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Spinodal decomposition of deeply quenched mixtures is studied experimentally, with particular emphasis on
the domain growth rate during the late stage of coarsening. We provide some experimental evidence that at
high Péclet number, the process is isotropic and the domain growth is linear in time, even at finite quenching
rates. In fact, the quenching rate appears to influence the magnitude of the growth rate, but not its scaling law.
In the second part of the work we analyze the effect of viscosity on the growth rate. As predicted by the diffuse
interface model, we do not find any effect of viscosity on the growth rate of the nucleating drops, although, as
expected, the viscosity of the continuous phase does influence the settling speed and thus the total separation
time.
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I. INTRODUCTION

When an initially homogeneous single-phase mixture is
cooled across its miscibility curve into the two-phase region,
it phase separates either by nucleation or by spinodal decom-
position. Nucleation is an activated process with a free en-
ergy barrier to overcome, as it occurs when the system is in
an initially metastable equilibrium state. Spinodal decompo-
sition, instead, denotes the relaxation to equilibrium of a sys-
tem that initially is in an unstable equilibrium state, therefore
with no energy barrier to overcome. While nucleation is a
localized process that proceeds through the formation of nu-
clei that later grow and coalesce, spinodal decomposition is
delocalized, as it occurs simultaneously over the entire do-
main.

Experimentally, it has been shown that the phase segrega-
tion process following a temperature quench can be retarded
either by quenching the mixture to a temperature T only by
few milli-Kelvin below the critical value Tcr, namely, to a
quench depth �= �Tcr−T� /Tcr�10−5 �1–3�, or by studying
polymer blends with viscosity hundreds times larger than
that of water. In these cases, it was observed that, right after
the temperature reaches its critical value �corresponding to a
point on the miscibility curve�, the initially homogeneous
mixture starts to separate by diffusion only, leading to the
formation of well-defined patches with near-equilibrium con-
centrations �the local equilibrium hypothesis is currently un-
der debate, as we mention later�. The morphology of the
mixture under phase segregation depends on the composition
of the system: for a critical mixture, the structure is bicon-
tinuous and dendritic-like, whereas off-critical mixtures are
characterized by drop-like structures. In the so-called late

stage of coarsening, single-phase patches grow by diffusion
and coalescence, until they become large enough that buoy-
ancy dominates surface tension effects and the mixture sepa-
rates by gravity. This occurs when the domains have sizes
comparable to the capillary length Lg=�� /g��, where � is
the surface tension, �� the density difference between the
two phases at equilibrium, and g the gravity field. Typically,
for the mixtures used in our experiments, the capillary length
Lg is of O�1 mm�. Now, when diffusion is the only active
mechanism of growth, it is well known, both experimentally
and theoretically �4�, that the typical patch size L grows in
time as t1/3. Therefore, we see that when phase segregation is
driven by diffusion, it takes about 1 hour to form millimeter-
size domains and subsequently segregate by gravity. This is
in fact the case of highly viscous polymer blends, which
need such a long time to separate. On the other hand, low-
viscosity mixtures separate within seconds from the quench
and therefore, in this case, diffusion cannot be the dominant
mechanism of phase separation.

The other mechanism of segregation affecting domain
growth is convection-driven coalescence, which implies that
drops move against each other under the influence of the
nonequilibrium capillary force F�. This force and, in general,
the convective transport induced by phase transition, is well
described by the so-called H model �5�, also known as dif-
fuse interface model �6–8�, through the minimization of the
interfacial energy �see Appendix B�. The induced bulk flow
predicted by the diffuse interface model has been observed
experimentally �9�. The model explains why this effect is
much stronger in systems far from equilibrium, i.e., when the
composition of the drops and that of the surrounding phase
are not equal to their equilibrium values �10�. As shown in
Appendix B, the importance of convection relative to diffu-
sion is controlled by the Péclet number defined as the ratio
between convective and diffusive mass fluxes Pe=VL /D,*Electronic address: pietro.poesio@ing.unibs.it
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where V is the characteristic speed and L a characteristic size
of the typical single-phase patches, and D the molecular dif-
fusivity. A reasonable estimate �Appendix B� of the observed
velocities for a critical mixture is V�2�2��a /	L
�F�a2 /	, where 	 is the fluid viscosity, � is the extra free
energy stored within the interface �at equilibrium equal to the
surface tension ��, and a the typical length of the composi-
tion inhomogeneities, related to the energy gradient coeffi-
cient, as originally defined by van der Waals �11� and to
the nonequilibrium capillary force F� predicted by the
model. As a result, the Péclet number can be estimated as
Pe�2�2��a /	D�288�6�RTcrD /	MWvgr

2 where vgr is the
growth rate of the domain size L. Now, for large Péclet num-
bers, balancing nonequilibrium and viscous forces, it can be
shown that the typical domain size L grows as t �4�, which
agrees with experimental results, i.e., vgr remains constant
during this important phase segregation interval, even while
the quench depth � increases �in the present experiments by a
factor of 4, from 0.006 to 0.026�. According to our order of
magnitude estimates for the case of a critical mixture, during
this linear growth interval, the Péclet number increases as
�6 �by a factor of 4000 in the present experiments�, the sur-
face free energy � as �7/2 and the characteristic length a as
�2, so that the diffusivity become rapidly overwhelmed by
convection.

