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Thermodynamic derivations of conditions for chemical equilibrium
and of Onsager reciprocal relations for chemical reactors
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For an isolated chemical reactor, we derive the conditions for chemical equilibrium in terms of
either energy, volume, and amounts of constituents or temperature, pressure, and composition, with
special emphasis on what is meant by temperature and chemical potentials as the system proceeds
through nonequilibrium states towards stable chemical equilibrium. For nonequilibrium states, we
give both analytical expressions and pictorial representations of the assumptions and implications
underlying chemical dynamics models. In the vicinity of the chemical equilibrium state, we express
the affinities of the chemical reactions, the reaction rates, and the rate of entropy generation as
functions of the reaction coordinates and derive Onsager reciprocal relations without recourse to
statistical fluctuations, time reversal, and the principle of microscopic reversibility. ©2004
American Institute of Physics.@DOI: 10.1063/1.1756576#
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I. INTRODUCTION

In authoritative discussions1–3 of chemical equilibrium
amongr constituents of a systemA, the condition of equilib-
rium in the presence of one chemical reaction mechanism
presumably shown to be

(
i 51

r

n im i~U,V,n1 ,n2 ,...,nr !50, ~1!

wheren i , for i 51,2,...,r, is thei th stoichiometric coefficient
of the chemical reaction mechanism

(
i 51

r

n iAi50. ~2!

Ai denotes thei th constituent,m i the chemical potential o
the i th constituent,U the energy,V the volume,n1 ,n2 ,...,nr

the amounts of constituents given by the relations

ni5nia1n i« for i 51,2,...,r, ~3!

andnia , for i 51,2,...,r, the amount of thei th constituent for
which the value of the reaction coordinate« is equal to zero.

For given values of U, V, n1a ,n2a ,...,nra ,
n1 ,n2 ,...,n r , condition~1! yields the value«0 for which the
system is in the chemical equilibrium or stable equilibriu
state. Thus, at chemical equilibrium, the amounts of const
ents are given by the relations

ni05nia1n i«0 for i 51,2,...,r ~4!

and the corresponding mole fractions or composition by
relations

a!Electronic mail: beretta@unibs.it
b!Electronic mail: epgyft@aol.com
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is

-

e

yi05
nia1n i«0

na1n«0
for i 51,2,...,r, ~5!

wherena5( i 51
r nia andn5( i 51

r n i .

In the discussions just cited,1–3 it is also stated that con
dition ~1! results from the requirement that, for an isolat
system, the value of the sum( i 51

r m i(U,V,n)dni at the
chemical equilibrium state must be zero for any variations
the amounts of constituents compatible with the stoichio
etry of the reaction mechanism, wheren5$n1,n2,...,nr% de-
notes the amounts of ther constituents.

Even though experience shows that condition~1! leads
to results consistent with observations, its derivation a
meaning are problematic. According to the second law
thermodynamics,4 an isolated system with one or mor
chemical reactions, and given values ofU, V,
n1a ,n2a ,...,nra , admits one and only one stable equilibriu
state. To that state corresponds a unique composition.
composition that deviates from that of the stable equilibriu
state corresponds to a state that is not stable equilibrium
therefore, no chemical potentials can be defined. So w
functionsm i(U,V,n1 ,n2 ,...,nr) should be used in condition
~1! in order to find«0 and the chemical equilibrium state?

We investigate this question and find a satisfactory
swer for any systemA that satisfies the model assumption
what we call a simple system. For such a system, the che
cal potentials appearing in condition~1! are those of a sur-
rogate simple systemB consisting of the same constituents
A, with the difference, however, that all reaction mechanis
are turned off.

We discuss briefly the definition of a simple system
Sec. II, the derivation of conditions for chemical equilibriu
of an isolated chemical reactor withr constituents andc
chemical reactions in terms of energy, volume, and chem
8 © 2004 American Institute of Physics
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potentials in Sec. III, the derivation of the same conditions
terms of temperature, pressure, and mole fractions in Sec
the rate of entropy generation in the reactor in Sec. V, re
rocal relations in Sec. VI, and our conclusions in Sec. VI

II. SIMPLE SYSTEMS

We define a system as simple4 if it satisfies the following
three conditions:~i! it has volume as one of the paramete
~ii! in any of its stable equilibrium states, if it is partitione
into a set of contiguous subsystems in mutual stable equ
rium, the effects of the partitions on the values of all pro
erties are negligible;5 and~iii! in any of its stable equilibrium
states, the instantaneous switching off or on of one or m
internal reaction mechanisms, such as a chemical reac
causes negligible instantaneous changes in the values o
ergy, entropy, volume, and amounts of constituents.

In general, either the introduction of partitions or th
instantaneous switching on or off of chemical reacti
mechanisms or both have definite effects on a system.
example, using the tools of quantum theory,6,7 we can show
that the switching on of a reaction mechanism requires
switching on of an additional term in the Hamiltonian ope
tor of the system, which affects the functional form of t
fundamental relation for stable equilibrium states. Again,
ing the tools of quantum theory, we can show that the swit
ing off of a reaction mechanism requires the ‘‘destruction’’
correlations among constituents and, in general, results
reduction of the value of the entropy. Nevertheless, we
also show that these effects become less and less impo
and negligible for all practical purposes, if the value of t
amount of each constituent is larger than 10~Refs. 6 and 7!.
Hence the simple system model is applicable to most pra
cal systems, including the nanovolume and microvolu
scale, with sufficiently large amounts of constituents.

III. DERIVATION OF CONDITIONS
FOR CHEMICAL EQUILIBRIUM

We consider a simple systemA having energyU, volume
V, and constituentsA1 ,A2 ,...,Ar with initial amounts
n1a ,n2a ,...,nra , subject toc chemical reaction mechanism

(
i 51

r

n i
~ j !Ai50 for j 51,2,...,c, ~6!

and derive the conditions forA to be in a stable equilibrium
or, synonymously, in a chemical equilibrium state, wheren i

( j )

are the stoichiometric coefficients of thej th chemical reac-
tion.

