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Thermodynamic derivations of conditions for chemical equilibrium
and of Onsager reciprocal relations for chemical reactors
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For an isolated chemical reactor, we derive the conditions for chemical equilibrium in terms of
either energy, volume, and amounts of constituents or temperature, pressure, and composition, with
special emphasis on what is meant by temperature and chemical potentials as the system proceeds
through nonequilibrium states towards stable chemical equilibrium. For nonequilibrium states, we
give both analytical expressions and pictorial representations of the assumptions and implications
underlying chemical dynamics models. In the vicinity of the chemical equilibrium state, we express
the affinities of the chemical reactions, the reaction rates, and the rate of entropy generation as
functions of the reaction coordinates and derive Onsager reciprocal relations without recourse to
statistical fluctuations, time reversal, and the principle of microscopic reversibility20@4
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I. INTRODUCTION Niat V80 _
Yioc=—— for i=1,2,...1, (5)

In authoritative discussiofis® of chemical equilibrium Natveg
amongr constituents of a syste, the condition of equilib-

_ r _~Nr
fium in the presence of one chemical reaction mechanism i¥heréna==i_niz andv==;_,v;.
presumably shown to be In the discussions just citéd? it is also stated that con-

dition (1) results from the requirement that, for an isolated
> B system, the value of the sumB{_,u;(U,V,n)dn; at the
“= visi(U,V,ng,nz,....m) =0, @ chemical equilibrium state must be zero for any variations of
the amounts of constituents compatible with the stoichiom-
wherev;, fori=1,2,....r, is theith stoichiometric coefficient etry of the reaction mechanism, where:{n;,n,,...,n} de-

r

of the chemical reaction mechanism notes the amounts of theconstituents.
r Even though experience shows that conditi@h leads
E VA, =0. (2) to results consistent with observations, its derivation and
i=1 meaning are problematic. According to the second law of

thermodynamicé, an isolated system with one or more
chemical reactions, and given values of), V,
Nia,N2a,--.,MNa, admits one and only one stable equilibrium
state. To that state corresponds a unique composition. Any
ni=nj,+vie fori=1.2,.r, (3)  composition that deviates from that of the stable equilibrium
_ ) _ state corresponds to a state that is not stable equilibrium and,
andnig, fori=1,2,...,r, the amount of théth constituent for - harefore, no chemical potentials can be defined. So what
which the v.alue of thle reactlcf)n coordinatés equal to zero. functions;(U,V,n;,N,,...,n) should be used in condition
For given values of U, 'V, NiaNza..-.a: (1) in order to finds, and the chemical equilibrium state?
v1,V2,...,¥, condition(l) yields the value, for which the We investigate this question and find a satisfactory an-
system is in the chemical equilibrium or stable equilibriumg, ar for any system that satisfies the model assumption of
state. Thus, at chemical equilibrium, the amounts of constitug,nat we call a simple system. For such a system, the chemi-
ents are given by the relations cal potentials appearing in conditidft) are those of a sur-
Nip=Nia+vigg fOr i=1,2,...1 (4) roga.te simplg systei consisting of the same.constituents. as
A, with the difference, however, that all reaction mechanisms
and the corresponding mole fractions or composition by theyre turned off.
relations We discuss briefly the definition of a simple system in
Sec. I, the derivation of conditions for chemical equilibrium
aE|ectronic mail: beretta@unibs.it of an isolated_ chemical reactor with constituents anct _
PElectronic mail: epgyft@aol.com chemical reactions in terms of energy, volume, and chemical

A; denotes thath constituentu; the chemical potential of
theith constituenty the energyy the volumenq,n,,...,n
the amounts of constituents given by the relations
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potentials in Sec. lll, the derivation of the same conditions in c
terms of temperature, pressure, and mole fractions in Sec. IV, njg=n;,+ 2 Vi(')ajo for i=1,2,...r. (7
the rate of entropy generation in the reactor in Sec. V, recip- =1
rocal relations in Sec. VI, and our conclusions in Sec. VII.
Moreover, the value$), V, n,={n;,,Nz,,...,N,}, and the
L. SIMPLE SYSTEMS stoichiometric ~ coefficients v={vV) fori=1,2,...rand
=1,2,...,¢ determine uniquely the values of all the proper-
We define a system as simpléit satisfies the following ties and guantities that characterize the chemical equilibrium
three conditions(i) it has volume as one of the parameters;state, including the values of the entroy eache;, and
(ii) in any of its stable equilibrium states, if it is partitioned eachn;,. We write the dependences of the latter in the form
into a set of contiguous subsystems in mutual stable equilib-
rium, the effects of the partitions on the values of all prop-
erties are negligiblé;and(iii) in any of its stable equilibrium S=S(U,V,ng;»), ®)
states, the instantaneous switching off or on of one or more
internal reaction mechanisms, such as a chemical reaction,
causes negligible instantaneous changes in the values of en-
ergy, entropy, volume, and amounts of constituents.
In general, either the introduction of partitions or the Nio=Nig(U,V,n,;») for i=1,2,....r. (10)
instantaneous switching on or off of chemical reaction

mechanisms or both have definite effects on a system. F% general, we cannot find the explicit functional forms of

example, using the tools of quantum the®fywe can show . :
that the switching on of a reaction mechanism requires th%Egr?e(\?v)ha(lf[L?e).sng(r)rilrﬂgﬁesnggz,szmezzg g:(e rgrsosbtl:ignlw?cal
switching on of an additional term in the Hamiltonian opera- P P

tor of the system, which affects the functional form of the e_qumbnum pr_opert|_es in terms of _stable_ equilibrium proper

