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We propose a list of conditions that consistency with thermodynamics imposes on linear
and nonlinear generalizations of standard unitary quantum mechanics that assume a
set of true quantum states without the restriction ρ2 = ρ even for strictly isolated
systems and that are to be considered in experimental tests of the existence of intrinsic
(spontaneous) decoherence at the microscopic level. As part of the discussion, we present
a general description of nonequilibrium states.
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1. Introduction

Understanding and predicting “decoherence” are important in fundamental parti-

cle physics and in future applications involving nanometric devices, fast switching

times, clock synchronization, superdense coding, quantum computation, teleporta-

tion, quantum cryptography, etc. where entanglement structure and dynamics play

a key role.1 In the last three decades it has also been central in exploring possi-

ble limitations to the validity of standard unitary quantum mechanics (QM), by

studying a variety of linear and nonlinear extensions that have been advocated by

several authors on a variety of conceptual grounds.2 It has been suggested3 that

long-baseline neutrino oscillation experiments may provide means of testing the ex-

istence of spontaneous decoherence at the microscopic level and the validity of linear

and nonlinear extensions of the Schrödinger–von Neumann equation of motion of

QM, thus prompting a renewed interest on such extensions.3–5

The aim of this paper is to list the main conditions that must be imposed and

checked on linear and nonlinear extensions of QM which assume an augmented

set of true quantum states described by state operators ρ without the restriction
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ρ2 = ρ. The reasoning and framework proposed here should provide useful guidance

also to current efforts to define general measures of entanglement.6

The conditions proposed here form a very restrictive set. Yet, at least one possi-

ble extension has been proved to satisfy them all,7 with mathematics that has been

partially rediscovered recently by researchers in different contexts and fields.5,8,9

2. Causality. Forward and Backward in Time

We consider the set P of all linear, hermitian, non-negative-definite, unit-trace

operators ρ (without the restriction ρ2 = ρ) on the standard QM Hilbert space

H associated with a strictly isolated system.a Every solution of the equation of

motion, i.e. every trajectory u(t, ρ) passing at time t = 0 through state ρ in P ,

should lie entirely in P for all times t, −∞ < t < +∞. This strong causality

condition is nontrivial and demanding both from the conceptual and the technical

mathematical points of view.

3. Conservation of Energy and Other Invariants

The value of the energy functional e(ρ) = Tr(ρH), where H is the standard QM

Hamiltonian operator associated with the isolated system [H 6= H(t)], must remain

invariant along every trajectory. If H is the Fock space of an isolated system con-

sisting of M types of elementary constituents (e.g., atoms and molecules if chemical

and nuclear reactions are inhibited; or atomic nuclei and electrons for modelling

chemical reactions) each with a number operator Ni ([H,Ni] = 0 and [Ni, Nj ] = 0),

then also the value of each number-of-constituents functional ni(ρ) = Tr(ρNi) must

remain invariant along every trajectory. Depending on the type of system, there

may be other time-invariant functionals, e.g., the total momentum components

pj(ρ) = Tr(ρPj), with j = x, y, z, for a free particle (in which case Galileian invari-

ance must also be verified, for [H,Pj ] = 0 and [Pi, Pj ] = 0). In what follows, we

denote by gi(ρ) = Tr(ρGi) the set of non-Hamiltonian time-invariant functionals,

if any, with [H,Gi] = 0 and [Gi, Gj ] = 0 (clearly, H and the Gi’s have a common

eigenbasis that we denote by {|ψ`〉}).

4. Standard QM Unitary Evolution of ρ
2 = ρ States

Unitary time evolution of the states of QM according to the Schrödinger equation

of motion must be compatible with the more general dynamical law. These trajec-

tories, passing through any state ρ such that ρ2 = ρ and entirely contained in the

state domain of QM, must also be solutions of the extended dynamical law. Because

the states of QM are extreme points of the state domain P , the trajectories of QM

must be boundary solutions (limit cycles) of the extended dynamical law.

