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Entropy Generation Rate in a 
Chemically Reacting System 
For a nonchemical-equilibrium state of an isolated system A that has r constituents 
with initial amounts na = (n la) n2a, . . . , n r a), and that is subject to T chemical 
reaction mechanisms, temperature, pressure, and chemical potentials cannot be 
defined. As time evolves, the values of the amounts of constitutents vary according 
to the stoichiometric relations nj(t) = nia + EJ=, v^ ej(t), where J-F' is the stoichi­
ometric coefficient of the \th constituent in the yreaction mechanism and ej(t) the 
reaction coordinate of the jth reaction at time t. For such a state, we approximate 
the values of all the properties at time t with the corresponding properties of the 
stable equilibrium state of a surrogate system B consisting of the same constituents 
as A with amounts equal to nj(t)/or i = 1, 2, . . . , r, but experiencing no chemical 
reactions. Under this approximation, the rate of entropy generation is given by the 
expression Sirr = e • Y, where e is the row vector of the T rates of change of the 
reaction coordinates, k = ( e u . . . , er), Y the column vector of the T ratios ffi/ 
T0ff for] = 1, 2, . . . , T, ffij = -E[ = i v? mi0ff, that is, the jth affinity of the stable 
equilibrium state of the surrogate system B, \x.Xi0ff and T0ff are the chemical potential 
of the \th constituent and the temperature of the stable equilibrium state of the 
surrogate system. Under the same approximation, by further assuming that e can 
be represented as a function ofY only that is, t(Y), with e (0) = 0 for chemical 
equilibrium, we show that t =L«Y + (higher order terms in Y), where L is a r x 
T matrix that must be non-negative definite and symmetric, that is, such that the 
matrix elements Ly satisfy the Onsager reciprocal relations, Ly = Ljj. It is noteworthy 
that, for the first time, the Onsager relations are proven without reference to mi­
croscopic reversibility. In our view, if a process is irreversible, microscopic revers­
ibility does not exist. 

1 Introduction 

In authoritative discussions [1-3] of chemical equilibrium 
among r constituents of a system A, the conditions of equi­
librium in the presence of r chemical reaction mechanisms is 
presumably shown to be 

v)»lt,iU,V,nl,n2, -0 for y= 1,2, 
i=l 

where vjJ'\ for i 1,2, 

(1) 

is the . , r andy = 1 , 2 , . . 
/th stoichiometric coefficient of the y'th chemical reaction 
mechanism 

I>P^/ = 0 (2) 

Ai denotes the /th constituent, /x,- the chemical potential of the 
ith constituent, U the internal energy, V the volume, nu 

n2, . . . , nr are the amounts of constituents given by the re­
lations 

«, = «,„ + 2>! < • / ) e,- for /= 1,2, (3) 
y=i 
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and nia, for / = 1,2, . . . ,r, is the amount of the /th constituent 
for which the values of the reaction coordinates eu e2, . . . , 
eT are all equal to zero. 

n2a nr„, and „U) for / For given values of U, V, nla, 
= 1 , 2 , . . . , / andy = 1, 2, . . . , T, the T conditions (1) yield 
the values el0, e2o, . . . , eT0, for which the system is in a chem­
ical equilibrium (stable equilibrium) state. Thus, at the chem­
ical equilibrium state, the amounts of constituents are given 
by the relations 

-•nia + „Uh fo r /= 1,2, , r (4) 
; = i 

and the corresponding mole fractions or composition by the 
relations 

,+ £/-!»', UK 

na + £J=ie, U)c 
for /= 1,2, 

JJ) 

(5) 

where na = E/=1 nia for vu) = £;=1 v-
In the discussions just cited [1-3], it is also stated that con­

ditions (1) result from the requirement that, for an isolated 
system, the value of the sum E;=i m(U, V, n) dn, at the 
chemical equilibrium state must be zero for any variations of 
the amounts of constituents compatible with the stoichiome­
trics of the reaction mechanisms. 
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Even though experience shows that conditions (1) lead to 
results consistent with observations, their derivation and mean­
ing are problematic. According to the second law [4], an iso­
lated system with one or more chemical reactions, and given 
values of U, V, nia, n2a, . . . , nra admits one and only one 
stable equilibrium state. This state is characterized by a unique 
composition. Any composition that deviates from that of the 
stable equilibrium state corresponds to a state that is not stable 
equilibrium, and, therefore, chemical potentials cannot be de­
fined. So, what functions Hi(U, V, nlt n2, . . . , nr) should be 
used in conditions (1) in order to find the e,0s and the chemical 
equilibrium state? 