; o : ties of a multiconstituent system in which all the chemical
fundamental relation for stable equilibrium states. Again, us- : . S .
: . reaction mechanisms are inhibited—switched off. To see
ing the tools of quantum theory, we can show that the switchs

: . ) . « -, _how this is done, we proceed as follows.
ing off of a reaction mechanism requires the “destruction” of . . ; -
. . . . First, we consider a simple systeBhconsisting of the
correlations among constituents and, in general, results in a . .
: samer types of constituents as systefnbut with all the
reduction of the value of the entropy. Nevertheless, we can

also show that these effects become less and less importaﬁ{1 emical reaction mechanisms inhibited—switched off. Of

and negligible for all practical purposes, if the value of thepdurse,A andB are different systems because they are sub-

amount of each constituent is larger than(Refs. 6 and 7). ject to different internal forces and constraints. We assume

. . . that B is in a stable equilibrium state with valués of the
Hence the simple system model is applicable to most practi-
) : . energy, V of the volume, andn={n,n,,...,n} of the
cal systems, including the nanovolume and microvolume ) .
. . ! amounts of the constituents. We denote the entropy at this

scale, with sufficiently large amounts of constituents.

stable equilibrium state by the fundamental relation

gjo=gjo(U,V,ng;w) for j=1.2,..g 9)

lIl. DERIVATION OF CONDITIONS
FOR CHEMICAL EQUILIBRIUM Sott = So(U, V,n), (11)

We consider a simple systefnhaving energyJ, volume . .
V, and constituentsA;,A,,...,A with initial amounts where we use the subscript “off” to emphasize that all the

reaction mechanisms are switched off.

Next, we assume that the chemical reaction mechanisms
o are instantly switched on, that is, all the reactions defined by
> vA=0 for j=1,2,.¢ (6)  the stoichiometric coefficients are no longer inhibited. As a

=t result, we obtain again systef Because in our discussion
and derive the conditions fok to be in a stable equilibrium  of chemical reactors we go back and forth between systems
or, synonymously, in a chemical equilibrium state, thq(l*é A and B by switching off and switching on the chemical
are the stoichiometric coefficients of thigh chemical reac- reaction mechanisms, we call syst&the surrogate system
tion. of A.

In general, the chemical reactor just defined, for each  Because the surrogate syst&is simple and initially in
given set of values o), V, n,, and», admits an infinite a stable equilibrium state, immediately after switching on the
number of states. However, the laws of thermodynamics rereaction mechanisms the state of systimas the same val-
quire that among these states one and only one be a chemiaas ofS, U,V, n;,n,,...,n as the corresponding values of
equilibrium state, and this state has the largest value of ththe stable equilibrium state d&. In general, however, this
entropy® We call the latter requirement the highest or largeststate ofA is not stable equilibrium. For example, B is a
entropy principle. At the chemical equilibrium state, the val-quiescent mixture of gasoline vapor and air at room tempera-
ues of the amounts of constituemnisy,n,g,...,No and the ture and we activate the reaction mechanisms by a minute
corresponding reaction coordinatesg,eag,...,&¢ Satisfy  spark, we instantly produce a nonequilibrium state of system
the compatibility relations Ain which the reactions are no longer inhibited—the burning

Nia,N2a,-.-,Na, Subject toc chemical reaction mechanisms
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of the gasoline is proceeding—even though the instantaneowsghere in the fundamental relatidg;= Syx(U,V,n) we use
perturbations of the values &, U,V, ny,n,,...,n intro-  the shorthand notation ny+wv-& for the set n
duced by the spark are negligible. =N+ 006 npat =000+ 20 p0e )

In other words, it is by virtue of the important key as- Then we note that in order fofksO to be the state of largest
sumption of the simple system model by which reactions carntropy among all the statés with givenU, V, andn,, the
be switched on and off without significantly altering the yajues ofe, must be such that
value of any property that we succeed in expressing proper-
ties of stable equilibrium states as well as of a class of non- [ ¢S,
equilibrium states of a reacting system in terms of the known 5_81,
stable equilibrium properties of nonreacting multicomponent

systems. . _ where the subscripts,, », and & denote, respectively, that

Among all the states o that may be obtained froin - each of the amounts;,, each of the stoichiometric coeffi-
the manner just cited, we consider the subset that has givefients v0) | and each of the reaction coordinatgsthat do
valuesU andV of the energy and volume, and amounts of ot appear in the derivative are kept fixed. Ferl,2,....
constituents that are compatible with given valuesfom Eq.(13) we find that

Nia,N2a,-..,Na. We denote each of these statesAyand
recognize that it corresponds to a set of values ofctheac- JS, ISt an;
| Doy, 0
u,V,n ingve

) =0 for j=1,2,...¢ (14)
u,v,n,,v,e

tion coordinatee={e1,e,,...,5} such that

08] ) U,V,na,v,s i=1

c

n=ni.+ > vWe: fori=1,2,..r (12) o
I @ =1 I l :_2 MVEJ) (15b)

where all then;’s are non-negative. Among all the stafes,

the one with the largest entropy is the unique chemical equi- =Y on(U,V,ny+ v ¢) (15c¢)

librium state with energyJ, volumeV, and amounts of con-

stituents compatible with,, that is,ng=n,+ v- 5. We de- r ,

note the chemical equilibrium state mo. :;1 (= i off Toff) Vi(”, (15d)
To prove that indeed state, corresponds to the largest

entropy, we assume that another staget A, with entropy ~ WhereToq is the temperature ang o the chemical potential

S, not belonging to the family of statds, , is the chemical of constituenti of the stable equilibrium state of t_he surro-

equilibrium state that corresponds to the given valuey, ~ 9at€ systenB that corresponds 8., 7=1/T, and in writ-

na, ». Then'S, <S, becauseA, has the largest entropy. Ing Egs.(15b) and (15d) we use the relationsi/dn;)u,v,n