In general, the chemical reactor just defined, for ea
given set of values ofU, V, na , and n, admits an infinite
number of states. However, the laws of thermodynamics
quire that among these states one and only one be a che
equilibrium state, and this state has the largest value of
entropy.4 We call the latter requirement the highest or larg
entropy principle. At the chemical equilibrium state, the v
ues of the amounts of constituentsn10,n20,...,nr0 and the
corresponding reaction coordinates«10,«20,...,«r0 satisfy
the compatibility relations
n
IV,
-

;
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ni05nia1(
j 51

c

n i
~ j !« j 0 for i 51,2,...,r. ~7!

Moreover, the valuesU, V, na5$n1a ,n2a ,...,nra%, and the
stoichiometric coefficients n5$n i

( j ) for i 51,2,...,r and j
51,2,...,c% determine uniquely the values of all the prope
ties and quantities that characterize the chemical equilibr
state, including the values of the entropyS, each« j 0 , and
eachni0 . We write the dependences of the latter in the fo

S5S~U,V,na ;n!, ~8!

« j 05« j 0~U,V,na ;n! for j 51,2,...,c, ~9!

ni05ni0~U,V,na ;n! for i 51,2,...,r. ~10!

In general, we cannot find the explicit functional forms
Eqs.~8!–~10!. For simple systems, however, the problem
somewhat less complicated because we can express che
equilibrium properties in terms of stable equilibrium prope
ties of a multiconstituent system in which all the chemic
reaction mechanisms are inhibited—switched off. To s
how this is done, we proceed as follows.

First, we consider a simple systemB consisting of the
samer types of constituents as systemA but with all the
chemical reaction mechanisms inhibited—switched off.
course,A andB are different systems because they are s
ject to different internal forces and constraints. We assu
that B is in a stable equilibrium state with valuesU of the
energy, V of the volume, andn5$n1 ,n2 ,...,nr% of the
amounts of ther constituents. We denote the entropy at th
stable equilibrium state by the fundamental relation

Soff5Soff~U,V,n!, ~11!

where we use the subscript ‘‘off’’ to emphasize that all t
reaction mechanisms are switched off.

Next, we assume that the chemical reaction mechani
are instantly switched on, that is, all the reactions defined
the stoichiometric coefficientsn are no longer inhibited. As a
result, we obtain again systemA. Because in our discussio
of chemical reactors we go back and forth between syst
A and B by switching off and switching on the chemica
reaction mechanisms, we call systemB thesurrogate system
of A.

Because the surrogate systemB is simple and initially in
a stable equilibrium state, immediately after switching on
reaction mechanisms the state of systemA has the same val
ues ofS, U,V, n1 ,n2 ,...,nr as the corresponding values o
the stable equilibrium state ofB. In general, however, this
state ofA is not stable equilibrium. For example, ifB is a
quiescent mixture of gasoline vapor and air at room tempe
ture and we activate the reaction mechanisms by a min
spark, we instantly produce a nonequilibrium state of syst
A in which the reactions are no longer inhibited—the burni
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of the gasoline is proceeding—even though the instantane
perturbations of the values ofS, U, V, n1 ,n2 ,...,nr intro-
duced by the spark are negligible.

In other words, it is by virtue of the important key a
sumption of the simple system model by which reactions
be switched on and off without significantly altering th
value of any property that we succeed in expressing pro
ties of stable equilibrium states as well as of a class of n
equilibrium states of a reacting system in terms of the kno
stable equilibrium properties of nonreacting multicompon
systems.

Among all the states ofA that may be obtained fromB in
the manner just cited, we consider the subset that has g
valuesU and V of the energy and volume, and amounts
constituents that are compatible with given valu
n1a ,n2a ,...,nra . We denote each of these states byA« and
recognize that it corresponds to a set of values of thec reac-
tion coordinates«5$«1 ,«2 ,...,«c% such that

ni5nia1(
j 51

c

n i
~ j !« j for i 51,2,...,r, ~12!

where all theni ’s are non-negative. Among all the statesA« ,
the one with the largest entropy is the unique chemical e
librium state with energyU, volumeV, and amounts of con
stituents compatible withna , that is,n05na1n•«0. We de-
note the chemical equilibrium state byA«0

.
To prove that indeed stateA«0

corresponds to the larges
entropy, we assume that another stateA0ÞA«0

with entropy
S0 , not belonging to the family of statesA« , is the chemical
equilibrium state that corresponds to the given valuesU, V,
na , n. Then S«0

,S0 becauseA0 has the largest entropy
Now, starting fromA0 , we switch off the chemical reactio
mechanisms. Because systemA is simple andA0 is a stable
equilibrium state, the resulting stateB0 of surrogate systemB
has the same valuesU, V, andn0 asA0 and, in particular, its
entropy isS0 . StateB0 cannot be stable equilibrium becaus
if it were, then upon switching the chemical reaction mec
nisms back on we would obtain again stateA0 and conclude
that it belongs to the familyA« contradicting the fact thatA«0

has the largest entropy. On the other hand, if stateB0 is not
stable equilibrium, then the stable equilibrium state ofB with
valuesU, V, andn0 would have entropyS.S0 , and switch-
ing on the reactions beginning with this state would yield
state in the familyA« that has entropyS.S0.S«0

, again
contradicting our stipulation thatA«0

has the largest entropy
Therefore, ifA0 is the chemical equilibrium state, it mus
coincide with stateA«0

because under the specified con
tions there is one and only one stable equilibrium state.

Because we can express the entropyS« of a stateA« in
terms of the entropySoff(U,V,n) of the state of the surrogat
system to whichA« corresponds, we can determine t
chemical equilibrium entropyS(U,V,na ;n) @Eq. ~8!# by
finding the largest value ofSoff(U,V,n).

To find the largest value just cited, we first write th
entropyS« of a stateA« in the form

S«5Soff~U,V,na1n•«!, ~13!
us

n

r-
-

n
t

en
f
s

i-

,
-

where in the fundamental relationSoff5Soff(U,V,n) we use
the shorthand notation na1n•« for the set n
5$n1a1( j 51

c n1
( j )« j ,n2a1( j 51

c n2
( j )« j ,...,nra1( j 51

c n r
( j )« j%.