We investigate this question in references [5 and 6] and find 
a satisfactory answer for any system A that is simple. For such 
a system, the chemical potentials appearing in conditions (1) 
are those of a surrogate simple system B, consisting of the 
same constituents as A, but experiencing no chemical reactions 
[5], In this paper, we summarize our findings about system A 
and its surrogate system B because the ideas are not widely 
known yet. 

Then we use the expression for the entropy of the stable 
equilibrium states of B, and estimate the rate of entropy gen­
eration in a simple system A with T chemical reaction mech­
anisms. It turns out that, for states that are not too far from 
chemical equilibrium, the estimate is a quadratic form in the 
T rates of change of the reaction coordinates. 

Finally, we write the rate of change of each reaction coor­
dinate as a function of the affinities. We show that the linear 
parts of these functions have coefficients that satisfy Onsager 
reciprocal relations. In contrast to other derivations, for the 
first time the proof of the reciprocal relations is achieved with­
out use of the concept of microscopic reversibility. This is a 

Nomenclature 

A = system 
A, = z'th constituent in chemical reaction 

mechanism 
aj = -E?_, ^'V/,off 
Ae = state of system A that has same val­

ues of energy, volume, and amounts 
of constituents as stable equilibrium 
state of surrogate system B having 
amounts «,• = nia + X)J= i v\j) e, for 
/ = 1, 2, r 

Ae = chemical equilibrium state of system 
A 

B = surrogate system of A 
L = T x T matrix with elements L/y-

Lij = (deAr/dY/)c/,j/,no,*,Y = 0 

n = n ( 0 = {«,, n2, . . . , nr] 
"o = l«io> M2oi • • • . nm] 
na = E,= 1 nia 

«,, rii(t) = amount of z'th constituent at time t 
nia = amount of z'th constituent for which 

values of all reaction coordinates are 
zero 

n;o,nio(U, V, n„; v) = amount of z'th constituent at chemi­
cal equilibrium state of system A 

Pott = pressure of surrogate system B 
r = no. of constituents 

S, S(t) = entropy of system A at time t 
St = entropy of state A€ 

Sm = rate of entropy generation in system 
A 

Soff, Sott(U, V, n) = entropy of stable equilibrium states 
of surrogate system B 

S(U, V, na; v) = entropy of chemical equilibrium 
states of A 
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confirmation of our view that irreversibility is a physical rather 
than a statistical phenomenon, and that mircoscopic reversi­
bility does not apply to irreversible processes. 

The paper is organized as follows: in Section 2 we provide 
a summary of the concept of a surrogate system, and the 
derivations of conditions (1); in Section 3 we express the rate 
of entropy generation in a system A with T chemical reaction 
mechanisms in terms of the rates of change of the reaction 
coordinates; in Section 4 we express each rate of change of a 
reaction coordinate as a function of the affinities, and show 
that the linear parts of these functions have coefficients that 
satisfy Onsager reciprocal relations; in Section 5 we present 
our conclusions. 

2 Chemical Equilibrium States of a Simple System 
We define a system as simple [6] if it has volume as the only 

parameter, and if it satisfies the following two additional re­
quirements: 

(a) If in any of its stable equilibrium states it is partitioned 
into a set of contiguous subsystems in mutual stable equilib­
rium, the system is such that the effects of the partitions are 
negligible. 

(b) In any of its stable equilibrium states, the instantaneous 
switching on or off of one or more internal reaction mecha­
nisms, such as a chemical reaction, causes negligible instan­
taneous changes in the values of the energy, the entropy, the 
volume, and the amounts of constituents. 