Now, starting fromA,, we switch off the chemical reaction = — #i/T=—xi7 and Eq.(12), and in wrrmng Eq(15¢c)we

mechanisms. Because systénis simple and, is a stable  d€fiN€Y; o= A; ot/ Torr WhereA; o= _.Ei=_1”i(])r“i,off is the

equilibrium state, the resulting stag of surrogate syster so-ggllgd affinity of thgth reaction, which is clearly a stable

has the same valués V, andny asA, and, in particular, its eqwhbnu_m property of surrogate systen

entropy isS,. StateB, cannot be stable equilibrium because, ~ For finite values off o, we see from Eqs14)and(15)

if it were, then upon switching the chemical reaction mecha{hat @ set of necessary conditions that relaf&/, na, por,

nisms back on we would obtain again stAigand conclude ¥» @nd& at chemical equilibrium are

that it belongs to the family, contradicting the fact thatt\EO r

has the largest entropy. On the other hand, if sBafés not ' v i (U V,ngt+v-£0)=0 for j=1,2,....c (16)

stable equilibrium, then the stable equilibrium stat®aefith i=1

yaluesur,]v, and_no W%UId. ha_ve en_tLoph§>So, and slvc\j/ltc_h]d or, equivalently,Y; ,#(U,V,n,+ »- £)=0. In the next sec-

Isrlgtgnir: tiée;%qﬁn: t?gtn?]'gg (\;vr:ttrot |s>stat§ ;vou yie ion we show thafl and u; for i=1,2,...,rare also equal to
. yls ) PYB=>So>S,,, again the temperature and chemical potentials of the chemical

contradicting our stipulation thaﬁs0 has the largest entropy. equilibrium state of syster. Each of Eqs(16)is thechemi-

Therefore, ifA, is the chemical equilibrium state, it must cal equilibrium equationfor the corresponding reaction

coincide with stateA,gO because under the specified condi- mechanism.

tions there is one and only one stable equilibrium state. For each given set of valués$, V, n,, andv, Egs.(16)

Because we can express the entr@yof a stateA, in are ¢ necessary conditions for chemical equilibrium. They

terms of the entrop$.(U,V,n) of the state of the surrogate may be solved to yield Eq<8) to (10) and, therefore, all

system to whichA, corresponds, we can determine the properties of the chemical equilibrium state. They confirm

chemical equilibrium entropyS(U,V,n,;v) [Eq. (8)] by the statement made earlier to the effect that properties of

finding the largest value db,x(U,V,n). chemical equilibrium may be expressed in terms of proper-
To find the largest value just cited, we first write the ties of a multiconstituent system with all chemical reaction
entropyS, of a stateA, in the form mechanisms switched off.

For the extremum corresponding to Eq§4) to be a
S,=Su(U,V,n,+v-g), (13)  relative maximum, it is also necessary that the second-order
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partial differential ofS, with respect to the reaction coor-

dinateseq,¢,,...,5 be negative. To show that indeed this is

the case, we start with E¢13) and find that

(dZSE)U,V,na R

) dn,dn,<0, (17)
u,V,n

where we useln; =Ej°:1vi(j)dsj fori=1,2,...,r. The inequal-

ity is always satisfied becauSgy is the fundamental relation
of the surrogate systef® and, as such, it is concave with
respect to every, for i=1,2,...,r (Ref. 4). Each of the nec-

Conditions for chemical equilibrium 2721
I} of UVing ,mY g Ik off UVing ,»Yoq

for both zero and nonzero values 6§, that is, not only at
the chemical equilibrium state of the reac#orbut also for
any nonequilibrium staté\, that we model with the corre-
sponding stable equilibrium state of the surrogate sy®em
Relations(19) and (22) are among the many Maxwell
relations that can be established for stable equilibrium states
of a multiconstituent system, both for the surrogate sysdem
and the chemical equilibrium state of reacforRelation(22)
implies that for the state of the surrogate system to remain in
a stable equilibrium state and, hence, for the state of system
A to remain within the familyA,, of the four changesdl;,
dey, dY;j o, anddYy o, we can specify only three arbi-
trarily and independently.

IV. CONDITIONS FOR CHEMICAL EQUILIBRIUM
IN TERMS OF TEMPERATURE AND PRESSURE

Rather than using energy, volume, and amounts of con-

essary conditions for chemical equilibrium—each of Egs.stituents as independent variables, it is often more conve-
(16)—is expressed as a function of energy, volume, anghient to express each chemical equilibrium equafiggs.

amounts of constituents of the chemical equilibrium state. IN16)]in terms of temperature, pressure, and mole fractions.
the next section we rewrite these conditions in terms of temTg this end, we note that the stable equilibrium state of the

perature and pressure rather than energy and volume.
For fixed values ofJ, V, n,, andw, from Eqgs.(13) and
(15) we see that each of the functioSgz and Y; o for j
=1,2,...,cdepends solely on the reaction coordinatggor
k=1,2,...,c Accordingly, forj,k=1,2,...,G we can write

PSoi(U,V,Na+w-8)  9°Sei(U,V,na+ v €)

(18)
(98](98k &Skﬁ{;‘j
or, equivalently,
aY Y
) (e g
gj u,v,n,,v,e €k uv,n,,v,e
that is, the cXc matrix with elements ay

=((9Yj'0ﬁ/ask)uyvina,,,,£ is symmetric. Moreover, if we in-
vert the relations
Yk,oft= Yi,of(U,V,Ngt v €)

for k=1,2,...,G (20)

with respect to the variables,,e,,.
relations

..,&, We obtain the

gj=¢gj(U,V,ng,»,Yqs) for j=1,2,...¢ (21)

surrogate systenB obtained by switching off the reaction
mechanisms at a chemical equilibrium state of systehas
not only the same values of energy, entropy, volume, and
amounts of constituents as the chemical equilibrium state,
but also the same values of temperature, pressure, and
chemical potentialgey, o, ...,k .