Then we note that in order forA«0
to be the state of larges

entropy among all the statesA« with givenU, V, andna , the
values of«0 must be such that

S ]S«

]« j
D

U,V,na ,n,«

50 for j 51,2,...,c, ~14!

where the subscriptsna , n, and« denote, respectively, tha
each of the amountsnia , each of the stoichiometric coeffi
cientsn i

( j ) , and each of the reaction coordinates« i that do
not appear in the derivative are kept fixed. Forj 51,2,...,c,
from Eq. ~13! we find that

S ]S«

]« j
D

U,V,na ,n,«

5(
i 51

r S ]Soff

]ni
D

U,V,n
S ]ni

]« j
D

na,n,«

~15a!

52(
i 51

r
m i ,off

Toff
n i

~ j ! ~15b!

5Yj ,off~U,V,na1n•«! ~15c!

5(
i 51

r

~2m i ,offtoff!n i
~ j ! , ~15d!

whereToff is the temperature andm i ,off the chemical potentia
of constituenti of the stable equilibrium state of the surro
gate systemB that corresponds toA«0

, t51/T, and in writ-
ing Eqs.~15b! and ~15d! we use the relations (]S/]ni)U,V,n
52m i /T52m it and Eq.~12!, and in writing Eq.~15c! we
defineYj ,off5Aj ,off /Toff whereAj ,off52( i 51

r n i
( j )m i ,off is the

so-called affinity of thej th reaction, which is clearly a stabl
equilibrium property of surrogate systemB.

For finite values ofToff , we see from Eqs.~14! and~15!
that a set of necessary conditions that relateU, V, na , moff ,
n, and«0 at chemical equilibrium are

(
i 51

r

n i
~ j !m i ,off~U,V,na1n•«0!50 for j 51,2,...,c ~16!

or, equivalently,Yj ,off(U,V,na1n•«0)50. In the next sec-
tion we show thatT andm i for i 51,2,...,r are also equal to
the temperature and chemical potentials of the chem
equilibrium state of systemA. Each of Eqs.~16! is thechemi-
cal equilibrium equation for the corresponding reactio
mechanism.

For each given set of valuesU, V, na , andn, Eqs.~16!
are c necessary conditions for chemical equilibrium. Th
may be solved to yield Eqs.~8! to ~10! and, therefore, all
properties of the chemical equilibrium state. They confi
the statement made earlier to the effect that properties
chemical equilibrium may be expressed in terms of prop
ties of a multiconstituent system with all chemical reacti
mechanisms switched off.

For the extremum corresponding to Eqs.~14! to be a
relative maximum, it is also necessary that the second-o
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partial differential ofS« with respect to thec reaction coor-
dinates«1 ,«2 ,...,«c be negative. To show that indeed this
the case, we start with Eq.~13! and find that

~d2S«!U,V,na ,n

5
1

2 (
j 51

c

(
k51

c S ]2S«

]« j]«k
D

U,V,na ,n

d« jd«k

5
1

2 (
j 51

c

(
k51

c

(
p51

r

(
q51

r S ]2Soff

]np]nq
D

U,V,n

np
~ j !nq

~k!d« jd«k

5
1

2 (
p51

r

(
q51

r S ]2Soff

]np]nq
D

U,V,n
(
j 51

c

np
~ j !d« j (

k51

c

nq
~k!d«k

5
1

2 (
p51

r

(
q51

r S ]2Soff

]np]nq
D

U,V,n

dnpdnq,0, ~17!

where we usedni5( j 51
c n i

( j )d« j for i 51,2,...,r. The inequal-
ity is always satisfied becauseSoff is the fundamental relation
of the surrogate systemB and, as such, it is concave wit
respect to everyni for i 51,2,...,r ~Ref. 4!. Each of the nec
essary conditions for chemical equilibrium—each of E
~16!—is expressed as a function of energy, volume,
amounts of constituents of the chemical equilibrium state
the next section we rewrite these conditions in terms of te
perature and pressure rather than energy and volume.

For fixed values ofU, V, na , andn, from Eqs.~13! and
~15! we see that each of the functionsSoff and Yj ,off for j
51,2,...,cdepends solely on the reaction coordinates«k for
k51,2,...,c. Accordingly, for j ,k51,2,...,c, we can write

]2Soff~U,V,na1n•«!

]« j]«k
5

]2Soff~U,V,na1n•«!

]«k]« j
~18!

or, equivalently,

S ]Yk,off

]« j
D

U,V,na ,n,«

5S ]Yj ,off

]«k
D

U,V,na ,n,«

, ~19!

that is, the c3c matrix with elements ajk

5(]Yj ,off /]«k)U,V,na ,n,« is symmetric. Moreover, if we in-
vert the relations

Yk,off5Yk,off~U,V,na1n•«! for k51,2,...,c, ~20!

with respect to the variables«1 ,«2 ,...,«c , we obtain the
relations

« j5« j~U,V,na ,n,Yoff! for j 51,2,...,c, ~21!

and using the properties of Jacobians we can easily show
the matrix with elementsbjk5(]« j /]Yk,off)U,V,na ,n,Yoff

is
also symmetric; that is, forj ,k51,2,...,c,
.
d
n
-

at

S ]«k

]Yj ,off
D

U,V,na ,n,Yoff

5S ]« j

]Yk,off
D

U,V,na ,n,Yoff

~22!

for both zero and nonzero values ofYoff , that is, not only at
the chemical equilibrium state of the reactorA, but also for
any nonequilibrium stateA« that we model with the corre
sponding stable equilibrium state of the surrogate systemB.

Relations~19! and ~22! are among the many Maxwe
relations that can be established for stable equilibrium st
of a multiconstituent system, both for the surrogate systemB
and the chemical equilibrium state of reactorA. Relation~22!
implies that for the state of the surrogate system to remai
a stable equilibrium state and, hence, for the state of sys
A to remain within the familyA« , of the four changesd« j ,
d«k , dYj ,off , and dYk,off , we can specify only three arbi
trarily and independently.