In general, either the introduction of partitions, or the in­
stantaneous switching on or off of chemical reaction mecha-

t = time 
To!f = temperature of surrogate system B 

Y = column vector of T ratios GLj/T0ff for 
j = 1, 2, . . . , T 

Yj = aj/TOIt 

Y' = row vector of T ratios ffi,/roff for 
j = 1, 2 T 

yi0 = mole fraction of z'th constituent of 
chemical equilibrium state of system 
A 

U = internal energy 
V = volume 

e = t(t) = {e,, e2, . . . , e j 
e, t (Y) = row vector of T rates of change of 

reaction coordinates 
e,-, tj(t) = reaction coordinate ofy'th reaction 

mechanism at time t 
kj = rate of change of y'th reaction coor­

dinate 
(jo, ej0(U, V, n„; v) = value ofy'th reaction coordinate for 

which system A is in chemical equi­
librium state 

lo = U l o > e2o> • • • > firo) 

to, ni(U, V, n) = chemical potential of z'th constituent 
M/.off = chemical potential of z'th constituent 

of surrogate system B 
v = [v\n for z = 1,2 r andy = 

. , 1.2 r] 
v}J) = stoichiometric coefficient of z'th con­

stituent in y'th chemical reaction 
mechanism 

,,U) — yr „U) 

T = no. of chemical reaction mechanisms 
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nisms, or both have definite effects on the system. These effects 
become less and less important, and negligible for all practical 
purposes, if the value of the amount of each constituent is 
larger than a small number. Hence, the definition of a simple 
system is applicable only to systems with large values of the 
amounts of constituents. 

Now, let us consider a simple system A consisting of r con­
stituents, and subject to T chemical reaction mechanisms, and 
having given values U of the energy, and V of the volume, 
and values «i, «2> • • • > nr of the amounts of constituents that 
are obtained from given values n la, n2a, • • • , nTa, as a result 
of the T reaction mechanisms. Such a system admits a very 
large number of states. But the second law requires that among 
all these states one and only one be stable equilibrium—the 
chemical equilibrium state. At this state, the values of the 
amounts of constituents, ni0, n2o, . . . , nro, and the corre­
sponding values of the reaction coordinates, ej0 for j = 1, 
2, . . . , r, satisfy Eq. (4). 

The values U, V, n„ = {nXa, n2a, • • • , nra), and the stoi­
chiometric coefficients v = {v\J) for / = 1, 2, . . . , r and 
j = 1, 2, . . . , r j determine uniquely the values of all the 
properties and quantities that characterize the chemical equi­
librium state, including the values of the entropy, S, the re­
action coordinates t0 = (elD, e2o, . . . , eT0), and each ni0. We 
write the dependences of the latter quantities in the forms 

S = S(U,V,na;v) (6) 

ej0 = ej0{U,V,na; v) for j =1,2 r (7) 

ni0 = ni0(U,V,na\ v) for /= 1,2, . . . , r (8) 

In general, we cannot find the explicit functional forms of 
Eqs. (6) to (8). For simple systems, however, we can express 
chemical equilibrium properties in terms of stable equilibrium 
properties of a multiconstituent system in which the chemical 
reaction mechanisms are inhibited—switched off. To see how 
this is done, we proceed as follows [5]. 

First, we consider a simple system B consisting of the same 
r types of constituents as system A, but with all chemical 
reaction mechanisms inhibited—switched off. We call B the 
surrogate of A. Of course, A and B are different systems 
because they are subject to different internal forces and con­
straints. We assume that B is in a stable equilibrium state with 
values U of the energy, Kof the volume, and n = {nun2, . . . , 
nr] of the amounts of constituents of its r constituents. We 
denote the entropy at that stable equilibrium state by Soff, where 
we use the subscript "off" to emphasize that the reaction 
mechanisms are switched off. By virtue of the state principle, 
Soff depends only on U, V, n; that is, 

50ff = S0ff(t/,K,n) (9) 

Next, we assume that the chemical reaction mechanisms are 
instantly switched on, that is, the reactions defined by the 
stoichiometric coefficients v are no longer inhibited. As a re­
sult, we obtain again system A. 