In addition, simulations based on the diffuse interface
model show that F� is important not only at the onset of
phase separation, but during most of the process, as local
equilibrium is reached only very late, when the two phases
are already fully segregated. Therefore, a full explanation of
the segregation mechanisms unfolds by assuming a strong
relation between the velocity field and the concentration
field, as the thermodynamics of the process is strongly
coupled with hydrodynamics. Experimental evidence of the
critical role of convection in phase segregation of deeply
quenched �1 to 10 K� liquid mixtures is reported in Gupta
et al. �12�, where microdomains are shown to grow linearly
in time within the range 10–400 	m and the coarsening is
shown to be almost independent of surface-active com-
pounds, indicating that the driving force is much larger than
any surface interactions, which tend to keep the droplets
apart.

The separation process of a deeply quenched mixture in-
volves three stages.

Diffusion stage. As soon as some inevitable minute distur-
bances kick a fluid element off the unstable equilibrium state
reached upon quenching, the mixture starts to phase separate
by diffusion, so that the domain size L grows as t1/3. This
stage lasts as long as Pe
1. When L grows to the same
order of D /V, convection becomes the dominant mechanism
of mass transport.

Convective stage. Here growth is dominated by
convection-driven coalescence and the domain size L grows
as t; this stage lasts as long as L�Lg=�� /g��. When L
grows to the same order of the capillary length Lg, gravity
takes over.

Gravity driven stage. After the gravitational crossover,
segregation is dominated by the gravity forces induced by
the density differences between the two phases.

In this paper, we focus our attention mainly on the con-
vective stage of the process, which determines the total seg-
regation time of the mixture. In particular, our main objective
is to investigate experimentally whether �a� quenching rate
and �b� viscosity have any influence on the linear growth of
single-phase domains which characterizes the convective
stage of spinodal decomposition.

The motivation of this research lies in the possible indus-
trial applications �13� of the phase separation process. There,
with meter-size devices and deep quenches, the cooling time
is comparable to, or even larger than, the characteristic sepa-
ration time and, therefore, the system starts separating as
soon as the coexistence curve is crossed, when cooling is still
incomplete. On the other hand, in most of the experiments
that have been carried over so far, very shallow quenching or
very small systems have been used, where quenching can be
considered as effectively instantaneous. At this moment, no
experimental data or theoretical calculations are available on
how the thermal history may influence the growth of the
single-phase domains and the segregation process in general.
Accordingly, one aim of this work is to understand, at least
qualitatively, what this influence might be, so as to be able to
use the cooling rate to control the separation process and
check if a slow quenching �slow compared to the character-
istic separation time� can induce more than one characteristic
length; in that case, the structure factor would be multi-
peaked, and segregation would be qualitatively different
from that experienced in “classical” spinodal decomposition.

In addition, the solvents that are used in industrial appli-
cations are often viscous, either because they are naturally
viscous or because they become so as a result of chemical
reactions �e.g., polymerization� or by adding a modifier �e.g.,
a surfactant�. Accordingly, the other feature that we study in
this work, i.e., the influence of viscosity on the phase sepa-
ration process, is also of obvious industrial relevance.

A brief summary of this work is as follows. In Sec. II we
describe the experimental setup and the procedure of the in-
vestigation. In Sec. III, we analyze and discuss the experi-
mental results. In particular, in Sec. III A we investigate
quantitatively the phase separation of a deeply quenched
mixture �both with critical and off-critical composition�,
while the effects of the quenching rate and viscosity are stud-
ied in Sects. III B and III C, respectively. Finally, conclu-
sions are drawn in Sec. IV.

II. EXPERIMENTAL SETUP

An experimental setup was designed and built to visualize
the phase separation process in the size range of
10 	m to 12 mm. It consists of a thermostatted quartz cell
of 1 mm thickness and 8 mm by 45 mm sides. The quartz
cell is mounted on one plate of a 6 mm deep water channel
�Fig. 1� that provides temperature control. A set of valves
switches the water feed between a warm and a cold thermo-
stat, thereby providing the quenching of the sample in the
quartz cell. Recording is made by a high-speed, high-
resolution, 8-bit digital camera, equipped by macrolenses.
Camera resolution is 1024 by 1024 pixels and the frame rate
is set either to 75 or 125 fps. The smallest field of view is 1.6
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by 1.6 mm, with an optical resolution of 5 	m. The sample
is back lighted, using red light to enhance the contrast be-
tween phases. The camera is set to an exposure time of
10 	s and is limited to a focal depth of 5 	m.

The temperature of the liquid mixture inside the cell is
measured by two 0.5 mm K-type thermocouples, with re-
sponse time of 0.05 s. Two thermocouples �1.5 mm diam-
eter� are placed in the cooling channel. All thermocouple
acquisitions and the digital camera are triggered with the
switching of the water feeding valves that starts the quench-
ing. Measurements are gathered on a PC. Frames, from the
videos, are extracted and post-processed with standard and
adhoc software, written in MATLAB©.