IV. CONDITIONS FOR CHEMICAL EQUILIBRIUM
IN TERMS OF TEMPERATURE AND PRESSURE

Rather than using energy, volume, and amounts of c
stituents as independent variables, it is often more con
nient to express each chemical equilibrium equation@Eqs.
~16!# in terms of temperature, pressure, and mole fractio
To this end, we note that the stable equilibrium state of
surrogate systemB obtained by switching off the reactio
mechanisms at a chemical equilibrium state of systemA has
not only the same values of energy, entropy, volume, a
amounts of constituents as the chemical equilibrium st
but also the same values of temperature, pressure,
chemical potentialsm1 ,m2 ,...,m r .

For i 51,2,...,r, to prove the last assertion, we recall th
definitions of temperature, pressure, and chemical potent4

as given, respectively, by the relations

T~U,V,na ;n!51/~]S/]U !V,na ,n ,

p~U,V,na ;n!5~]S/]V!U,na ,n /~]S/]U !V,na ,n ,

m i~U,V,na ;n!52~]S/]nia!U,V,na ,n /~]S/]U !V,na ,n ,

where S(U,V,na ;n) is the fundamental relation for th
chemical equilibrium states@Eq. ~8!#.

Next, we express the fundamental relationSof systemA
in terms of that of the surrogate systemB by evaluatingSoff

@Eq. ~13!# at «0 as given by Eq.~9!, so that

S5S~U,V,na ;n!5Soff„U,V,na1n•«0~U,V,na ;n!….
~23!

Thus, for the inverse temperature of a chemical equi
rium state, we find that
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1

T
5

1

T~U,V,na ;n!
~24a!

5S ]S

]U D
V,na ,n

~24b!

5F S ]Soff

]U D
V,n

1(
i 51

r S ]Soff

]ni
D

U,V,n
(
j 51

c

n i
~ j !S ]« j 0

]U D
V,na ,n

G
~24c!

5S ]Soff

]U D
V,n

F12(
j 51

c S ]« j 0

]U D
V,na ,n

(
i 51

r

n i
~ j !m i ,offG ~24d!

5S ]Soff

]U D
V,n

~24e!

5
1

Toff„U,V,na1n•«0~U,V,na ;n!…
5

1

Toff
, ~24f!

where in writing Eqs.~24c! and ~24e! we use Eq.~23! and
the chemical equilibrium equations@Eqs.~16!#, respectively.
So the temperatureT of a chemical equilibrium state equa
the temperatureToff of the corresponding state of the surr
gate systemB.

For the pressure of the chemical equilibrium state
find that

p5p~U,V,na ;n! ~25a!

5TS ]S

]VD
U,na ,n

~25b!

5TF S ]Soff

]V D
U,n

1(
i 51

r S ]Soff

]ni
D

U,V,n
(
j 51

c

n i
~ j !S ]« j 0

]V D
U,na ,n

G
~25c!

5TS ]Soff

]V D
U,n

2(
j 51

c S ]« j 0

]V D
U,na ,n

(
i 51

r

n i
~ j !m i ,off ~25d!

5ToffS ]Soff

]V D
U,n

~25e!

5poff„U,V,na1n•«0~U,V,na ;n!…5poff , ~25f!

where in writing Eq.~25e!we use Eqs.~16! and~24!. So the
pressurep of a chemical equilibrium state equals the press
poff of the corresponding state of the surrogate systemB.

For each chemical potential of the chemical equilibriu
state we find
e

e

m i5m i~U,V,na ;n! ~26a!

52TS ]S

]nia
D

U,V,na ,n

~26b!

52TF S ]Soff

]ni
D

U,V,n

1 (
k51

r S ]Soff

]nk
D

U,V,n

3(
j 51

c

nk
~ j !S ]« j 0

]nia
D

U,V,na ,n
G ~26c!

52TS ]Soff

]ni
D

U,V,n

1(
j 51

c S ]« j 0

]nia
D

U,V,na ,n
(
k51

r

nk
~ j !mk,off

~26d!

52ToffS ]Soff

]ni
D

U,V,n

~26e!

5m i ,off„U,V,na1n•«0~U,V,na ;n!…5m i ,off , ~26f!

where in writing Eq.~26e!we use Eqs.~16! and~24!. So the
chemical potentialm i of the i th constituent of a chemica
equilibrium state of systemA equals the chemical potentia
m i ,off of the i th constituent of the corresponding state of t
surrogate systemB.

It is noteworthy that the identity of values of temper
ture, pressure, and chemical potentials of a chemical equ
rium state with the values of the respective properties o
stable equilibrium state of the surrogate system obtains o
at chemical equilibrium, because then and only then are
chemical equilibrium equations@Eqs. ~16!# satisfied. Away
from chemical equilibrium states, temperature, pressure,
chemical potentials are not defined for systemA because all
such states are not stable equilibrium.

Finally, we note that Eqs.~24!–~26! indicate that, geo-
metrically, the surfaces represented by the functionsS
5S(U,V,na ;n) andSoff5Soff(U,V,na1n•«) have a contact
of first degree for each given set of valuesU, V, andna , at
«5«0(U,V,na ;n), namely, at each chemical equilibrium
state.

As is very well known,4 each chemical potential of a
multiconstituent system in which all chemical reactio
mechanisms are switched off may be expressed in the f
m i ,off5m i ,off(T,p,y1 ,y2 ,...,yr), whereyi is the mole frac-
tion of the i th constituent. Using the stoichiometric relation
and the chemical equilibrium equations, we find

yi5yi~na1n•«!5
nia1( j 51

c n i
~ j !« j

na1( j 51
c n~ j !« j

~27!

and, for j 51,2,...,c,

(
i 51

r

n i
~ j !m i ,offS T,p,

n1a1( j 51
c n1

~ j !« j 0

na1( j 51
c n~ j !« j 0

,...,

...,
nra1( j 51

c n r
~ j !« j 0

na1( j 51
c n~ j !« j 0

D 52TYj ,off~T,p,y0!50, ~28!
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wherena5(i 51
r nia , n ( j )5(i 51

r n i
( j ) , andyi05yi(na1n•«0).

