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Abstract— The Rate-Controlled Constrained-Equilibrium
(RCCE) model reduction scheme for chemical kinetics pro-
vides acceptable accuracies with a number of differential
equations much lower than the number of species in the
underlying Detailed Kinetic Model (DKM). It was originally
proposed by James C. Keck (see [1-3] and references therein).
To yield good approximations the method requires accurate
identification of the rate controlling constraints. Until recently,
a drawback of the RCCE scheme has been the absence of a
fully automatable and systematic procedure to identify the
most effective constraints for a given range of thermodynamic
conditions and a required level of approximation. In a recent
paper [4], we have proposed a new methodology for such
identification based on a simple algebraic analysis of the
results of a preliminary simulation of the full underlying DKM,
focusing on the behavior of the degrees of disequilibrium (DoD)
of the individual chemical reactions. The new methodology is
based on computing an Approximate Singular Value Decom-
position of the Actual Degrees of Disequilibrium (ASVDADD)
obtained as functions of time in the probe DKM simulation.
The procedure identifies a low dimensional subspace in DoD
space, from which the actual DoD traces do not depart beyond
a fixed distance related to the first neglected singular value
of the matrix of DoD traces. The effectiveness and robustness
of the method has been demonstrated [4-6] for various cases
of a very rapid supersonic nozzle expansion of the products
of hydrogen and methane oxycombustion and for the case of
methane/oxygen ignition.

The RCCE method models the local non-equilibrium
states as partially equilibrated states with the local com-
position XXXCE = Nj/

∑nsp

k=1Nk that minimizes the Gibbs
free energy subject to: (1) the local values of tempera-
ture T , pressure p, molar amounts of elements NEL

i =∑nsp

j=1 a
EL
ij Nj (where aEL

ij represents the number of atoms of
element i in a molecule of species j) and (2) the local values
of a set of nc slowly varying and, hence, rate-controlling
(RC) constraints given by linear combinations of the molar
amounts, ci(NNN) =

∑nsp

j=1 a
RC
ij Nj , where the matrix aRC

ij is
the heart of the model in that it is assumed to fully charac-
terize the rate-controlling bottlenecks of the kinetic mecha-
nism. For ideal gas behavior, µj(T, p,XXX) = gj,pure(T, p) +
RT lnXj , the constrained maximization yields the com-
position lnXCE

j = −gj,pure(T, p)/RT −
∑nel

i=1 γ
EL
i aEL

ij −∑nc

i=1 γ
RC
i aRC

ij . The Lagrange multipliers γEL
i and γRC

i

are called elemental and constraint potentials, respectively.
For the `-th chemical reaction

∑nsp

j=1 νj`Aj = 0, the
stoichiometric balance requires that bEL

i` =
∑nsp

j=1 a
EL
ij νj` =

0. An advantage of the RCCE approximation is that the
composition depends only on the nel + nc parameters γEL

i

and γRC
i , instead of the nsp molar amounts of species which

can be many more. In the CFD modeling context, this means
that in addition to the continuity, Navier-Stokes, and energy
balance equations, the nsp species balance equations can
be effectively substituted by the nel +nc balance equations
for the elemental and constraint potentials, thus achieving
a substantial model reduction that has a built-in strong
thermodynamic consistency and does not require to cut the
number of species nor the number of reactions to be taken
into account.

The recently proposed ASVDADD algorithm [4] allows
the identification of optimal sets of constraints with no need
for deep knowledge and understanding of chemical kinetics
fundamentals such as chain branching, radical formation,
etc., thus making the RCCE method accessible to a broad
range of scientists and engineers. The algorithm is based
on the following basic observation. The degree of disequi-
librium (DoD) of reaction `, defined by φ` = ln r+` /r

−
`

where r±` are the forward and reverse rates of reaction `, is
given in general by φ` = ln(r+` /r

−
` ) =

∑nsp

j=1 Λj νj` where
Λj = −µj/RT are the dimensionless entropic chemical
potentials that can be viewed as the components of the nsp-
vector ΛΛΛ. Also the nel rows of the elemental composition
matrix aEL

ij can be viewed as the components of the nsp-
vectors aaaEL

i . Due to relation
∑nsp

j=1 a
EL
ij νj` = 0, the nel-

dimensional linear span of vectors aaaEL
i is the left null space

of the matrix νj` of stoichiometric coefficients, often called
the inert subspace.

The projection of vector ΛΛΛ onto the inert subspace can be
written as ΛΛΛspan({aaaEL

i }) =
∑nel

i=1 γ
EL
i aaaEL

i where the coeffi-
cients γEL

i can be readily computed (see, e.g., the appendix
of Ref. [7]). Since ΛΛΛspan({aaaEL

i }) does not contribute to the
DoD of any reaction (in fact,

∑nsp

j=1

∑nel

i=1 γ
EL
i aEL

ij νj` =∑nel

i=1 γ
EL
i bEL

i` = 0), we call the vector ΛΛΛDoD =
ΛΛΛ − ΛΛΛspan({aaaEL

i }) = ΛΛΛ −
∑nel

i=1 γ
EL
i aaaEL

i or, equivalently,
ΛDoD,j = Λj −

∑nel

i=1 γ
EL
i aEL

ij the “overall DoD vector.”
In fact, it contains the information about the DoD’s φ`
of all the reactions, φ` =