aBy strictly isolated we mean that the system interacts with no other systems and at some time
(and, hence, at all times) is in an independent state when viewed as a subsystem of any conceivable
composite system containing it.
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In general, any extended dynamical equation may be written in the form

dρ

dt
= −

i

~
[H, ρ] +DM (1)

with DM = D̂M (ρ,H,Gi, . . .) , (2)

where operator DM represents the dissipative part of the equation of motion and

may depend linearly and/or nonlinearly (through superoperator D̂M ) on the state

operator ρ, on the Hamiltonian H , on the linear operators Gi associated with the

other time invariants (if any), as well as on the structure and the number M of

elementary constituents of the system. Like the Schrödinger–von Neumann term,

also the dissipative term should not be responsible for rates of change of any of the

invariant functionals Tr(ρ), e(ρ), gi(ρ) and, therefore,

TrDM = 0 , TrDMH = 0 , TrDMGi = 0 . (3)

If the complete dynamics preserves the feature of uniqueness of solutions

throughout the state domain P , then pure states can only evolve according to the

Schrödinger equation of motion and, therefore, D̂M (ρ,H,Gi, . . .) = 0 when ρ2 = ρ.

This feature may be responsible for hiding the presence of deviations from QM in

experiments where the isolated system is prepared in a pure state. It also implies

that no trajectory can enter or leave the state domain of QM. Thus, by continu-

ity, there must be trajectories that approach indefinitely these boundary solutions

(of course, this can only happen backward in time, as t → −∞, for otherwise the

entropy of the isolated system would decrease in forward time).

5. Conservation of Effective Hilbert Space Dimensionality

Unitary dynamics [Eq. (1) with DM = 0] would not make any changes to all the

eigenvalues of ρ and therefore cannot satisfy Condition 5 below.b Instead, we only

require that the dynamical law maintains zero, the initially zero eigenvalues of ρ

and, therefore, conserves the cardinality of the set of zero eigenvalues, dim Ker(ρ).

In other words, if the isolated system is prepared in a state that does not “occupy”

the eigenvector |ψ`〉 of H (and the Gi’s), i.e. if ρ(0)|ψ`〉 = 0 (so that |ψ`〉 is also an

eigenvector of ρ corresponding to a zero eigenvalue), then such energy eigenvector

remains “unoccupied” at all times, i.e. ρ(t)|ψ`〉 = 0.

This condition preserves an important feature that allows remarkable model

simplifications within QM: the dynamics is fully equivalent to that of a model

system with Hilbert space H′ (a subspace of H) defined by the linear span of all

the |ψ`〉’s such that ρ(t)|ψ`〉 6= 0 at some time t (and, hence, by our condition, at

bUnder a unitary (Hamiltonian) dynamical law the trajectories would be u(t, ρ) = U(t)ρU−1(t)
with U(t) = exp(−itH/~). The equilibrium states ρe, with ρeH = Hρe, would all be globally
stable. Indeed, with respect to the metric d(ρ1 , ρ2) = Tr|ρ1 − ρ2|, it is easy to show that every
trajectory u(t, ρ) would be equidistant from any given equilibrium state ρe, i.e. d(u(t, ρ), ρe) =
d(u(0, ρ), ρe) for all t and ρ. Because for each set of values of the invariant functionals these
globally stable equilibrium states are in general more than one, the second-law requirement of
uniqueness would be violated. See also Ref. 10.
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all times). The relevant operators X ′ on H′ (ρ′, H ′, G′

i, . . .) are defined from the

original X on H (ρ,H,Gi, . . .) so that 〈αk|X
′|α`〉 = 〈αk|X |α`〉 with |αk〉 any basis

of H′.

It is also consistent with recent experimental testsc that rule out, for pure states,

deviations from linear and unitary dynamics and confirm that initially unoccupied

eigenstates cannot spontaneously become occupied. This fact adds nontrivial ex-

perimental and conceptual difficulty to the problem of designing a fundamental test

of QM, capable of ascertaining whether decoherence originates from uncontrolled

interactions with the environment due to the practical impossibility of obtaining

strict isolation, or else it is a more fundamental intrinsic feature of microscopic

dynamics requiring an extension of QM. In the latter, this condition will preserve

within the extended theory the exact validity of all the remarkable successes of QM.