By virtue of the definition of a simple system, switching on 
of the chemical reaction mechanisms causes negligible instan­
taneous changes in the values of entropy, energy, volume, and 
amounts of constituents. Accordingly, immediately after 
switching on the reaction mechanisms, the state of system A 
has the same values of S, U, V, nit n2, . . . , nr as the corre­
sponding values of the stable equilibrium state of the surrogate 
system B. In general, however, this state of A is not stable 
equilibrium. 

Among all the states of A that may be obtained from B in 
the manner just cited, we consider the subset that has given 
values U of the energy and V of the volume, and amounts of 
constituents that are compatible with given values n\a,n2a, , . . , 
nra, in the sense that the values of the amounts of constituents 
satisfy the stoichiometric relations 
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ni = n>°+ I ] "iJ)eJ for /= 1,2 r (10) 
> = i 

We denote the resulting state by Af. Among all the states Ae, 
we can prove that the one with the highest entropy is the unique 
chemical equilibrium state with energy U, volume V, and 
amounts of constituents compatible with n„. We denote it by 
Ae . 

0 

As a result of these observations, we see that we can express 
the entropy S( of a'state At in terms of the entropy 50ff (U, V, 
n) of the state of the surrogate system to which Ae corresponds. 
Moreover, we can determine the chemical-equilibrium entropy 
S(U, V, n„; v) (Eq. (6)) by maximization of the function 

St = Sof[(U,V,n)=Sof!(U,V,na + ve) (11) 

where in writing the second part of Eq. (11), we substitute in 
S0{f(U, V, n) the shorthand notation na + vt for the set of 
Eq. (10). Indeed for A,, to be the state of highest entropy 
among all the states A€ with given U, V, na, and v, the values 
t0 must be such that 

- ) = 0 for j= 1,2 T (12) 
~-J/U,V,na,v,i 

where the subscripts na, v and e denote, respectively, that each 
of the amounts nia, each of the stoichiometric coefficients v\j), 
and each of the reaction coordinates that do not appear in the 
partial derivative are kept fixed. Using Eq. (11) in Eq. (12), 
we find 

dejJu,V,na,,,e t i \ dtl< )u,V,n \dejJna,„,< 

= 'Yi^v\J)=0 for y= 1,2, . . . , r (13) 

where ,̂i0ff is the chemical potential of constituent /, and T0[l 

the temperature of the stable equilibrium state of the surrogate 
system B. For finite values of ToK, we see from Eq. (13) that 
the necessary conditions that relate U, V, na, e, and e0 at 
chemical equilibrium are 

r 

2 v}j)
Hon(U,V,na+veo) = 0 fory= 1,2, . . . , r (14) 

They can be expressed also in terms of temperature, pressure, 
and composition of the surrogate system [5, 7]; that is, 

r 

2 vtiJ)Hoff(T0n,p0tuyio,y2o, • . . , ^ r o ) = 0 
1 = 1 

for j= 1,2, T (15) 

where eachj>;0 is given by Eq. (5). Moreover, we can show that 
the extremum determined by either Eq. (13) or Eq. (15) is a 
maximum. 

For states other than chemical equilibrium, the expressions 
£;=i VjJ) m^offforj = 1,2, . . . , rare well defined, but different 
from zero. The negative of each such expression has been called 
by de Donder the affinity of the reaction. It is noteworthy that 
this affinity cannot be expressed in terms of chemical potentials 
of system A because no such potentials can be defined for 
states of A that are not chemical equilibrium. 

3 Entropy Generation Rate 
In the course of chemical reactions in an isolated system A 

with r constituents and T chemical reaction mechanisms, the 
system passes through a sequence of nonequilibrium states, 
and entropy is generated until the system reaches chemical 
equilibrium. At chemical equilibrium, all changes cease—the 
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rate of change of each reaction coordinate is zero—and, there­
after, the system remains in the stable equilibrium state. 