∑nsp

j=1 ΛDoD,j νj`, and it is the
null vector if and only if all reactions are equilibrated, in
the sense that their DoD’s are all zero. Notice that within



the RCCE model ΛΛΛRCCE
DoD =

∑nc

i=1 γ
RC
i aaaRC

i or, equivalently,
ΛRCCE
DoD,j =

∑nc

i=1 γ
RC
i aRC

ij .
Now let us consider a CFD numerical simulation in which

the index z = 1, . . . , Z labels the space-time discretization
(i.e., z labels both the finite volumes or elements of the
mesh as well as the time grid). If we adopt the full DKM
and solve the full set of balance equations including those
for all the species, the resulting overall DoD vectors form
an nsp×Z matrix ΛDKM

DoD,jz = ΛDoD,j(z) that has rank r =
nsp−nel. If instead the local states are described according
to the RCCE assumption defined above, the nsp×Z matrix
ΛRCCE
DoD,jz = ΛRCCE

DoD,j (z) =
∑nc

i=1 γ
RC
i (z)aRC

ij has rank equal
to the (typically much smaller) number nc of constraints.

In order to identify the constraint matrix aRC
ij that allows

such approximation, the idea behind the ASVDADD algo-
rithm is to probe the DKM by running a preliminary full
DKM computation, possibly on a submesh of the full prob-
lem and for a shorter time so as to span a limited range of
temperatures, pressures and compositions. The goal of such
computation is to obtain the r×Z matrix DDD with elements
ΛDKM
DoD,jz . Then we compute its singular value decomposition

(SVD). As is well known the result can be written formally
in reduced form as DDD = UUU diag(σσσ)VVV where UUU is an nsp×r
unitary matrix whose r columns represent an orthonormal
basis for the column space of DDD, VVV is an r × Z unitary
matrix whose r rows represent an orthonormal basis for the
row space of DDD, and σσσ is the r-vector of singular values of
DDD in decreasing order. Explicitly, the (reduced form) SVD
decomposition of the overall DoD matrix can be written as
ΛDKM
DoD,jz =

∑r
k=1 Ujk σk Vkz =

∑r
k=1 Ujk γ

DKM
kz , where

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and we defined γDKM
kz = σk Vkz .

Next, we use the well-known Eckart-Young theorem of
linear algebra, whereby if in the SVD of matrix DDD we
set to zero the singular values for k > nc (i.e., we set
σnc+1 = σnc+2 = · · · = σr = 0) then we obtain
the “closest” rank≤ nc approximation DDDapprox of the
original matrix DDD in the sense that the Frobenius norm
distance ‖DDDapprox − DDD‖Fro between the two matrices is
minimal. Such norm distance is equal to

∑r
k=nc+1 σ

2
k)1/2

and can be taken as a measure of the error introduced by
the approximation. Therefore, if we accept such level of
approximation, we can setup an optimal RCCE model with
nc constraints by selecting as our constraint matrix the first
nc columns of the matrix UUU . In fact, by setting (ASVDADD
choice of RCCE constraints): aRC

ij = Uji for i = 1, . . . , nc

we obtain ΛRCCE
DoD,jz =

∑nc

k=1 Ujk γ
RC
kz =

∑nc

i=1 γ
RC
iz aRC

ij

Interestingly, the r columns of the matrix UUU provide at
once the entire set of optimal RCCE constraints, already
ordered in decreasing order of importance. Essentially, in
conclusion, the ASVDADD algorithm identifies all the
constraints that characterize the kinetic bottlenecks of the
underlying DKM in effect in the range of conditions of the
chosen probe simulation, and it ranks them in decreasing
order of their relative contribution to the overall degree of

disequilibrium. These features make the algorithm suitable
for adaptive or tabulation strategies and therefore opens up
the advantages of the RCCE method to CFD simulation.

The effectiveness and robustness of the methodology has
already been demonstrated in [4-5] for several test cases of
increasing complexity in the framework of oxy-combustion
of hydrogen (8 species, 24 reactions) and methane (29
species, 133 reactions) as well as in [6] where a demonstra-
tion is given for the even more complex full GRI-Mech 3.0
kinetic scheme (53 species, 325 reactions) for methane/air
combustion including nitrogen oxidation.

The excellent performance of the ASVDADD constraints
confirms the conclusion that the new algorithm essentially
resolves the difficulties that have prevented the RCCE
method from a more widespread use in model order reduc-
tion of detailed combustion kinetic models of hydrocarbon
fuels, making it accessible to the non-experts in chemical
kinetics.

The RCCE model can be integrated most efficiently by
rewriting the balance equations as rate equations for the
elemental and constraint potentials (see Eqs. 136-139 of
Ref. 3) to obtain nel+nnc+2 implicit differential equations
which together with the nsp RCCE expressions for the mole
fractions can be solved for the nsp + 2 state variables T (t),
p(t), and Nj(t), and the nel+nc constraint potentials γEL

i (t)
and γRC

i (t).
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