Fori=1,2,...,r, to prove the last assertion, we recall the
definitions of temperature, pressure, and chemical potehtials
as given, respectively, by the relations

T(U,Vanaa”): 1/((98/(9U)V,na,vv
P(U,V.ng;v)=(3S/dV)y n, »/(3SIdU)y n_ o,

MI(U !Vana ; V) = ((?S/[?nia)U,V,na,V/((?S/(?U)V,na,w

where S(U,V,n,;v) is the fundamental relation for the
chemical equilibrium statd€q. (8)].

Next, we express the fundamental relat®af systemA
in terms of that of the surrogate syst@by evaluatingS,;
[Eg. (13)] at £y as given by Eq(9), so that

S=S(U,V,n,;v)=Sx(U,V,n,+ v gy(U,V,n,;v)).
(23)

and using the properties of Jacobians we can easily show that

the matrix with elementsbjk=((9sj/aYk,m«f)U'V,na',,'YOﬂ is
also symmetric; that is, foy,k=1,2,...,G

Thus, for the inverse temperature of a chemical equilib-
rium state, we find that
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1_ 1 (248) wi=mi(U,V,n,; ) (26a)
T TU,V,ng;v)
Y -
(ﬁS) Mial 4 von, w
=l =7 (24b)
ﬁU v,n,,v r
a B (asoﬁ) (asoﬁ
r c MiJyvn =1y,
_ (ﬁsoff +2 (ﬂsoff 2 y.(j) (981'0
U =1\ an; = ! ouU o[ 9€io
v,n u,v,n/ Ving v x> vl (26¢)
(24c) =1 Mial v v
) © de ! aSOff EC: aSjO Er: (i)
= [ Zoff _ i (), = —T( ) + ( ) nu
( U )Vn 1 j§=:1 ( U )Vn Vizl Vit Wi off (24d) |y 28NNy, k' Mk, off
| - (26d)
asoﬂ> Sy
- (24e) == Tot| - (26e)
(au vin o an; uVin
1 1 :/*Li,off(u!vina_'— v EO(Uivvna;V)):Mi,offa (26f)
(24f)

T T UVt v e(U VN 9)  Tof' where in writing Eq.(26e)we use Eqs(16) and(24). So the

chemical potentialu; of the ith constituent of a chemical

where in writing Eqs(24c) and (24e) we use Eq(23) and equilibrium state of system equals the chemical potential
the chemical equilibrium equatiofiEgs.(16)], respectively. i ot Of theith constituent of the corresponding state of the
So the temperatur€ of a chemical equilibrium state equals surrogate systerB.
the temperaturd ,; of the corresponding state of the surro- It is noteworthy that the identity of values of tempera-
gate systenB. ture, pressure, and chemical potentials of a chemical equilib-

For the pressure of the chemical equilibrium state wefium state with the values of the respective properties of a
find that stable equilibrium state of the surrogate system obtains only
at chemical equilibrium, because then and only then are the
chemical equilibrium equationEgs. (16)] satisfied. Away

P=p(U.V.na;») (253) from chemical equilibrium states, temperature, pressure, and
chemical potentials are not defined for systarbecause all
S such states are not stable equilibrium.
= (W) (25b) Finally, we note that Eqs24)—(26) indicate that, geo-
Uina v metrically, the surfaces represented by the functi®s
=3S(U,V,n,;v) andSy,:=S,x(U,V,n,+ v- €) have a contact
ISt IS c dejo of first degree for each given set of valugsV, andn,, at
=T ( ~ +> ) > vf”(—v) e=£09(U,V,n,;v), namely, at each chemical equilibrium
un =1 an; uv,ni=1 d u.n,.v state.
(25¢) As is very well knowr each chemical potential of a
multiconstituent system in which all chemical reaction
ISy ¢ de;o r . mechanisms are switched off may be e_xpressed in the form
=T< ~ ) —2 (&—V) Z v i o (25d) i o= i o (T,P,Y1,Y2,---¥r), Wherey; is the mole frac-
un 171 un,v !t tion of theith constituent. Using the stoichiometric relations
and the chemical equilibrium equations, we find
@Soﬁ) c ()
=Tort| = 25e N+ 25 e
0ﬁ< Ny (25€) Yi=Yi(ng+v-g)= &Tﬁv(‘”s; (27)
= Poi(U VMg v £6(U,V,a )= P, (2sf) ~and fori=1.2...c

r
where in writing Eq(25e)we use Eqs(16) and(24). Sothe > Vi(j)ﬂi of
pressurg of a chemical equilibrium state equals the pressure=1 '
poi Of the corresponding state of the surrogate sysBem Mo+ g
For each chemical potential of the chemical equilibrium ’al;lr_lo)
state we find "nat+ 211 Wej0

Nig+ Elevg})&‘jo
"Nyt E]-C=1V(')sj0

T.p

==TYor(T.P.Yo) =0, (28)
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wheren,=3{_n;,, vW=3{_,2, andy;o=y;(n,+v- £). G off 3G an;
Equations(28) represent the chemical equilibrium equa- e, :E an. 5.
tions as functions off, p, and the mole fractions of the I Tpng we 1 Tt T g ve
chemical equilibrium state. The functional dependences of r
the chemical potentials of, p, andy are those of surrogate - E O))
. 4 M offV
systemB. For given values of, p, andn,, we can solve the i=1