Equations~28! represent the chemical equilibrium equ
tions as functions ofT, p, and the mole fractions of the
chemical equilibrium state. The functional dependences
the chemical potentials onT, p, andy are those of surrogat
systemB. For given values ofT, p, andna , we can solve the
c equations~28! for the c unknowns«10,«20,...,«c0 and
hence determine the chemical equilibrium composit
y10,y20,...,yr0 and the values of the corresponding amou
of constituents,n10,n20,...,nr0 . Conversely, if the values o
T, p, y1 ,y2 ,...,yr are given but do not satisfy Eqs.~28!, we
would conclude that the state is not chemical equilibriu
Then, of course, the values ofT andp refer to a state of the
surrogate system which becomes a nonequilibrium stat
reactorA when the reactions are turned on.

If the chemical potentials are written as

m i ,off~T,p,y!5m i i ~T,p!1RT ln ai ,off~T,p,y!, ~29!

wherem i i (T,p) is the pure constituent chemical potential
T andp, R the gas constant, andai ,off5ai ,off(T,p,y) the ac-
tivity of the i th constituent of the surrogate system, it is ea
to see that we can rewrite the affinities as

Aj ,off5TYj ,off

52(
i

r

n i
~ j !m i i ~T,p!2RT ln )

i 51

r

@ai ,off#
n i

~ j !
, ~30!

and, defining the equilibrium ‘‘constant’’ at temperatureT
and pressurep for the j th reaction as

K j~T,p!5expS 2
1

RT(
i

r

n i
~ j !m i i ~T,p!D , ~31!

we can write

)
i 51

r

@ai ,off#
n i

~ j !
5K j~T,p!exp~2Yj ,off /R! ~32!

and rewrite the chemical equilibrium equations~28! in the
well-known mass-action-law form

)
i 51

r

@ai ,off~T,p,y0!#n i
~ j !

5K j~T,p!. ~33!

Another interesting result is that the lowest value of t
Gibbs free energy of the surrogate systemB obtains at the
state ofB that corresponds to the chemical equilibrium st
of A. Indeed, the Gibbs free energy of the surrogate systeB
is

Goff5Goff~T,p,n1 ,n2 ,...,nr !. ~34!

If the amounts of constituents are compatible withna and the
c chemical reactions conform to Eqs.~12!, we can rewrite
Goff in the formGoff(T,p,na1n•«). For givenT, p, na , and
n, an extreme value ofGoff obtains provided that, for eac
j 51,2,...,c,
of

n
s

.

of

t

y

e

S ]Goff

]« j
D

T,p,na ,n,«

5(
i 51

r S ]Goff

]ni
D

T,p,n
S ]ni

]« j
D

na ,n,«

5(
i 51

r

m i ,offn i
~ j !

52TYj ,off~T,p,na1n•«!50, ~35!

where we use the equations (]G/]ni)T,p,n5m i for i
51,2,...,r. These conditions are satisfied if the stable eq
librium state of the surrogate system corresponds to
chemical equilibrium state ofA—that is, if the chemical po-
tentials satisfy the chemical equilibrium equations@Eqs.
~16!#. The extreme value ofGoff is a relative minimum be-
cause it can be shown that the second order partial diffe
tial of Goff with respect to each of the« j ’s is positive.

By equating second order derivatives ofGoff with re-
spect to the« j ’s, for j, k51,2,...,c,

]2Goff~T,p,na1n•«!

]« j]«k
5

]2Goff~T,p,na1n•«!

]«k]« j
, ~36!

we obtain the Maxwell relations

S ]Yk,off

]« j
D

T,p,na ,n,«

5S ]Yj ,off

]«k
D

T,p,na ,n,«

. ~37!

Moreover, inverting the set of relations Yk,off

5Yk,off(T,p,na1n•«) for k51,2,...,c, with respect to the
variables «1 ,«2 ,...,«c , we obtain the set of relations« j

5« j (T,p,na ,n,Yoff) for j 51,2,...,c, and using the propertie
of Jacobians, we obtain the Maxwell relations

S ]«k

]Yj ,off
D

T,p,na ,n,Yoff

5S ]« j

]Yk,off
D

T,p,na ,n,Yoff

~38!

for both zero and nonzero values ofYoff , that is, not only at
the chemical equilibrium state of the reactorA, but also for
any nonequilibrium stateA« that we model with the corre
sponding stable equilibrium state of the surrogate systemB.
Relations~37! and ~38! can also be viewed as direct cons
quences of the Maxwell relations for the surrogate syst
obtained by equating second order derivatives ofGoff with
respect to thenj ’s,

S ]mk,off

]nj
D

T,p,n

5S ]m j ,off

]nk
D

T,p,n

, ~39a!

or, equivalently,

S ] ln ak,off

]nj
D

T,p,n

5S ] ln aj ,off

]nk
D

T,p,n

. ~39b!

We conclude our derivation by summarizing the resu
pictorially with the help of the energy versus entropy grap
introduced in Ref. 4. For given values ofV and na , three
projections of states are superimposed on the singleU versus
S diagram shown in Fig. 1: ~1! the projection of the state
A«1

of systemA that coincide with the stable equilibrium
states of the surrogate systemB for the given volumeV of
the chemical reactor and fixed valuesn15na1n•«1 , ~2! the
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projection of the statesA«2
of systemA that coincide with

the stable equilibrium states of the surrogate equationB for
the same given volumeV and fixed valuesn25na1n•«2 ,
and ~3! the projection of the chemical equilibrium states
systemA for the same given values ofV, na , andn.

The set of values «1 is chosen so that «1

5«0(U1 ,V,na ;n) and, therefore, at the energyU1 the locus
of statesA«1

is tangent to the curve of the chemical equili
rium states ofA. Similarly, the value«2 is such that«2

5«0(U2 ,V,na ;n) and, therefore, the locus of statesA«2
is

tangent to the curve of the chemical equilibrium states oA
at the energyU2 of the chemical reactor. We see that t
curve of the chemical equilibrium states is the envelope
the loci of statesA« for all possible values of«. We also see
that the statesA«1

represent states of systemA that are not
stable equilibrium, except at the energyU1 , and similarly
the statesA«2

, except at energyU2 . In general, they are
either nonequilibrium or nonstable equilibrium states and
can be described using the stable equilibrium propertie
the surrogate system.