The sample consists of a mixture of water �H2O�, aceto-
nitrile �ACN�, and toluene �TOL� with critical temperature at
35 °C. Its �-T phase diagram is reported in Fig. 2 from Ref.
�13�, where � represents the sum of the mole fractions of
acetonitrile and toluene. The composition of the mixtures
used in this work are reported in Table I, using the thermo-
dynamic data given in Ref. �13�. Mixture A has critical com-
position and undergoes phase transition at 35 °C; B and C
are off-critical mixtures and undergo phase transition at 26
and at 28 °C, respectively. Acetonitrile and toluene are
HPLC grade, while water is double-distilled. Crystal violet is
added to the solution �50 ppm� to facilitate visualization, as
it dissolves preferentially in the organic-rich phase. When
dissolved in such small amount crystal violet does not alter
the phase diagram. Furthermore, being a cationic emulsifier
compound, it makes it ideal to study coalescence during the
phase separation of liquid mixtures �see Ref. �12� for more
details�. Finally, in order to modify the viscosity of the mix-
ture, we add carbossimetilcellulose �CMC, CARBOFIX 5A

type� to the solution. CMC is a water-soluble polymer, but it
is completely insoluble in the organic phase; we tested that
CMC does not act as a modifier �at least up to 10% in
weight� and, hence, it does not alter the coexistence curve;
up to concentrations of 10%, water-CMC solutions show a
Newtonian behavior.

In all the experiments, we start with the mixture in its
phase separated state, at a constant temperature of 20 °C.
The solution is first heated to 38 °C, then mixed thoroughly
and, eventually, quenched back below its critical point. Mix-
ing the solution before quenching ensures that the mixture is
initially homogeneous. In fact, as shown in Santonicola et al.
�9�, when the system is kept at 38 °C without mixing for two
hours, the mixture is still mostly demixed, except for a very
thin, few millimeters thick, layer, where a sharp concentra-
tion gradient is present.

III. EXPERIMENTAL RESULTS

A. Quantitative analysis of deeply quenched mixtures

In this paragraph, we describe the morphology of both
critical and off-critical mixtures during phase separation.
Figure 3 shows a selection of photograms from a typical
sequence obtained for the phase separation of the critical
mixture A. As expected, separation occurs simultaneously
over the entire field of view, while the mixture exhibits a

TABLE I. Overall compositions �mass fractions� of the mixtures
used in the present study. The amount of toluene is kept fixed be-
cause of its influence on the coexistence curve. TPT represents the
temperature at phase transition.

Mixture
H2O
%w

ACN
%w

TOL
%w

TPT

°C
MW

kg/kmol
�

kg/m3

A 64 35 1 35 22.6 912

B 77 22 1 26 20.7 942

C 29 70 1 28 30.1 839

FIG. 1. Sketch of the experimental setup. Arrows indicate the
spot light, the quartz cell mounted into the thermostatted support,
and the high-speed camera.

FIG. 2. �Color online� Phase diagram of a water-acetonitrile-
toluene mixture where � represents the sum of the mole fractions of
acetonitrile and toluene. The experimental points are taken from
Ref. �13�.
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(a) t = 3.6 s; T = 33.5 ◦C. (b) t = 4.0 s; T = 32.5 ◦C.

(c) t = 4.4 s; T = 31.5 ◦C. (d) t = 4.8 s; T = 30.6 ◦C.

(e) t = 5.2 s; T = 29.8 ◦C (f) t = 5.6 s; T = 29.1 ◦C.

FIG. 3. Selected photograms from a sequence of snapshots of decomposition of critical mixture A �see Table I� showing the typical
bicontinuous morphology. Time t=0 indicates the instant when the quenching is started. The temperature inside the cell crosses the critical
value �T=Tcr� at t=3.3 s. Field of view is 1.6�1.6 mm.
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bicontinuous structure during the entire period. We see that
single-phase domains grow very rapidly, as a result of the
coalescence induced by their motion, showing that the
process is dominated by convection. In fact, when domains
reach a typical size L�35 	m, we measure speeds
V�1 mm/s, showing that, since molecular diffusivity is
D�5�10−10 m2/s, the Péclet number is Pe=VL /D�70.
When the gravitational crossover is reached �i.e.,
L�Lg�1 mm�, the domain size is so large that gravitational
effects start playing a role: the motion is not isotropic any-
more and the vertical component becomes dominant.

Figure 4 shows a typical sequence for the phase separa-
tion of the off-critical mixture B. The structure is now drop-
like, with a continuous, water-rich phase and a discrete,
organic-rich phase. In this case, too, the process is very rapid
and convection driven. Again, after an initial period, gravity
takes over and the heavier phase starts sedimenting.

In order to analyze phase separation from a quantitative
point of view, we make use of some statistical tools in order
to �1� check the isotropy of the process, �2� identify a char-
acteristic length and study its time evolution, �3� analyze the
size distribution and the appearance of multiple scales, and
�4� spot any violations of the self-similarity hypothesis.

To check the isotropy, we use the method proposed by
Wagner �14�, who defined the following second order sym-
metric tensor:

dxx =

�
�i,j�

�x
D��xi,yj��x

D��xi,yj�

�
�i,j�

��xi,yj�2
,

dyy =

�
�i,j�

�y
D��xi,yj��y

D��xi,yj�

�
�i,j�

��xi,yj�2
,

dxy =

�
�i,j�

�x
D��xi,yj��y

D��xi,yj�

�
�i,j�

��xi,yj�2
= dyx, �1�

where �x
D� and �y

D� are the symmetric discrete derivatives
along the x and y directions, respectively, of the concentra-
tion field ��x ,y� and, in the summation, they are evaluated at
each pixel over the entire field of view. The concentration
field is derived from the images recorded by the camera and,
as done in Gupta et al. �12�, we assumed that the intensity
level recorded by the camera is linearly related to the con-
centration field. Denoting by d1 and d2 the eigenvalues of the
matrix d, with d1d2, the isotropy of the images can be
measured in terms of the isotropy index �=d2 /d1, where
�=1 and �=0 correspond to perfectly isotropic and perfectly
anisotropic systems, respectively.