¢ equations(28) for the ¢ unknownseqg,&49,...,80 and
hencc]:e determine the chemical equli?ibrizgm cgﬁnposition ==TY| oi(T,p,Na+v-£)=0, (35)
Y10:Y20:---Yro @nd the values of the corresponding amountsvhere we use the equationsd@/dn;)t ,n=p; for i

of constituentsn,g,Nyg,...,No. Conversely, if the values of =1,2,....r. These conditions are satisfied if the stable equi-
T, p Y1.Y2,...,¥; are given but do not satisfy Eq&8), we librium state of the surrogate system corresponds to the
would conclude that the state is not chemical equilibrium.chemical equilibrium state A—that is, if the chemical po-
Then, of course, the values ®fandp refer to a state of the tentials satisfy the chemical equilibrium equatiofsgs.
surrogate system which becomes a nonequilibrium state dfl6)]. The extreme value db; is a relative minimum be-

reactorA when the reactions are turned on. cause it can be shown that the second order partial differen-
If the chemical potentials are written as tial of G« with respect to each of the;’s is positive.
By equating second order derivatives @fy with re-
Hiof(T,P,Y) = wii(T,p) +RTIN&; o(T,p,Yy), (29)  spectto thesj's, forj, k=1,2,...,G

wherew; (T,p) is the pure constituent chemical potential at ~ #Go(T,p.Nat v-€)  °Go(T,p,Nat v €)

T andp, Rthe gas constant, ara ,=a; o(T,p,Yy) the ac- e dey deyde] ' (36)
tivity of the ith constituent of the surrogate system, it is easy btain the M Il relati
to see that we can rewrite the affinities as we obtain the Maxwell relations
Ik off Y| off
Ay ot =TY, o ( 7. =| e 37
J 7 Tpng e T.p.n,.v.e

r r
=—> vWu(T,p)—-RTIn[] [aiyoﬁ]ﬁ”, (30) Moreover, inverting the set of relationsYy

' =1 =Yy o(T,p,ny+v-€) for k=1,2,...,¢ with respect to the
variableseq,e,,...,5., we obtain the set of relations;
=¢&j(T,p,na,», Yo for j=1,2,...,¢ and using the properties
of Jacobians, we obtain the Maxwell relations

and, defining the equilibrium “constant” at temperatufe
and pressure for the jth reaction as

r

1 _
K;(T,p):exp(—R—Ti 7 wi(T.p) |, (31)

(98k
&Yj,off

(981'
Ik off

(38)

)T,p,na,v,Yoﬁ ( T,p,Ng . v, Y o

we can write for both zero and nonzero values 6§, that is, not only at
the chemical equilibrium state of the reactyyrbut also for
' 0 any nonequilibrium staté\, that we model with the corre-
H [ai o] =K;(T,p)exp(—Y; o /R) (32)  sponding stable equilibrium state of the surrogate sydem
=t Relations(37) and (38) can also be viewed as direct conse-
and rewrite the chemical equilibrium equatiof®8) in the ~ duences of the Maxwell relations for the surrogate system
well-known mass-action-law form obtained by equating second order derivativessgf with
respect to the;’s,

IT faio(T.p.yo) 1" =K;(T.p). (33) (ﬁ“mﬁ) :(M) | (303)
i=1 anj T.0.n &nk T.p.n

Another interesting result is that the lowest value of theor, equivalently,
Gibbs free energy of the surrogate systBnobtains at the
state ofB that corresponds to the chemical equilibrium state
of A. Indeed, the Gibbs free energy of the surrogate sy8tem
is

dln Ay off
an

. ( dln aj,oﬁ
Tpn ang

We conclude our derivation by summarizing the results
(34) pictorially with the help of the energy versus entropy graphs
introduced in Ref. 4. For given values ®f andn,, three
If the amounts of constituents are compatible withand the ~ Projections of states are superimposed on the sidglersus
¢ chemical reactions conform to Eqdl2), we can rewrite S diagram shown in Fig. 1: (1) the projection of the states
G in the formGyy(T,p,n,+ v- £). For givenT, p, n,, and A, of systemA that coincide with the stable equilibrium
v, an extreme value o6 obtains provided that, for each states of the surrogate systdrfor the given volumeV of
i=1,2,...6 the chemical reactor and fixed values=n,+ v- £;, (2) the

(39b)

i T.p.n

Got=Gor(T,p,N1,N5,..., 1 ).
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A cease—the rate of change of each reaction coordinate is
Fixed values of zero—and thereafter the system remains in the stable equi-
librium state.

The rigorous and complete evaluation of the evolutions
of the properties of the system as functions of time from any
state that is not stable equilibrium towards the corresponding
chemical or stable equilibrium state, and therefore the rate of
entropy generation in a general nonequilibrium state is out-
side the scope of this article, and we are not discussing it.

Instead, nevertheless, we derive an estimate of the rate
of entropy generation in terms of tleeaffinities of the sur-
rogate systenB of A and the rates of change of the reaction
coordinates of the chemical reaction mechanisms. We will
see that this estimate is informative both about what might
be considered as the driving forces of the reactions and about
whether the so-called principle of microscopic reversibility
plays any role in entropy generation. To derive this estimate,
we proceed as follows.