6. Entropy Nondecrease. Irreversibility

The principle of nondecrease of entropyd for an isolated system must be satisfied,

i.e. the rate of change of the entropy functional −kB Tr(ρ ln ρ) must be nonnegative

along every trajectory, −kB Tr[u(t, ρ) lnu(t, ρ)] ≥ −kB Tr(ρ ln ρ).

7. Stability and Uniqueness of the Thermodynamic Equilibrium

States. Second Law

A state operator ρ of the isolated system represents an equilibrium state if dρ/dt = 0.

For each given set (ẽ, g̃) of feasible values of the energy functional e(ρ) and the other

time-invariant functionals gi(ρ), if any, among all the equilibrium states that the

dynamical law may admit that there must be one and only one which is globally

stable.e

cSee references in Ref. 5.
dSome recent nonextensive quantum theories are based on other well-behaved entropy functionals
such as the Daroczy–Tsallis functional. However (see e.g., Ref. 11), compatibility with thermody-
namics requires the Gibbs–Shannon-von Neumann functional s(ρ) = −kB Tr(ρ ln ρ).
eFor a discussion on the relation between the notion of stability in thermodynamics and the
mathematical concept of stability see Ref. 12. The relevant definitions of local and global stability
and of metastabilty are as follows.

An equilibrium state is stable in the sense required by the second law if it can be altered to a
different state only by interactions that leave net effects in the state of the enviromment, i.e. alter
the values of the energy and the other invariants. We call this notion global stability.

Lyapunov local stability is necessary for global stability, but not sufficient: we must exclude
metastability. As a result, the concept of global stability implied by the second law is as follows.
An equilibrium state ρe is globally stable if for every η > 0 and every ε > 0 there is a δ(ε, η) > 0
such that every trajectory u(t, ρ) with η < d(u(0, ρ), ρe) < η + δ(ε, η), i.e. passing at time t = 0
between distance η and η + δ from ρe, remains within d(u(t, ρ), ρe) < η + ε for every t > 0,
i.e. proceeds in time without ever exceeding the distance η + ε.

The dynamical law may admit many equilibrium states that all share the same values of the
invariants Tr(ρH) and Tr(ρGi) and the parameters embedded in the Hilbert space H and the
Hamiltonian H describing the external forces (such as the size of a container), but among all
these only one must globally stable, i.e. all the other equilibrium states must either be unstable
or metastable.
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This stable equilibrium state must be that of equilibrium thermodynamics and,

therefore, of the form

ρe =
exp[−β(ẽ, g̃)H +

∑
i νi(ẽ, g̃)Gi]

Tr exp[−β(ẽ, g̃)H +
∑

i νi(ẽ, g̃)Gi]
, (4)

where the Gi’s are defined above. Of course, states given by Eq. (4) are solutions

of the constrained maximization problem

max− kB Tr(ρ ln ρ) subject to (5a)

Tr(ρ) = 1 , Tr(ρH) = ẽ , Tr(ρGi) = g̃i , and ρ ≥ 0 . (5b)

and reduce to the canonical equilibrium states ρe = exp(−βH)/Tr exp(−βH) when

Gi = giI for all i’s (with gi scalars and I the identity on H), and to the micro-

canonical state ρe = I/dimH if also H = eI (and dimH <∞).

The entropy functional is not12 a Lyapunov function, however, in a strict sense

that depends on the continuity and the conditional stability of states ρe, it does

provide a criterion for the local stability of these states. In addition to this, the

second law requires however that no other equilibrium state of the dynamical law

be globally stable.e,b

Consider the noteworthy family of states

ρnd =
B exp[−β(ẽ, g̃)H +

∑
i νi(ẽ, g̃)Gi]B

TrB exp[−β(ẽ, g̃)H +
∑

i νi(ẽ, g̃)Gi]
, (6)

where B is any given idempotent operatorB2 = B. This family, which includes pure

states [Tr(B) = 1], maximizes the entropy [Prob. (5)] subject to the additional

constraint ρ = BρB for the given B. All eigenvalues of ρnd must remain in-

variant (otherwise the entropy would decrease) and the state is equilibrium

if [B,H ] = 0 or otherwise it evolves unitarily (limit cycle) with B(t) =

exp(−iHt/~)B(0) exp(iHt/~). They have a thermal-like distribution (positive and

negative temperatures) over a finite number [Tr(B)] of “occupied” eigenvectors.