As shown in Fig. 5, for t�1 s, we measure �=0.95, re-
vealing an apparent slight anisotropy during the whole pro-
cess �at t�1 s, phase separation has not started yet�. Sepa-
rate measurements, though, reveal that a perfectly isotropic
image �i.e., a circle� also determines a value �=0.95, so we
conclude that this unexpected measurement is due to a defect
in the camera CMOS-sensor technology vertical multiplex-
ing. This conclusion is confirmed by the fact that at earlier
times, for t�1 s, we measure a strong anisotropy, while at
that time, since the system is still single-phase, we should be
measuring an isotropic background noise. Note that the field
of view is very small and it is placed in the bulk of the quartz
cell, so that the boundary conditions do not play any relevant
role. Wall effects become important when the size of the

FIG. 4. Selected photograms from a sequence of snapshots of
decomposition of off-critical mixture B �see Table I� showing the
typical drop-like morphology. Time t=0 indicates the instant when
the quenching is started. The temperature inside the cell crosses the
miscibility curve at t=1.3 s.
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single-phase domains are comparable with the cell thickness
�i.e., 500 	m or larger�, but at that point gravity becomes
also important.

Next we study the time evolution of single-phase domains
by defining a characteristic length of the system. To do that,
we do not use �d, where d=d1=d2 is Wagner’s lengthscale,
because it is very noisy, being based on the pixel-by-pixel
derivatives of the concentration field. Instead, we define the
characteristic dimension, and its time evolution, in terms of
the structure factor S�k , t�, indicating the size distribution of
the system at time t:

S�k,t� =

�
k

�̂�k,t��̂�− k,t�

�
k

1
. �2�

Here �̂�k , t� is the two-dimensional discrete Fourier trans-
form of the concentration field, k is the wavelength vector,
and k its length. First of all, we find that for our data �̂ is
axisymmetric, i.e., �̂�k , t�= �̂�k , t� confirming the previous
observation about the isotropy of the process, so that
S�k , t�=S�k , t�. In Fig. 6, �̂�k , t� is represented at two differ-
ent times, emphasizing the isotropy of the concentration
field.

Defining the p-order moment of the structure factor S�k , t�
as

Kp�t� =	 �
k=0

kmax

kpS�k,t�

�
k=0

kmax

S�k,t� 

1/p

, �3�

where kmax is an upper cutoff, we see that a characteristic
length can be defined as

R�1��t� =
2�

K1�t�
. �4�

It can be shown that, in isotropic conditions, Wagner’s char-
acteristic length d=d1=d2, can be written in terms of the first
and third moments of the structure factor

FIG. 5. �Color online� Evolution of the isotropy index � �see
text� over time for critical mixture A. Ideally, under isotropic con-
dition, this index should be unity. Our measure shows a small de-
viation from unity; this is due to the CMOS technology of camera
sensor. Before the separation begins, � shows a very anisotropic
condition because the signal-to-noise ratio is very low.

FIG. 6. Fourier transform of two representative snapshots for the critical mixture A �see Table I�.

POESIO et al. PHYSICAL REVIEW E 74, 011507 �2006�

011507-6



d = 2�
K1

K3
. �5�

In Fig. 7, the dimensionless structure factor S�k , t� /
�R�1��t��2 is plotted versus the dimensionless wavelength
kR�1��t� at four different times showing that all plots collapse
on a master curve when properly scaled. It should be
stressed, however, that this so called structural self-similarity
is not enough to guarantee the self-similarity of the structure
�14�.

The log-log plot of the structure factors reported in Fig. 9
is consistent with analogous results obtained from light-
scattering experiments by Guenoun et al. �3�, who showed
that the structure factor obtained by direct visualization car-
ries the same pieces of information as the one obtained from
light-scattering experiments. In particular, we see the typical
k4 increase for k� �R�1��−1 and the expected generalized Po-
rod tail, showing a 1/k4 decrease for k�1/R�1�.

During the linear, convection-driven stage, the structure
factor is single peaked, and therefore double phase transition
is not observed, as confirmed also by direct observation. At
later stages, however, we notice the appearance of a second-
ary nucleation structure �Fig. 8�, characterized by droplets of
one phase within the other �see Table II�. Unfortunately, we
cannot quantify the evolution of this secondary structure,
since when it appears gravity has already begun to influence
the process and the primary structure starts sedimenting. Fi-
nally, note that, in agreement to Tanaka’s experiments �15�,
we observe double phase separation only in critical mixtures.

The presence of double phase separation rises questions
on the hypothesis of local equilibrium �15�, as all the coars-
ening mechanisms that have been proposed to explain the
late-stage phase separation are based on the local equilibrium

assumption �i.e., the compositions of both phases coincide
with their final equilibrium values�. Departure from the
local-equilibrium assumption may affect their growth rate
and even the scaling, and needs to be further investigated.
However, as noticed by Tanaka �15�, the scaling relation is
not so sensitive to a slight deviation of the concentration
from the final equilibrium value.