The evaluation of the evolutions of the properties of the 
system as functions of time from any state that is not stable 
equilibrium to a chemical or stable equilibrium state, and, 
therefore, the entropy generation, are not possible at present. 
In principle, such an evaluation would require the solution of 
a general equation of motion that is still to be established. The 
discovery of the equation of motion remains one of the most 
challenging and outstanding problems at the frontiers of phys­
ics. 

Despite this deficiency, we can derive an estimate of the rate 
of entropy generation in terms of the r affinities of the sur­
rogate system B of A, and the rates of change of the reaction 
coordinates of the T chemical reaction mechanisms. We will 
see that this estimate is informative both about what might be 
considered as the driving forces of the reactions, and about 
whether the so-called principle of microscopic reversibility plays 
any role in entropy generation. To derive this estimate, we 
proceed as follows. 

For given values U of the energy, and V of the volume, at 
an instant of time / the values of the amounts of the r con­
stituents n = n(t) = {«), n2< . . . , nr] satisfy Eqs. (3), and, 
in general, are functions of time. Moreover, the entropy of A 
can be regarded as a function of time S(t) because it depends 
on a large number of independent properties each of which is 
a function of time, except if it is a constant of the motion. 

The value of S(t) is smaller than the value Soff (U, V, n (t)) 
of the surrogate system B; that is, 

S(t)<S0„(U,VMt))=Soff(U,V,na+v.e(t)) (16) 

d2S0[f(U,V,na+ve) d2Sofs(U,V,na+v-t) 

or, equivalently, 

de/de*. 

d_Y, 

dek 

dekdet 

V, V,aa,v,t 

(19a) 

(19b) 

Equation (\9b) indicates that the T x r matrix with elements 
ak, = (dYk/dei)(j:y!Vt( is symmetric, that is, aki = atk for all 
values of e. Moreover, if we invert the relations 

Yk=Yk(U,V,na+ p-e) for k= 1,2, . . . , T (20) 

with respect to the variables elt e2, . . . , eT, to obtain the 
relations 

ei = e,(U,V,na+ve) for /= 1,2, (21) 

we can easily show using the properties of Jacobians that the 
matrix with elements bkl = (dek/dYi)UiK„a^y is symmetric 
also; that is, 

BY, VU,V,n..,i;Y 

3e, 
dYk 

(22) 
' U,V,na,v,Y 

for both zero and nonzero values of Y. 
Relations (19b) and (22) are among the many Maxwell re­

lations that can be established for the stable equilibrium states 
of a multiconstituent system—here, the surrogate system B. 
Relation (22) implies that for the state of the surrogate system 
to remain a stable equilibrium state, of the four changes dek, 
dei, dYk, dYh we can specify only three arbitrarily and inde­
pendently. We use this result in the next section. 

where the equal sign applies only for the chemical equilibrium 
state. The justification of Eq. (16) is that, by definition, Soff (U, 
V, n ( / ) ) corresponds to the entropy of a stable equilibrium 
state and the entropy of that state is larger than the entropy 
of any other state with the same values of U, V, n (t). Because 
at chemical equilibrium both S (t) and Soff (U, V, n (t)) assume 
the same value, an estimate of the rate of entropy generation 
S;rr—the rate of entropy generated by irreversibility in the 
isolated system A— is obtained by assuming that A is always 
in one of the states At defined in Section 2, so that the values 
of all the properties are equal to the corresponding properties 
of the stable equilibrium states of the surrogate system B. 

Under the cited assumption 

• dSof!(U,V,na+y.e(t)) ^ fdS0ff\ (dn\ 

1=1 \ ' / U.V.n \ / n„ dt 

r r T r / (j) 

i = 1 •'off J=1 J=i i=i Toff 

= YJYJej=t-\ (17) 
y = i 

where e is the row vector of the T rates of change of the reaction 
coordinates ei, e2, . . . , eT, Y the column vector of the r 
ratios Yj = GLj/Tofs for j = 1, 2, . . . , r, and &j = - E ; = ] 

v\J) /".,-,off> that is, they'th affinity of a stable equilibrium state 
of the surrogate system B. 