Since entropy cannot decrease and −kB Tr(ρ ln ρ) is an S-function, they are con-

ditionally locally stable equilibrium states or limit cycles.12 For them not to be

globally stable, as required by the second law, it suffices that the extended dynam-

ics imply that at least one state of equal energy and other invariants (not necessarily

neighboring nor with the same kernel) evolves towards higher entropy than ρnd.

8. Non-Interacting Subsystems. Separate Energy Conservation

For an isolated system composed of two distinguishable subsystems A and B with

associated Hilbert spaces HA and HB , so that the Hilbert space of the system

is H = HA ⊗HB , if the two subsystems are non-interacting, i.e. the Hamiltonian

operatorH = HA⊗IB+IA⊗HB , then the functionals Tr[(HA⊗IB)ρ] = TrA(HAρA)

and Tr[(IA ⊗ HB)ρ] = TrB(HBρB) represent the energies of the two subsystems

and must remain invariant along every trajectory, even if the states of A and B are
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correlated, i.e. even if ρ 6= ρA ⊗ ρB . Of course, ρA = TrB(ρ), ρB = TrA(ρ), TrB

denotes the partial trace over HB and TrA the partial trace over HA.

9. Independent States. Weak Separability. Separate Entropy

Nondecrease

Two distinguishable subsystems A and B are in independent states if the state

operator ρ = ρA ⊗ ρB . For any given ρ, let us define the idempotent operator B

obtained from ρ by substituting in its spectral expansion each nonzero eigenvalue

with unityf and the entropy operator S = −kBB ln ρ (always well-defined). For

independent states, S = SA ⊗ IB + IA ⊗SB = −kB[BA ln ρA ⊗ IB + IA ⊗BB ln ρB ].

For permanently non-interacting subsystems, every trajectory passing through a

state in which the subsystems are in independent states must proceed through

independent states along the entire trajectory, i.e. when two uncorrelated systems

do not interact with each other, each must evolve in time independently of the

other.

In addition, if at some instant of time two subsystems A and B, not necessarily

non-interacting, are in independent states, then the instantaneous rates of change of

the subsystem’s entropy functionals −kB Tr(ρA ln ρA) and −kB Tr(ρB ln ρB) must

both be nondecreasing in time.

10. Correlations, Entanglement and Locality. Strong Separability

Two non-interacting subsystems A and B initially in correlated and/or entangled

states (possibly due to a previous interaction that has then been turned off) should

in general proceed in time towards less correlated and entangled states. In any

case, in order for the dynamics not to generate locality problems, i.e. faster-than-

light communication between noninteracting subsystems (even if in entangled or

correlated states), entanglement and correlations must not increase in the absence

of interactions. In other words, when subsystem A is not interacting with subsystem

B, it should never be possible to influence the local observables of A by acting

only on the interactions within B, such as switching on and off parameters or

measurement devices within B.

This, however, does not mean that existing entanglement and/or correlations

between A and B established by past interactions should have no influence whatso-

ever on the time evolution of the local observables of either A or B. In particular,

there is no physical reason to request that two different states ρ and ρ′ such that

ρ′A = ρA should evolve with identical local dynamics (dρ′A/dt = dρA/dt) whenever

A does not interact with B, even if entanglement and/or correlations in state ρ dif-

fer from those in state ρ′. Rather, the two local evolutions should be different until

spontaneous decoherence (if any) will have fully erased memory of the entanglement

fGiven a ρ, B = B2 = I − PKer(ρ) = P⊥Ker(ρ), so that B = B2, Bρ = ρB = ρ, and B =

BA ⊗ BB when ρ = ρA ⊗ ρB . Moreover, from B = B2 follows that BḂB = 0 and Tr(ρḂ ln ρ) =
Tr(BḂBρ ln ρ) = 0, thus ṡ(ρ) = Tr(ρ̇S) − kB Tr(ρ̇) with S = −kBB ln ρ.
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and the correlations established by the past interactions now turned off. In fact,

this may be a possible experimental scheme to detect spontaneous decoherence.