In Fig. 9, the characteristic domain size R�1��t� is plotted
as a function of time. Before the temperature of the mixture
reaches the critical point, the characteristic length is almost
constant and its value depends on some dust spots present in
the field of view. As the temperature of the mixture reaches
the critical value �T=Tcr=35 °C at time t= tcr=3.3 s�, R�1�

decreases very rapidly. However, at the start of spinodal de-
composition, the actual characteristic length is still small
compared to the disturbances and therefore R�1� shows a de-
lay and a decreasing behavior that has been previously
reported also in numerical simulations �16�. Eventually, at
t*�3.6 s, R�1� begins to capture the actual domain size, and
from then on it increases linearly with time, until the sedi-
mentation crossover Lg is reached, and domains start sedi-
menting, or floating, under the effect of gravity, and the char-
acteristic length R�1� becomes meaningless due to strong
anisotropy of the process thereafter.

The characteristic length can be fitted through the linear
relation R�1��t�=vgr�t− t*�, showing that the process is domi-

TABLE II. Properties of the critical mixture at equilibrium at
15 °C �12�.

�� 10 kg/m3

	 10−3 N s/m2

� 10−2 N/m

a 10−7 m

D 5�10−10 m2/s

FIG. 7. Dimensionless structure factors as function of dimen-
sionless wavelength at four different times during the convection
driven stage for the critical mixture A �Table I�. The continuous line
represents the k−4 behavior typical of the Porod tail. The quenching

rate is Ṫlin=1.2 °C/s; the critical temperature Tcr=35 °C is crossed
at t=3.7 s.

FIG. 8. �Color online� The primary bicontinuous structure is
emphasized by hand-drawn interface contours; within the bicon-
tinuous structure, a secondary structure of smaller domains is
clearly observed only for critical mixture A �Table II�.
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nated by convection, with a growth rate that depends on the
cooling rate �i.e., the time derivative of the mixture tempera-
ture�, and not on the temperature itself. The linear growth
behavior of R�1� is well documented for shallow quenching
�i.e., for ��10−5�, but only limited evidence is available for
deep quenching �17�. It is also worth noting that while the
linear growth regime is predicted for isothermal phase tran-
sitions, in our case we find a similar behavior even though
during the process the temperature of the mixture keeps
changing. The growth rate depends on the mixture properties
as well as the quenching rate, as discussed in Sec. III B. Such
delay time t*− tcr is strongly sensitive to the initial and
boundary conditions, as already reported in Ref. �16�.

B. Effect of quenching rate on the growth rate

Thermal history may play an important role on the dy-
namics of phase separation. In this section, we investigate
the influence of the quenching rate on the growth rate during
the linear isotropic period of the phase separation. First, we
define the quenching rate as

Ṫlin = −
1

tend − t*�
t*

tend dT

dt
�t�dt , �6�

where T is the mean temperature measured by the thermo-
couples inserted in the mixture, while t* and tend represent the

beginning and the end of the linear isotropic period. In Fig.
10, the temperature of the mixture inside the cell is reported
as a function of time for a few experiments, together with the
beginning and the end of the linear isotropic period.

In Fig. 11, the growth rate of the single-phase domains

dR�1� /dt is shown as a function of the quenching rate Ṫlin. It
is an increasing function, with a slope at low quenching rates
of O�10 	m s−1/ �K s−1��, which is roughly of the same mag-
nitude as that obtained in previous experimental works
�12,18�.

Figure 11 reveals that increasing the quenching rate, vgr
increases until it reaches an asymptotic value of 37 	m/s,

which corresponds to an instantaneous quenching Ṫlin→�.
As shown in Table III, as the quenching rate increases, the
linear isotropic stage gets shorter, while the size of the do-
mains at the end of this stage increases. From this it appears
that the quenching rate can be used to manipulate the sepa-
ration process and obtain, for instance, domains of the de-
sired size. On the other hand, the separation process can be
sped up by increasing the quenching rate, with obvious im-
plications on the design of separation equipment.

In case of instantaneous quenching, applying the diffuse
interface model �see Appendix B� we can estimate the do-

TABLE III. Influence of the quenching rate Ṫlin on the growth
rate vgr, the duration of the linear growth period �t= tend− t*, and the
domain size at the end of the linear period Lend.

Ṫlin

°C/s
vgr

	m/s
�t
s

Lend

	m

6.9 30 0.8 90

5.8 28 0.97 81

4.1 24 1.2 77

2.4 18 1.5 65

1.7 12 2.1 55

0.5 2.5 3.1 40

0.1 1.2 3.7 36

FIG. 9. �Color online� Temporal evolution of the characteristic
domain size R�1��t� �Eq. �4�� for critical mixture A.

FIG. 10. �Color online� Temperature of the mixture inside the
cell as a function of time during the quenching of critical mixture
A. The marks on the curves correspond to the beginning and the
end of the time interval of linear isotropic growth.