For given valuesU, V, n,, and », the values of the
FIG. 1. Energy versus entropy graph of the states of simple system amounts of constituentazn(t)={n1,n2,...,n}, and the
with given values ofV, n,, and ». The curve labeled; represents the Vvalue of the entropys(t) are functions of time. Specifically,
statesA, and coincides with the curve of the stable equilibrium states ofthe value ofS(t) is smaller than the value &,(U,V,n(t))
surrogate systerB for the given valut_e\/ of the volgme a_md fixed values of the surrogate system; that is,
n,=n,+ v- g, of the amounts of constituents—that is, a fixad The curve
labelede, represents the states, and coincides with the curve of the
stable equilibrium states of surrogate systBrfor the given value oW/ of

the volume and fixed values=n,+ v- &, of the amounts of constituents— h th I'si l v at the ch ical ilibri
that is, a fixede, . The curve labeled, represents the chemical equilibrium where the equal sign applies only at the chemical equilibrium

states of system for the given values o¥/, n,, andw. state. The jUStiﬁcation of |nequa|lt§40) is that, by defini-
tion, Sy;+(U,V,n(t)) corresponds to the entropy of a stable
equilibrium state which, by virtue of the largest entropy prin-
ciple, is higher than the entropy of any other state with the
same values df), V, andn(t). Because at chemical equilib-
rium both S(t) and Sy#(U,V,n(t)) assume the same largest
value, an estimate of the rate of entropy generaﬂgn—the
rate of entropy generation by irreversibility in the isolated
systemA—is obtained by assuming thAtis always in one

of the stated\, defined in Sec. lll, so that the value of each
property is equal to the corresponding stable equilibrium
state value of the surrogate syst&n

V,n, and v

Energy U

>
Entropy §

S(t)=S(U,V,n(1))=So(U,V,na+ - £(1)), (40)

projection of the stateé.., of systemA that coincide with
the stable equilibrium states of the surrogate equasidar
the same given volum¥ and fixed values,=n,+v-&,,
and (3) the projection of the chemical equilibrium states of
systemA for the same given values &f, n,, andw.

The set of valuese; is chosen so thate;
=¢go(U1,V,n,;v) and, therefore, at the enertyy the locus
of statesA, is tangent to the curve of the chemical equilib-

fium states ofA. Similarly, the valuee, is such thatgz This assumption corresponds to the following two-step
=&o(U2,V,n,;») and, therefore, the locus of statés, is conceptual model. We start at tinavith the surrogate sys-
tangent to the curve of the chemical equilibrium state#of temBin a stable equilibrium statB, ., corresponding to the
at the energyJ, of the chemical reactor. We see that the siateA,,, of the reactor with reaction coordinategt). We
curve of the chemical equilibrium states is the envelope ofnen turn the reactions on for an infinitesimal lapse of tihe
the loci of statesA, for all possible values of. We also see 3t the end of which we immediately turn them off. As a
that the stated\, represent states of systemnthat are not resylt, the reactor is in statd,,q, the reactions have
stable equilibrium, except at the energy;, and similarly  changed the composition, and, in general, the surrogate sys-
the statesA., except at energy,. In general, they are tem at timet+dt is in a nonequilibrium statd, 4. We
either nonequilibrium or nonstable equilibrium states and yegllow the additional lapse of timét’ that is necessary for
can be described using the stable equilibrium properties dhe surrogate system to reach the stable equilibrium state
the surrogate system. Bi+dt+at,eq COresponding to the stat®, g+ sy Of the
reactor with the new composition. Now we turn on the reac-
tions again, and so on.
V. RATE OF ENTROPY GENERATION The values of the entropy are as foIIovB,Eeqz Sﬁ(t) and

B B
. . . . = < = . -
In the course of chemical reactions in an isolated systen?‘ert §+dt Strdt+ st eq Sﬁ(t+dt+&’) The entropy gen

A with r constituents ane chemical reaction mechanisms, €rated by irreversibility in the first time interval is
e S =S 4= Sh and in the  second

the system passes through a sequence of noneqwhbnur%rr,(t,t+dt) +Hdt Vx(1)

states, and entropy is genergted unt_il_ the system reachéﬁr’.(wqtﬁqtm@=.S/:(t+qt+&/)—3ﬁdt- An importgnt sim-

chemical equilibrium. At chemical equilibrium, all changes plification is obtained ifét'<dt, that is, if the timedt’
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A
o Fixed values of
§ v, R,V ow) and V:fm)
2
8]
e(t),e
-
v “4
—_ ________\.,..- e (18, (E(7)) .,»""" 2 (t)e0 (2(2))
................... =

-
>

Entropy S

FIG. 2. Energy vs entropy graphs of the states of simple systevith given values oV, n,, », andv’. StateAb.(t)‘Eé(e([)) evolves in time while remaining

on the dashed curve labeledt),,(£(t)) corresponding to the largest entrofpartial chemical equilibriumstate compatible with the given valugsV, n,,
v, v’ and the instantaneous values of reaction coordinatgs of the slow rate-controlling reactions. The dotted curves represent the families of states
Acty),elr Aetty).ef Petty).elr Aelty) e for arbitrary values,, €, &, £;. The solid curve labeled,, &) represents the chemical equilibrium states of system

A for the given values ob), V, n,, v, andv’, whereey=¢(eg).

taken by the surrogate system to reach stable equilibriunwheree is the row vector of the reaction rategq,¢,,...,&;

after a change in composition is much shorter than the timand Y . the column vector of the ratios Y; ox=A; o/ Tor

dt taken by the reactor to affect such change in compositionfor j=1,2,...,G where 4; = —E{:lvi(”,uivoﬁ is the affinity

In such a case, the second step of our conceptual model cafithe jth reaction evaluated at the stable equilibrium state of

be neglected, and the stable equilibrium states of the surr@gurrogate systerB with valuesU, V, n(t)=n,+ v- &(t).