From Eqs. (11) and (13), we see that each of the functions 
Soff and Yj fory = 1, 2, . . . , T depends solely on the reaction 
coordinates e, for i = 1, 2, . . . , T. Accordingly, we can write 

dS0(dU,V,na + P-t) 

dek 

= Yk(U,V,na+vt) (18) 

4 Dependences of t on Y 

We proceed under the assumption-approximation that the 
state of the chemically reacting system^ belongs at each instant 
of time to the family of states Ae. For fixed values of U, V, 
na and c, we regard Yu Y2, . . . , YT as the independent vari­
ables of the family of At states, and assume that the rate of 
change of each reaction coordinate is a sole function of the 
elements of vector Y, so that 

e = i(Y) (23a) 

with 

e(0) = 0 (23d) 

Condition (23&) is necessary because at chemical equilibrium, 
all the Ys are zero (Eqs. (14)), and the rates of change of all 
the reaction coordinates are also zero. 

Inspired by the Maxwell relations (22), we further assume 
that 

dek 

dY, 
U,V,aa,v,\ 

dYk 
(23c) 

for k = 1, 2, . . . , T and / = 1,2 T. We conjecture 
that condition (23c) is equivalent to the condition that along 
the time evolution the surrogate system proceeds through stable 
equilibrium states, and so indeed system A proceeds through 
states At. In any case, this condition is stated not only without 
any reference to microscopic reversibility, but also for all values 
of Y, that is, even for states that are not chemical equilibrium. 

Now, we can always expand each of the T Eqs. (23a) into a 
Taylor series around the chemical equilibrium state at which 
Y = 0. The expansions can be written in the form 

e = L-Y + (higher order terms in Y) (24) 

where L is a T X r matrix of coefficients, each defined by the 
relation 
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L»=(W) (25) 

for k = 1, 2, . . . , r and / = 1, 2, . . . , T. 
Upon using Eq. (23c) in Eq. (25), we conclude that the matrix 

L is symmetric, that is, that the matrix elements Lw obey the 
Onsager reciprocal relations Lkt = Lik for k •= 1,2 T 
and / = 1, 2, . . . , T. Moreover, as we noted already, these 
Onsager relations are obtained without any reference to mi­
croscopic reversibility [8-9], or use of postulates in addition 
to those of thermodynamics, except the assumptions that the 
state of A proceeds through states At, that t is a sole function 
of Y, for given values of U, V, n„ and v, and that condition 
(23c) is assumed by analogy with relations (22). This is a very 
important conclusion because microscopic reversibility cannot 
and should not be the cause of entropy generation by irrev­
ersibility. 

For small values of Y, that is, for states of A near the 
chemical equilibrium state, the linear term predominates in 
Eq. (24), and the rate of entropy generation becomes 

Sirr~Y'-L.Y (26) 
where Y' is the row. vector of the ratios dj/Toi! for j = 1, 
2, . . . , r. Because Sin > 0 in general, and the right-hand side 
of Eq. (26) is a quadratic form, the matrix L must be positive 
semi-definite. 

Our results can be interpreted in the customary manner of 
the so-called "thermodynamics of irreversible processes.'' Each 
Yj, fory = 1, 2, . . . , T, can be regarded as a driving force, 
and each rate of change of a reaction coordinate tj, fory = 
1,2, . . . , r, as a flux that depends on all the forces, that is, 
forces and fluxes are coupled. If the fluxes are expressed as 
functions of the forces, the coefficients of the linear terms 
form a symmetric matrix, that is, obey Onsager reciprocal 
relations. 

Conclusions 
An approximate expression for the rate of entropy gener­

ation in a system A with T chemical reaction mechanisms is 
derived in terms of the rates of change of the reaction coor­
dinates and the affinities of a surrogate system without chem­
ical reactions. 

The rates of change of the reaction coordinates can be ex­
pressed in terms of the affinities, and the coefficients of the 
linear approximations of these expressions are shown to obey 
Onsager reciprocal'relations. The reciprocal relations are valid 
both for states that are chemical equilibrium and for states 
that are not. This result and its derivation are novel to ther­
modynamics. 
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