FIG. 11. �Color online� Growth rate as function of the quench-
ing rate.
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main size growth rate dL /dt starting from the relation

dL

dt
= 2

J�

�
, �7�

which follows �4� both from the mass balance
d���L3 /6� /dt=J��L2 valid for spherical domains of diam-
eter L typical of off-critical mixtures, and from the balance
d���L2 /4� /dt=J��L valid for dendritic-arm domains of
width L. Here, J� is the antidiffusive flux that can be ap-
proximated as �10�

J� � �D�2��̂�1 − �̂� − 1� � � , �8�

where �̂ is the mean concentration across the interface thick-
ness, � is the Margules parameter �see Appendix B�, and D
is the molecular diffusivity. We may estimate �� as �� / l,
where l is the characteristic interface thickness l�a /��−2
�19� and a the van der Waals characteristic length of concen-
tration inhomogeneities, which is related to the surface free
energy by the expression �Appendix A� a�2MW� /3��
−2�3/2�RT. Considering that, near the critical composition,
����3��−2� /2 �Appendix A�, we obtain ����3/2��
−2� /a. From Eqs. �7� and �8�, it follows that the character-
istic domain size L grows in time according to the relation

dL

dt
� K

D

a
, K = �3/2�� − 2��4��̂�1 − �̂� − 2� . �9�

For values of �̂ around 0.5, we obtain K��3/2��−2�2, and
substituting the expression of a in terms of �, we may re-
write Eq. �9� in the form

dL

dt
� 12�3

�7/2D�RTcr

MW�
, �10�

where we consider that, near the critical point T�2Tcr /�
and �−2�2�, with �= �Tcr−T� /Tcr.

The data in Fig. 11 �Table III� are correlated by

vgr��1−exp�−Ṫlin / �4 K s−1��37 	m/s, and hence in the
limit of infinite quenching rate the growth rates appear to
saturate around 37 	m/s. Using this asymptotic value for
dL /dt
in Eq. �10�, a value �=�, and the values of �, �, D from
Table II, MW=22.6 kg/kmol, Tcr=308 K �mixture A� we ob-
tain �=2.035. This value yields the estimates a�0.01 	m
and l�0.05 	m in good agreement with the orders of mag-
nitude expected on the basis of previous work �10,19�. It also
yields T�2Tcr /�=29.7 °C, a value in good agreement with
the measured temperatures �Fig. 10�.

Equation �10� together with our observation that dL /dt
remains constant �Fig. 9� even though T changes �Fig. 10�
during this segregation regime, indicates that � scales as �7/2

and therefore a scales as �2. We conclude from the foregoing
estimates that the diffuse interface model captures much of
the physics involved and is simple enough to allow to under-
stand the influence of the different parameters.

C. The effect of viscosity on the growth rate

In this section we report preliminary experimental data on
the influence of viscosity on the phase separation of a deeply

quenched mixture. To obtain them, we modify the viscosity
of the mixture by adding CMC �up to 6% in weight� to B and
C off-critical mixtures. Now, CMC is soluble with water and
immiscible with the organic solvent; in addition, during the
phase separation of the B mixture, the water-rich phase con-
stitutes the discrete, droplike phase, while for the C mixture it
represents the continuous phase. Therefore, when CMC is
added to the B mixture, it increases the viscosity of the con-
tinuous phase, while when it is added to the C mixture, it
increases the viscosity of the discrete phase.

Viscosity influences the phase separation process by
changing both the growth rate of the domains and their set-
tling velocity. Naturally, viscosity is also important as it con-
tributes to determine the separation regime �diffusion- or
convection or diffusion driven�: here, however, we assume
that the process is always dominated by convection and we
look at the effect of viscosity within this regime.

First of all, we measure the isotropy index � and see that
the process remains isotropic, despite CMC being a long-
chained polymer. Then, we check that even at large viscosi-
ties the process is indeed still convection driven. Conse-
quently, we always identify a stage where the characteristic
length grows as t, and we measure the growth rate during
that stage.

Figures 12 and 13 indicate that the growth rate does not
change significantly when the viscosity of the continuous
and discrete phase, respectively, is increased up to 20 times
its original �waterlike� value. Furthermore, the self-similarity
of the dimensionless structure factor still holds, even for ex-
periments with different viscosity. This is in agreement with
the conclusion of Ref. �16�, where it is noted that the scaling
of the structure factor holds even for slightly different con-
ditions as long as the compared experiments are in the same
�convective or diffusion� regime. Therefore, we may con-
clude that both the growth rate and the general morphology
of the mixture result uninfluenced by addition of CMC, re-
gardless of whether it is added to the continuous or to the

FIG. 12. �Color online� Growth rate as function of the viscosity
of the continuous phase; the quenching rate is fixed at 0.5 °C/s.
Each symbol represents a set of experimental conditions �same fo-
cal plane, same illumination�.
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discrete phase. Thus, by changing the viscosity we cannot
control the separation rate during the convection-driven stage
before the gravitational crossover.

The independence of the growth rate on viscosity is in
agreement with the prediction of the diffuse interface model
�20�, since Eq. �10� shows that dL /dt is independent of vis-
cosity. However, this model is based on the hypothesis that
the two components of the mixture have the same viscosity,
which contrasts with our experimental conditions. In addi-
tion, when adding CMC to water, other properties, such as
mass diffusivity, may also change. Therefore, it is remark-
able that, despite all that, the diffuse interface model seems
able to predict, at least qualitatively, the behavior of the mix-
ture as it phase separates.