gate system are sufficient to describe the states of the reactor A further simplification is obtained if there is a subset of

along the entire process. chemical reaction mechanisms that are much faster than the
This is tantamount to assuming that among all the interothers. Then, only the slow reactions are rate controlling,

nal interactions and dynamical mechanisms that drive thevhereas the fast reactions drive the system in negligible time

nonequilibrium state towards stable equilibrium, the chemi+o its largest entropy state compatible with the instantaneous

cal reactions with stoichiometric coefficientsare the only  compositionn(t), which varies slowly as a result of the rates

mechanisms capable of changing the composition of the sysf the slow reactions. Denoting the stoichiometric coeffi-

tem and, on the time scale chosen for the description, thegients and the coordinates of the slow reactions/land

are the slow, rate-controlling mechanisms, while all the otheand of the fast reactions by ande’, Egs.(6) and(12) are

mechanisms are assumed to be much faster, so as to drive tfeplaced by

system in negligible time to its largest entropy state compat-

ible with the instantaneous values oft) and therefore 0 _

maintain the state of the reactor along the family of states ;1 vi’Aj=0 for j=12... (42a)

A, such that if at any instant in time we turn off the reac-

tions we obtain the surrogate systen{@tvery close tothe and

stable equilibrium state with entroys(U,V,n,+ v- £(t)).

r

Under this assumption, ' “
> v/®WA=0 for k=1,2,..¢, (42b)
_dSy(U,V,n,+ v (1)) =
irr — dt c o
() =n: (D 1K) g
< (ﬂsoﬁ) a_n) ni(O=niat 2 vei(t)+ 2, v Wei). (43)
= an; at . .
=1 'uvn Ng v In Eq. (43) we assume that the,’s adjust instantly to
r ¢ c v 0 changes in composition induced by the slowly varyis
=—> ’U‘ivO“Z D =>> (_ Yi '“"0“)-8, S0 as to maintain syster at the largest entropypartial
i=1 Toff =1 b j=li=1 Toff !

chemical equilibrium)stateAgysé compatible with the given

c values ofU, V, n,, », ¥’ and the instantaneous values of the
= E éij,Off: € YOff: E(t) . Yoff(U ,V,na+ v E(t)), Sj(t)'s (See F|g 2), that iS, f0k= 1,2,...,6,
j=1

(41) ek(D)=eo(U.V,na+v-&(1);7), (44)
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where the g,y's are the values that maximiz&, .  and note that nowhere in our derivation we make reference to
=S(U,V,n,+v-e+v'-¢") for the given values obJ, V, the concept of microscopic reversibility.
n,, v, v, ande(t), or equivalently, folkk=1,2,...,.C: Next we make use of the condition that, at every state

((98 A., S,;(£) must be non-negative. In particular, we apply this

) condition in the vicinity of the chemical equilibrium state by
dey UV.ng+vev e expandingSirr(s) into a Taylor series about, up to second
order and using the fact tha¥; ,s(g,)=0 [Eq. (35)],
£i(£0)=0 [EQ. (49)], and, of courseS, (&) =0. Thus, for
As a result of these assumptions, systaravolves through 1,k=1,2,...,¢ we find

the family of states!\s(t),eé(s(t)), the entropyS(t) is approxi-

=Y o (U,V, gt - £(t) + 1 - £0)=0. (45)

mated in terms 0B, of the surrogate systeis, M - ﬂ Y, o €0)
(?sj = 081_ . €,off\ €0
S(t) = Se(U,V,na+ v- &(t)
ro . Y
+v - go(U,V,ng+ v g(1); 7)), (46) + E Eoleg) —2 =0, (51)
and the rate of entropy generation is given by the relation ‘o
c c' PSp(e)] ee] Neon
Sirrzz g] jOff+2 &0 Yk, of dejdey |, &1 sl dey |,
j=1 0 0 0
c c :
(98( {9Yg, ff
= ()Y (U, Vgt v (1) 2 o e (52)
j=1 =1 k £ I Te
+v'g5(U,V,ngt v g(t);v')), (47)  and, therefore,
because at each instant of tin¥g =0 [Eq. (45)]. 15 £ 4 Srr(s)
It is clear that the model we present here is valid forSy (&)= EZ 2 e dex (ej—ejo)(ex— &Ko) T+
homogeneous states of the reactor. In addition, it provides Skt kleg
the conceptual background also for the so-called local equi- (53a)
librium assumption upon which the continuum fluid dynam- c ¢ ot oy
ics treatment of nonhomogeneous states is based. =3 > ﬂ_f ¢.off (2j—j0) (£x—&10)
j=1k=1{=1 dej|_ dey 80
+ee (53b)

VI. RECIPROCAL RELATIONS

, - . S e v w95 | Nmot| I ¢ o
According to the foregoing discussion, we proceed under = E E E 2 pY; | 3 - | 3 |
the assumption—approximation that tfl®mogeneousstate J=lk=1 (=1 m=1 FTmoffl ;0 O8] I T8k g
of the isolated reactok belongs at each instant in time to the X (81— o) (Ex—Erg) 4" (53¢)
family of statesA, . For fixed values o), V, n,, andw, the £iT #j0)i8kT Eko
only independent variables of the family Af states are the c 08,
reaction coordinates;’s. We further assume that each reac- = 2 2 B, Yo of(8)Ymom(€)+--- (53d)
tion ratez, is a function of the staté, and, hence, of the (=1 m=1 @ Tm,offl 5
gj's, that is, c ¢
= b(e) (48) =2 2 LimorYeor(2)Ymon(e) -+, (53e)
with where we define the X ¢ matrix L with elements
£(gy)=0, (49) 98,
where, for simplicity, from here on we do not write explicitly Lem.oft= Y m,ofl (54

the dependences on the given valuetloV, n,, v, andv’.
Condition (49) is necessary because at chemical equilibriumin Eq. (53c) we use the truncated Taylor series expansion

all reaction rates are zero. aboutg, of the relations
Recalling thatY .= Y (£) [Egs. (15)], we can write o .
Egs.(41) and (47) for the rate of entropy generation in the e=&(Yor) = £(&(Yon)), (55)
form which follow? from substituting into Eq(48) the relations
c = g(Y o) obtained from the inversiofat fixedU, V, n,, »,