V. RATE OF ENTROPY GENERATION

In the course of chemical reactions in an isolated sys
A with r constituents andc chemical reaction mechanism
the system passes through a sequence of nonequilib
states, and entropy is generated until the system rea
chemical equilibrium. At chemical equilibrium, all chang

FIG. 1. Energy versus entropy graph of the states of simple systeA
with given values ofV, na , and n. The curve labeled«1 represents the
statesA«1

and coincides with the curve of the stable equilibrium states
surrogate systemB for the given valueV of the volume and fixed values
n15na1n•«1 of the amounts of constituents—that is, a fixed«1 . The curve
labeled«2 represents the statesA«2

and coincides with the curve of the
stable equilibrium states of surrogate systemB for the given value ofV of
the volume and fixed valuesn25na1n•«2 of the amounts of constituents—
that is, a fixed«2 . The curve labeled«0 represents the chemical equilibrium
states of systemA for the given values ofV, na , andn.
f

t
of

m

m
es

cease—the rate of change of each reaction coordinat
zero—and thereafter the system remains in the stable e
librium state.

The rigorous and complete evaluation of the evolutio
of the properties of the system as functions of time from a
state that is not stable equilibrium towards the correspond
chemical or stable equilibrium state, and therefore the rat
entropy generation in a general nonequilibrium state is o
side the scope of this article, and we are not discussing

Instead, nevertheless, we derive an estimate of the
of entropy generation in terms of thec affinities of the sur-
rogate systemB of A and the rates of change of the reacti
coordinates of thec chemical reaction mechanisms. We w
see that this estimate is informative both about what mi
be considered as the driving forces of the reactions and a
whether the so-called principle of microscopic reversibil
plays any role in entropy generation. To derive this estima
we proceed as follows.

For given valuesU, V, na , and n, the values of the
amounts of constituentsn5n(t)5$n1 ,n2 ,...,nr%, and the
value of the entropyS(t) are functions of time. Specifically
the value ofS(t) is smaller than the value ofSoff„U,V,n(t)…
of the surrogate systemB; that is,

S~ t !<Soff„U,V,n~ t !…5Soff„U,V,na1n•«~ t !…, ~40!

where the equal sign applies only at the chemical equilibri
state. The justification of Inequality~40! is that, by defini-
tion, Soff„U,V,n(t)… corresponds to the entropy of a stab
equilibrium state which, by virtue of the largest entropy pri
ciple, is higher than the entropy of any other state with
same values ofU, V, andn(t). Because at chemical equilib
rium bothS(t) andSoff„U,V,n(t)… assume the same large
value, an estimate of the rate of entropy generationṠirr—the
rate of entropy generation by irreversibility in the isolat
systemA—is obtained by assuming thatA is always in one
of the statesA« defined in Sec. III, so that the value of eac
property is equal to the corresponding stable equilibri
state value of the surrogate systemB.

This assumption corresponds to the following two-st
conceptual model. We start at timet with the surrogate sys
temB in a stable equilibrium stateBt,eq corresponding to the
stateA«(t) of the reactor with reaction coordinates«(t). We
then turn the reactions on for an infinitesimal lapse of timedt
at the end of which we immediately turn them off. As
result, the reactor is in stateAt1dt , the reactions have
changed the composition, and, in general, the surrogate
tem at timet1dt is in a nonequilibrium stateBt1dt . We
allow the additional lapse of timedt8 that is necessary fo
the surrogate system to reach the stable equilibrium s
Bt1dt1dt8,eq corresponding to the stateA«(t1dt1dt8) of the
reactor with the new composition. Now we turn on the rea
tions again, and so on.

The values of the entropy are as follows:St,eq
B 5S«(t)

A and
St1dt

B 5St1dt
A ,St1dt1dt8,eq

B
5S

«(t1dt1dt8)
A . The entropy gen-

erated by irreversibility in the first time interval i
Sirr,( t,t1dt)

A 5St1dt
A 2S«(t)

A and in the second

Sirr,( t1dt,t1dt1dt8)
B

5S
«(t1dt1dt8)
A

2St1dt
A . An important sim-

plification is obtained ifdt8!dt , that is, if the timedt8

f
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FIG. 2. Energy vs entropy graphs of the states of simple systemA with given values ofV, na , n, andn8. StateA«(t),«08„«(t)… evolves in time while remaining

on the dashed curve labeled«(t),«08„«(t)… corresponding to the largest entropy~partial chemical equilibrium! state compatible with the given valuesU, V, na ,
n, n8 and the instantaneous values of reaction coordinates«(t) of the slow rate-controlling reactions. The dotted curves represent the families of s
A«(t1),«

a8
, A«(t1),«

b8
, A«(t2),«

c8
, A«(t2),«

d8
for arbitrary values«a8 , «b8 , «c8 , «d8 . The solid curve labeled«0 ,«08 represents the chemical equilibrium states of syst

A for the given values ofU, V, na , n, andn8, where«085«08(«0).
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taken by the surrogate system to reach stable equilibr
after a change in composition is much shorter than the t
dt taken by the reactor to affect such change in composit
In such a case, the second step of our conceptual mode
be neglected, and the stable equilibrium states of the su
gate system are sufficient to describe the states of the re
along the entire process.

This is tantamount to assuming that among all the in
nal interactions and dynamical mechanisms that drive
nonequilibrium state towards stable equilibrium, the che
cal reactions with stoichiometric coefficientsn are the only
mechanisms capable of changing the composition of the
tem and, on the time scale chosen for the description, t
are the slow, rate-controlling mechanisms, while all the ot
mechanisms are assumed to be much faster, so as to driv
system in negligible time to its largest entropy state comp
ible with the instantaneous values ofn(t) and therefore
maintain the state of the reactor along the family of sta
A«(t) such that if at any instant in time we turn off the rea
tions we obtain the surrogate system at~or very close to!the
stable equilibrium state with entropySoff„U,V,na1n•«(t)….