After the gravitational crossover, instead, as expected, vis-
cosity does influence the settling speed and, hence, the sepa-
ration time. In fact, it is well known that the sedimentation
velocity of a single droplet in an unbounded fluid is inversely
proportional to the viscosity of the continuous phase through
the Hadamard-Rybczynski equation �21�. Accordingly, we
measured the separation time for different values of the vis-
cosity of the continuous and of discrete phase, where by
separation time we denote the time needed to form a sharp
and stable interface. Results are presented in Fig. 14. As
expected, increasing the viscosity of the continuous phase, a
linear increase of the separation time is observed, as the
droplet settling velocity decreases, so that the separation in-
creases proportionally. On the contrary, changing the viscos-
ity of the discrete phase only, has no effects on the sedimen-
tation time.

IV. DISCUSSION AND CONCLUSION

In this paper, we discuss and analyze a set of new experi-
mental results on the deep quenching of liquid binary mix-
tures. We show that after a diffusion and viscosity controlled
initial delay, a convection driven stage follows, in which do-

mains grow linearly with time up to when gravitational ef-
fects take over. We also find structure factors that are self-
similar and, at large wavelength, approach the Porod tail.

When the mixture is deeply quenched, the quenching time
is often �at least in industrial-size equipment� comparable
with the characteristic separation time and, hence, quenching
cannot be assumed as instantaneous. By investigating the
effect of the quenching rate on the growth rate, we find that
the growth rate increases with increasing quenching rate, un-
til it approaches an asymptotic value, corresponding to in-
stantaneous quenching. In addition, although the convective
stage of the process gets shorter when the quenching rate
increases, the size of the single phase domains at the end of
this stage appears to increase. These effects may play an
important role in industrial applications, and call for an ex-
tension of the theoretical models in order to account for the
temperature history and cooling rate.

We also investigate the influence of viscosity on phase
separation. We find that, in agreement with the predictions of
the diffuse interface model, the growth rate of the single-
phase domains during the convective stage of phase separa-
tion does not depend on the viscosity, regardless of whether
we increase the viscosity of the continuous or of the discrete
phase. On the other hand, when gravitational effects become
relevant, the viscosity of the continuous phase is proportional
to the settling time, in agreement with well established
theory. These results are quite important because solvents
often have a low viscosity at the beginning of the process,
but then evolve �e.g., during polymerization processes� into
very viscous products.

We find that even when the quench is not instantaneous,
there is still a linear growth period as predicted by the H
model. It is also remarkable that as the cooling rate increases
the growth rate approaches the theoretical value. We are not
aware of any investigation about the influence of the cooling
rate on the linear growth period; in particular the results
presented here are obtained for deeply quenched mixtures

FIG. 13. �Color online� Growth rate as function of the viscosity
of the discrete phase; the quenching rate is fixed at 1.2 °C/s. Each
symbol represents a set of experimental conditions �same focal
plane, same illumination�.

FIG. 14. �Color online� Separation time tsep by gravity as func-
tion of the viscosity 	 of the continuous phase ��� and the discrete
phase ���.
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for which a detailed experimental characterization is still
missing.

The possibility to influence the growth rate has implica-
tions in many industrial problems as it can be used to pro-
duce domains with the desired size. In particular, viscosity
modifiers cannot be used effectively to change the separation
time as long as the process is in the convection regime.

APPENDIX A: THE GENERALIZED FREE
ENERGY OF BINARY MIXTURES

Let us consider a homogeneous �uniform� mixture of two
species A and B with molar fraction yA and yB, respectively,
temperature T and pressure p. The equilibrium state is such
that it minimizes the Gibbs molar energy of mixing �g0 de-
fined as

�g0 = g0 − �gAyA + gByB� , �A1�

where g0 denotes the free energy of the uniform mixture at
equilibrium, while gA and gB are the energies of the pure
species A and B at temperature T and pressure p, and sub-
script 0 indicates that the mixture is uniform. �g0 can be
seen as the sum of an ideal part ��gid� and an excess part
�gex�. The ideal part can be easily derived by molecular
theory �22�, obtaining

�gid = RT�yA ln yA + yB ln yB� , �A2�

where R is the gas constant. The excess part needs to be
modeled and, for symmetric mixtures, can be expressed
through the one-parameter Margules expression �23�

gex = RT�yAyB, �A3�

where � is the dimensionless Margules coefficient �function
of T and p�. In conclusion, denoting by yA=� and yB=1
−� the molar fractions of the two species, Eq. �A1� becomes
�Fig. 15�:

�g0 = RT�� ln � + �1 − ��ln�1 − ��� + RT���1 − �� .

�A4�

It can be easily seen that when ��2, the condition of insta-
bility �2�g0 /��2�0 is satisfied in a certain range of compo-
sition and the mixture phase separates. The compositions �1
and �2 of the two coexisting phases at equilibrium across
�but far from� a flat interface can be easily determined as a
function of � by minimizing the free energy, i.e., from
��g0 /��=0. Measuring the composition of the two coexist-
ing phases at different temperatures, one can easily plot the
coexistence �−T curve, and from that determine the Mar-
gules parameter � as a function of temperature T �at con-
stant pressure�. For nearly regular mixtures, in the neighbor-
hood of the critical composition ��cr�0.5�, we may use the
leading order approximations ��eq,0=�1−�2=�3/2��−2
and �=2Tcr /T.

