sample of reactions, the DoD time traces obtained from the DKM simulation with those obtained from the RCCE( ) 

simulations based on           constraints, with    10 and 13, of which      5 are the element conservation ones.   

 

 

Figure 4. Constant-      ignition of a homogeneous mixture of methane and air. Initially, the mixture is at 900 K and 10 atm, 

with 1 mol of CH4, stoichiometric amounts of O2, N2, and Ar (respectively, 2 mol, 7.52 mol, and 0.08 mol), and very small 

amounts (between             mol) for each of the other 49 species. Same simulations as in Figure 2. The plots compare, for a 

small sample of reactions, the DoD time traces obtained from the DKM simulation with those obtained from the RCCE( ) 

simulations based on           constraints, with    11 and 14, of which      5 are the element conservation ones.   
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