Under this assumption,

Ṡirr5
dSoff„U,V,na1n•«~ t !…

dt

5(
i 51

r S ]Soff

]ni
D

U,V,n
S ]ni

]t D
na ,n

52(
i 51

r
m i ,off

Toff
(
j 51

c

n i
~ j !«̇ j5(

j 51

c

(
i 51

r S 2
n i

~ j !m i ,off

Toff
D «̇ j

5(
j 51

c

«̇ jYj ,off5«̇•Yoff5«̇~ t !•Yoff„U,V,na1n•«~ t !…,

~41!
m
e

n.
an
o-
tor

r-
e

i-

s-
y
r
the
t-

s

where«̇ is the row vector of thec reaction rates«̇1 ,«̇2 ,..., «̇c

andYoff the column vector of thec ratiosYj ,off5Aj ,off /Toff

for j 51,2,...,c, whereAj ,off52( i 51
r n i

( j )m i ,off is the affinity
of the j th reaction evaluated at the stable equilibrium state
surrogate systemB with valuesU, V, n(t)5na1n•«(t).

A further simplification is obtained if there is a subset
chemical reaction mechanisms that are much faster than
others. Then, only the slow reactions are rate controlli
whereas the fast reactions drive the system in negligible t
to its largest entropy state compatible with the instantane
compositionn(t), which varies slowly as a result of the rate
of the slow reactions. Denoting the stoichiometric coe
cients and the coordinates of the slow reactions byn and«
and of the fast reactions byn8 and«8, Eqs.~6! and~12! are
replaced by

(
i 51

r

n i
~ j !Ai50 for j 51,2,...,c ~42a!

and

(
i 51

r

n i8
~k!Ai50 for k51,2,...,c8, ~42b!

ni~ t !5nia1(
j 51

c

n i
~ j !« j~ t !1 (

k51

c8

n i8
~k!«k8~ t !. ~43!

In Eq. ~43! we assume that the«k8’s adjust instantly to
changes in composition induced by the slowly varying« j ’s
so as to maintain systemA at the largest entropy~partial
chemical equilibrium!stateA«,«

08
compatible with the given

values ofU, V, na , n, n8 and the instantaneous values of t
« j (t)’s ~see Fig. 2!, that is, fork51,2,...,c8,

«k8~ t !5«k08 „U,V,na1n•«~ t !;n8…, ~44!
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where the «k08 ’s are the values that maximizeS«,«8
5Soff(U,V,na1n•«1n8•«8) for the given values ofU, V,
na , n, n8, and«(t), or equivalently, fork51,2,...,c8:

S ]S«,«8
]«k8

D
U,V,na1n•«,n8,«8

5Yk,off8 „U,V,na1n•«~ t !1n8•«08…50. ~45!

As a result of these assumptions, systemA evolves through
the family of statesA«(t),«

08„«(t)… , the entropyS(t) is approxi-

mated in terms ofSoff of the surrogate systemB,

S~ t !5Soff~U,V,na1n•«~ t !

1n8•«08„U,V,na1n•«~ t !;n8…!, ~46!

and the rate of entropy generation is given by the relatio

Ṡirr5(
j 51

c

«̇ jYj ,off1 (
k51

c8

«̇k08 Yk,off8

5(
j 51

c

«̇ j~ t !Yj ,off~U,V,na1n•«~ t !

1n8•«08„U,V,na1n•«~ t !;n8…!, ~47!

because at each instant of timeYk,off8 50 @Eq. ~45!#.
It is clear that the model we present here is valid

homogeneous states of the reactor. In addition, it provi
the conceptual background also for the so-called local e
librium assumption upon which the continuum fluid dyna
ics treatment of nonhomogeneous states is based.

VI. RECIPROCAL RELATIONS

According to the foregoing discussion, we proceed un
the assumption–approximation that the~homogeneous!state
of the isolated reactorA belongs at each instant in time to th
family of statesA« . For fixed values ofU, V, na , andn, the
only independent variables of the family ofA« states are the
reaction coordinates« j ’s. We further assume that each rea
tion rate «̇k is a function of the stateA« and, hence, of the
« j ’s, that is,

«̇5«̇~«! ~48!

with

«̇~«0!50, ~49!

where, for simplicity, from here on we do not write explicit
the dependences on the given values ofU, V, na , n, andn8.
Condition~49! is necessary because at chemical equilibri
all reaction rates are zero.

Recalling thatYoff5Yoff(«) @Eqs. ~15!#, we can write
Eqs. ~41! and ~47! for the rate of entropy generation in th
form

Ṡirr5Ṡirr~«!5 (
,51

c

«̇,~«!Y,,off~«!5«̇~«!•Yoff~«! ~50!
r
s
i-

-

r

-

and note that nowhere in our derivation we make referenc
the concept of microscopic reversibility.

Next we make use of the condition that, at every st
A« , Ṡirr(«) must be non-negative. In particular, we apply th
condition in the vicinity of the chemical equilibrium state b
expandingṠirr(«) into a Taylor series about«0 up to second
order and using the fact thatYj ,off(«0)50 @Eq. ~35!#,
«̇ j («0)50 @Eq. ~49!#, and, of course,Ṡirr(«0)50. Thus, for
j ,k51,2,...,c, we find

]Ṡirr~«!

]« j
U

«0

5 (
,51

c
]«̇,

]« j
U

«0

Y,,off~«0!

1 (
,51

c

«̇,~«0!
]Y,,off

]« j
U

«0

50, ~51!

]2Ṡirr~«!

]« j]«k
U

«0

5 (
,51

c
]«̇,

]« j
U

«0

]Y,,off

]«k
U

«0

1 (
,51

c
]«̇,

]«k
U

«̇0

]Y,,off

]« j
U

«0

~52!

and, therefore,

Ṡirr~«!5
1

2 (
j 51

c

(
k51

c
]2Ṡirr~«!

]« j]«k
U

«0

~« j2« j 0!~«k2«k0!1¯

~53a!

5(
j 51

c

(
k51

c

(
,51

c
]«̇,

]« j
U

«0

]Y,,off

]«k
U

«0

~« j2« j 0!~«k2«k0!

1¯ ~53b!

5(
j 51

c

(
k51

c

(
,51

c

(
m51

c
]«8 ,

]Ym,off
U

«0

]Ym,off

]« j
U

«0

]Y,,off

]«k
U

«0

3~« j2« j 0!~«k2«k0!1¯ ~53c!