Now, Eq. �A4� refers to stable equilibrium states in which
the composition of the mixture is uniform. To take into ac-
count the effects of spatial inhomogeneities, such as within
the interfacial region between two phases, following van der
Waals’ ideas �11�, Cahn and Hillard �24� defined the gener-
alized free energy g̃

g̃ = g0 −
1

2
RTa2��yA���yB� = g0 +

1

2
RTa2����2, �A5�

where a represents the typical length of spatial inhomogene-
ities. At equilibrium, and in the neighborhood of the critical
composition, this characteristic length can be estimated from
surface tension � measurements on flat interfaces �9,12,17�.
In fact, denoting by � the extra free energy stored in the unit
interfacial area, following van der Waals �11� we obtain

� �
�RT

MW
a2� ����2n̂ · dr , �A6�

where n̂ is the unit vector, normal to the interface, with
�=� at equilibrium. As a result, we obtain the estimate

� �
3

2
�� − 2�3/2�RTa

MW
, �A7�

where we take �����2dr����eq,0�2 / l.
With ��2.035 and the same data used to estimate Eq.

�10� we obtain a�0.01 	m.

APPENDIX B: THE GOVERNING EQUATIONS OF
MOTIONS FOR BINARY MIXTURES

The motion of an incompressible binary mixture com-
posed of two species A and B is described through the so-
called H model �5�, also known as diffuse interface model
�6,7�. The species A and B are assumed to have the same
density ���, viscosity �	�, and molecular weight �MW�. De-
noting by � the molar fraction of A, when inertia effects are
negligible, conservation of mass and momentum lead to the
following equations:

� · v = 0 �B1�

FIG. 15. �Color online� Gibbs free energy of binary mixtures as
a function of the composition.
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��

�t
+ v · �� = − � · J� �B2�

	�2v − �p = F�, �B3�

where 	 is the fluid viscosity, v is the averaged local fluid
velocity �or baricentric velocity �25��, J� is the antidiffusion
flux, and F� is a �nonequilibrium� capillary body force.
Equations �B1� and �B2� can be derived from the conserva-
tion of species together with the incompressibility condition,
while the antidiffusion flux J� can be determined through a
constitutive equation based on irreversible thermodynamics
�20�

J� = − ��1 − ��D � �̃ , �B4�

where D is the molecular diffusivity, while �̃=�A−�B
=�g̃ /�� represents the non-dimensional generalized chemi-
cal potential difference. Obviously, once the generalized free
energy is known �see Eq. �A5��, �̃ can be easily determined.

Equation �B3�, expressing the conservation of momen-
tum, has been derived mainly heuristically, although a more
rigorous derivation has been proposed by Antanovskii �26�
through entropy production maximization. Here, F� is a re-
versible body force that tends to minimize the energy stored
at the interface and, in fact, it represents the divergence of
the so-called Korteweg stresses �27�,

F� = −
�RT

MW
� � �̃ . �B5�

This nondissipative nonequilibrium force tends to drive the
fluid particles towards the direction in which the chemical
potential difference is decreasing, thus driving A-rich lumps
towards A-rich regions and therefore enhancing coalescence
among droplets.

Let us consider a mixture composed of single phase do-
mains of uniform, equilibrium concentration, separated by
sharp interfaces. At equilibrium, the integral of F� across an
interface must be equal to the surface force FA= n̂�p, where
�p is the pressure jump across the interface, which is related
to the surface tension � by Laplace’s law �p=��, where � is
the curvature, which for spherical domains of diameter L is
4 /L and for dendritic-arm domains 2/L �this is the case of a
critical mixture�. So, not only at equilibrium, we have

� F�n̂ · dr = n̂�� . �B6�

From this equation, as shown by Pismen �28�, we obtain
again the relation �A7� between � and a �with �=� at equi-
librium�, but we also obtain the estimate F��2� / lL, being
l�a /��−2 the typical thickness of the interface.

Now, the importance of convection relative to diffusion is
controlled by the Péclet number defined as the ratio between
convective and diffusive mass fluxes Pe=VL /D, where L is
the size of the single-phase domains, while V is a charac-
teristic velocity, which can be estimated from Eq. �B3� as
V�F�a2 /	. Combining this with F��2� / lL we obtain the
following estimate for the convective velocity:

V �
�

	

2a�� − 2

L
, �B7�

which for our typical values, �=2.035, a�0.01 	m, and
L�35 	m, yields V�1.1mm/s, which is the order of mag-
nitude of our observed velocities.

For the Péclet number, using Eq. �B7� we obtain

Pe =
VL

D
� 2�� − 2

�a

	D
� 2�2�

�a

	D
, �B8�

which leads to Pe�75 for the data just cited.
It should be pointed out that in most previous work, an-

other Péclet number Pea=V�a /D=�a /	D �based on another
typical velocity V��� /	� has been considered, which de-
rives naturally from the non-dimensionalization of the gov-
erning equations. The two definitions yield similar values for
�=� except for the 2��−2�2�2� factor which in our case
ranges between 0.23 and 0.46 �as �, during the linear growth
interval, ranges from 0.006 to 0.026�, while during the tem-
perature change from 33 to 27 °C of the linear growth inter-
val �Figs. 9 and 10� the Péclet number Pe ranges between 1.7
and 7600, while Pea between 7 and 16 700. Now, using Eqs.
�A7� into �B8� and the result in Eq. �10�, we further obtain
the relations

Pe �
12�RTcr�

2a2

	DMW
�

2MW�2

3	D�RTcr�
�

288�RTcrD�6

	MW�dL/dt�2 .

�B9�
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