5.=5, ()= 2 £0(8)Yy of(€)=2(€)-Yor(e)  (50) andv’) of the set of relation¥ .4=Y (), that is, forj,£
=1 ' =1,2,....G
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Ee(Yon(e)= 2 | Yman(®)+: (56a)
m0 60
C
= Z L€m,oﬁYm,off(8)+"' ) (56b)
Je ° 98 aY
ﬁ T & oY ( am’-Oﬁ (57)
ilegy m=1 9Tmoffl g OF) lg

In Eq. (53d) we use the truncated expansion absgiof the
relationsyY =Y (€), that is, for¢=1,2,...,¢

moff

o"eJ

(g (58)

m o (€)= 2

=1

_8j0)+"'
€0

Our results can be interpreted in the customary manner
of the so-called “Onsager’s linear thermodynamic theory of

irreversible processes?'? Each affinity A, o or, better,
eachY, o= Am ot/ To fOor m=1,2,...,G can be regarded as
a “driving force” and each reaction rates;, for j
=1,2,...,G as a “flux” that depends on all the driving forces:
that is, “driving forces” and “fluxes” are coupled. If the
fluxes are expressed as functions of the driving forces or vic
versa, the coefficients of the linear approximati&igs.(56)]
of these functions in the vicinity of the chemical equilibrium
state can be regarded as “generalized conductivities.”

In view of the relationse=&(Y ), with £(0)=¢g,, we
rewrite Eqg.(50) in the form

c

Sirr: Sirr(Yoﬁ) = €§=:1 éé(s(Yoﬁ))Yf,oﬁ: E(Yon) Y

off »
(59)

where €= &(Y ) = £(e(Yog)) with £(0)=¢g(gy)=0. The
expansion of this form in the vicinity of the chemical equi-
librium state yields

c

>

k=1

7S (Y off)

AL A S
Y| oft IYk off| I, off Tk of

(60)

Direct comparison of Eq60) with Eq. (53e)shows that,
for j,k=1,2,...,G

1 c
S|rr(Yoff) EZ

L1 PSa(Yon) | 1 #Sa(Yor) |
Jkooff ™ 2 ‘9YJ offaYk off‘ 2 ‘9Yk OffaYJ off|

=Lk, off
(61)

and therefore the matrik is symmetric, that is, its elements
obey the Onsagé&t reciprocal relations.

Equatlon(53a)shows that the leading term in the expan-
sion of Si,, around the chemical equilibrium state is a qua-
dratic form in the “distances” §¢;—¢;,) from the chemical
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S=0, (62)

where the elements of thex c matrix S} are given by the
relations

15°Sy(e)
2 (98j(98k e
0

"’ _
ik, off —

(63)

Similarly, Eq. (53e) shows that the leading term in the
expansion ofS,, around the chemical equilibrium state is
also a quadratic form in the “driving forcesY; (). Be-
cause in the vicinity of the chemical equilibrium state every
Y ofi(€) can take both negative and positive values, the con-
dition thatS;, be always non-negative implies that also the
coefficients of this quadratic form are elements of a non-
negative definite matrix

L(&9)=0; (64)

that is, the symmetric matrix of reciprocity or Onsager coef-
ficients is non-negative definite.

We finally emphasize that the main results of this section
derive from the structure of the leading terms of Taylor ex-
pansions valid only in the vicinity of the chemical equilib-
gum state.

By contrast, the model developed in the previous sec-
tions in terms of theA, family of states and the stable equi-
librium properties of the surrogate system is valid both far
from and near the chemical equilibrium state. As it is well
known!! the relatione=&(Y ) between reaction rates and
driving forces is in general nonlinear. Nevertheless, even for
states that are very far from chemical equilibrium, relations
(50) and (59) are valid, together with the condition that

S,,=0, and provide important guidance in the development
of chemical kinetics models.

VII. CONCLUSIONS

The thermodynamic derivations of conditions for chemi-
cal equilibrium, of Onsager reciprocity relations, and of the
properties of a practically important family of nonequilib-
rium states presented here differ from the derivations pre-
sented in practically all treatises of thermodynamics applied
to chemical reactors.

Our motivation for developing this derivation is based
on a “revolutionary”*® conception of thermodynamics as a
“nonstatistical” 1* physical theor§*® that applies to all sys-
tems(both macroscopic and microscopito all stategboth
thermodynamic equilibrium and not thermodynamic equilib-
rium), and that discloses that entropy is an inhex@mtin-
sic) nondestructible property of mattéwell defined for all
systems and all states), in the same sense as inertial mass is
an inherent property of matter.

Our nonstatistical derivation of Onsager relations for an
isolated chemical reactor shows that the arguments based on

equilibrium state. Because in the vicinity of the chemicalstatistical fluctuations, time reversal, and the principle of mi-
equilibrium state every;—ejo can take both negative and croscopic reversibility;*? which are invariably used in all
positive values, the condition tha$,, be always non- traditional derivations, are not essential and, therefore, play
negative implies that the coefficients of the quadratic formno fundamental role in the thermodynamic theory of irre-
are elements of a nonnegative definite matrix, that is, versible processes.
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