5 (
,51

c

(
m51

c
]«8 ,

]Ym,off
U

«0

Y,,off~«!Ym,off~«!1¯ ~53d!

5 (
,51

c

(
m51

c

L,m,offY,,off~«!Ym,off~«!1¯ , ~53e!

where we define thec3c matrix L with elements

L,m,off5
]«8 ,

]Ym,off
U

«0

. ~54!

In Eq. ~53c! we use the truncated Taylor series expans
about«0 of the relations

«̇5«P ~Yoff!5«̇„«~Yoff!…, ~55!

which follow8 from substituting into Eq.~48! the relations
«5«(Yoff) obtained from the inversion~at fixedU, V, na , n,
andn8) of the set of relationsYoff5Yoff(«), that is, for j ,,
51,2,...,c,
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«8 ,„Yoff~«!…5 (
m51

c
]«8 ,

]Ym,off
U

«0

Ym,off~«!1¯ ~56a!

5 (
m51

c

L,m,offYm,off~«!1¯ , ~56b!

]«̇,

]« j
U

«0

5 (
m51

c
]«8 ,

]Ym,off
U

«0

]Ym,off

]« j
U

«0

1¯ . ~57!

In Eq. ~53d! we use the truncated expansion about«0 of the
relationsYoff5Yoff(«), that is, for,51,2,...,c,

Ym,off~«!5(
j 51

c
]Ym,off

]« j
U

«0

~« j2« j 0!1¯ . ~58!

Our results can be interpreted in the customary man
of the so-called ‘‘Onsager’s linear thermodynamic theory
irreversible processes.’’9–12 Each affinity Am,off or, better,
eachYm,off5Am,off /Toff for m51,2,...,c, can be regarded a
a ‘‘driving force’’ and each reaction rate«̇ j , for j
51,2,...,c, as a ‘‘flux’’ that depends on all the driving forces
that is, ‘‘driving forces’’ and ‘‘fluxes’’ are coupled. If the
fluxes are expressed as functions of the driving forces or
versa, the coefficients of the linear approximation@Eqs.~56!#
of these functions in the vicinity of the chemical equilibriu
state can be regarded as ‘‘generalized conductivities.’’

In view of the relations«5«(Yoff), with «(0)5«0 , we
rewrite Eq.~50! in the form

Ṡirr5Ṡirr~Yoff!5 (
,51

c

«̇,„«~Yoff!…Y,,off5«P ~Yoff!•Yoff ,

~59!

where «̇5«P (Yoff)5«̇„«(Yoff)… with «P (0)5«̇(«0)50. The
expansion of this form in the vicinity of the chemical equ
librium state yields

Ṡirr~Yoff!5
1

2 (
j 51

c

(
k51

c
]2Ṡirr~Yoff!

]Yj ,off ]Yk,off
U

0

Yj ,offYk,off1¯ .

~60!

Direct comparison of Eq.~60! with Eq. ~53e!shows that,
for j ,k51,2,...,c,

L jk,off5
1

2

]2Ṡirr~Yoff!

]Yj ,off ]Yk,off
U

0

5
1

2

]2Ṡirr~Yoff!

]Yk,off ]Yj ,off
U

0

5L jk,off ,

~61!

and therefore the matrixL is symmetric, that is, its element
obey the Onsager10 reciprocal relations.

Equation~53a!shows that the leading term in the expa
sion of Ṡirr around the chemical equilibrium state is a qu
dratic form in the ‘‘distances’’ (« j2« j 0) from the chemical
equilibrium state. Because in the vicinity of the chemic
equilibrium state every« j2« j 0 can take both negative an
positive values, the condition thatṠirr be always non-
negative implies that the coefficients of the quadratic fo
are elements of a nonnegative definite matrix, that is,
er
f

e

-

l

Soff9 >0, ~62!

where the elements of thec3c matrix Soff9 are given by the
relations

Sjk,off9 5
1

2

]2Ṡirr~«!

]« j]«k
U

«0

. ~63!

Similarly, Eq. ~53e! shows that the leading term in th
expansion ofṠirr around the chemical equilibrium state
also a quadratic form in the ‘‘driving forces’’Yj ,off(«). Be-
cause in the vicinity of the chemical equilibrium state eve
Yj ,off(«) can take both negative and positive values, the c
dition that Ṡirr be always non-negative implies that also t
coefficients of this quadratic form are elements of a no
negative definite matrix

L ~«0!>0; ~64!

that is, the symmetric matrix of reciprocity or Onsager co
ficients is non-negative definite.

We finally emphasize that the main results of this sect
derive from the structure of the leading terms of Taylor e
pansions valid only in the vicinity of the chemical equilib
rium state.

By contrast, the model developed in the previous s
tions in terms of theA« family of states and the stable equ
librium properties of the surrogate system is valid both
from and near the chemical equilibrium state. As it is w
known,11 the relation«̇5«P (Yoff) between reaction rates an
driving forces is in general nonlinear. Nevertheless, even
states that are very far from chemical equilibrium, relatio
~50! and ~59! are valid, together with the condition tha
Ṡirr>0, and provide important guidance in the developm
of chemical kinetics models.

VII. CONCLUSIONS

The thermodynamic derivations of conditions for chem
cal equilibrium, of Onsager reciprocity relations, and of t
properties of a practically important family of nonequilib
rium states presented here differ from the derivations p
sented in practically all treatises of thermodynamics app
to chemical reactors.

Our motivation for developing this derivation is base
on a ‘‘revolutionary’’13 conception of thermodynamics as
‘‘nonstatistical’’ 14 physical theory4,15 that applies to all sys-
tems~both macroscopic and microscopic!, to all states~both
thermodynamic equilibrium and not thermodynamic equil
rium!, and that discloses that entropy is an inherent~intrin-
sic! nondestructible property of matter~well defined for all
systems and all states!, in the same sense as inertial ma
an inherent property of matter.

Our nonstatistical derivation of Onsager relations for
isolated chemical reactor shows that the arguments base
statistical fluctuations, time reversal, and the principle of m
croscopic reversibility,9–12 which are invariably used in al
traditional derivations, are not essential and, therefore, p
no fundamental role in the thermodynamic theory of irr
versible processes.
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