Compatibility with the predictions of QM about the generation of quantum en-

tanglement between interacting subsystems that emerge through the Schrödinger–

von Neumann term −i[H, ρ]/~ of Eq. (1), requires that the dissipative term DM

may entail (spontaneous) loss of entanglement and loss of correlations between

subsystems, but should not be able to create them.

11. Onsager Reciprocity

First, we introduce a particularly useful representation of general nonequilibrium

states.7 Given any state ρ on H, we define the effective Hilbert space H′ as above,

and choose a set of operators {I ′, X ′

1, X
′

2, . . .} spanning the linear space Lh(H′)

of linear hermitian operators on H′; the corresponding state ρ′ on H′ has no zero

eigenvalues, so that S = −kBB ln ρ becomes S′ = −kB ln ρ′ on H′, which can be

written as S′ = f0I
′ +

∑
j fjX

′

j because it belongs to Lh(H′). Thus,

ρ′ =
exp(−

∑
j fjX

′

j/kB)

Tr exp(−
∑

j fjX ′

j/kB)
(7)

where f0 = kB ln Tr exp(−
∑

j fjX
′

j/kB). Similarly, we can also write S ′

e =

−kB ln ρ′e = f0eI
′ +

∑
j fjeX

′

j , for the target maximum-entropy equilibrium state

on H′

ρ′e(ρ
′) =

exp(−βH ′ +
∑

k νkG
′

k)

Tr exp(−βH ′ +
∑

k νkG′

k)
, (8)

where β and νk are such that e(ρ′e) = e(ρ′) and gi(ρ
′

e) = gi(ρ
′), so that Tr(ρ′ ln ρ′e) =

Tr(ρ′e ln ρ′e) and Tr[(dρ′/dt)S′

e] = 0. As a result, the following relations can be easily

proved,

s(ρ′) − s(ρ′e(ρ
′)) = f0 − f0e +

∑

i

(fi − fie)xi(ρ
′) , (9)

∂[s(ρ′) − s(ρ′e(ρ
′))]

∂xi(ρ′)
= fi − fie , (10)

ds(ρ′)

dt
=

∑

i

fi

Dxi(ρ
′)

Dt
=

∑

i

(fi − fie)
Dxi(ρ

′)

Dt
, (11)

〈∆S′∆S′〉 =
∑

ij

fifj〈∆X
′

i∆X
′

j〉 , (12)

where Dxi(ρ
′)/Dt = Tr(DMX ′

i) denotes the dissipative rate of change of the linear

mean-value functional xi(ρ
′) = Tr(ρ′X ′

i), 〈∆S
′∆S′〉 = Tr[ρ′(−kB ln ρ′)2] − s(ρ′)2,

〈∆X ′

i∆X
′

j〉 = 1

2
Tr[(ρ{X ′

i , X
′

j}]−xi(ρ
′)xj(ρ

′). When the system is in state ρ′, we in-

terpret 〈∆X ′

i∆X
′

j〉 as the codispersion (covariance) of simultaneous measurements

of observables X ′

i and X ′

j , 〈∆X
′

i∆X
′

i〉 as the dispersion (or fluctuations) of observ-

able X ′

i and 〈∆S′∆S′〉 the entropy fluctuations.
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By Eq. (10), we may also interpret fi − fie as the generalized affinity or force

conjugated with the mean value of the linear observable Xi. In order to recover

Onsager’s theory, we may impose that (at least in the vicinity of state ρ′e) the

extended dynamics be such that the dissipative rates be linearly related to the

generalized affinities through generalized-conductivity functionals, i.e.

Dxi(ρ
′)

Dt
=

∑

j

Lij(ρ
′, H ′, G′

k, X
′

`, . . .)(fj − fje) , (13)

where the Lij ’s may be nonlinear functionals of ρ′ (possibly to be approximated

with their values at ρ′e, in its vicinity), but should form a symmetric (H → −H, if

H ′ depends on an external magnetic field) non-negative definite matrix, so that the

rate of entropy production results in a quadratic form
∑

ij(fi − fie)Lij(fj − fje).

Moreover, the Lij ’s should be linearly interrelated with the matrix of codispersions

〈∆X ′

i∆X
′

j〉, in order to recover also Callen’s fluctuation-dissipation theorem.
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