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In this paper, we outline the main features of the nonlinear quantum evolution equa-
tion proposed by the present author. Such an equation may be used as a model of
reduced subsystem dynamics to complement various historical and contemporary efforts
to extend linear Markovian theories of dissipative phenomena and relaxation based on
master equations, Lindblad and Langevin equations, to the nonlinear and far nonequilib-
rium domain. It may also be used as the fundamental dynamical principle in theories that
attempt to unite mechanics and thermodynamics, such as the Hatsopoulos–Gyftopoulos
unified theory which motivated the original development of this well-behaved general
nonlinear equation for the evolution of the density operator capable of generating irre-
versible deterministic relaxation to thermodynamic equilibrium from any far nonequi-
librium state even for an isolated system.
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1. Introduction

Much work has appeared in recent years on the study of entropy-generating irre-
versible nonequilibrium dynamics. Limited discussions of previous work is
available,1–4 but no thorough critical review of the subject is available, although
it would be very helpful to provide proper acknowledgement of pioneering
work,6–11,a avoid “rediscoveries”5 and outline the different frameworks, motiva-
tions, approaches, and controversial and interpretational aspects.

To be sure, recent discussions2,5,12,b on possible fundamental tests of standard
unitary quantum mechanics, related to the existence of “spontaneous decoherence”
at the microscopic level, and on understanding and predicting decoherence in impor-
tant future applicationsc involving nanometric devices, fast switching times, clock
synchronization, superdense coding, quantum computation, teleportation, quantum

aAvailable upon email request to the author or at www.quantumthermodynamics.org.
bSee e.g. the references by Czachor et al . cited in Ref. 6 of Ref. 18.
cSee the references by Weinberg, Stern, Aharonov, Imry, Ekert, Holyst, Turski, Vidal, Werner,
Unruh, Wald, Bennett, Grigorescu, Miranowicz, Matsueda, and others cited in Ref. 7 of Ref. 18.
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cryptography, etc. show that the subject of irreversible nonequilibrium dynamics is
by no means settled.

2. General Class of Nonlinear Evolution Equations for
Non-Lindblad Dissipative Quantum Dynamics

Let H (dimH ≤ ∞) be the Hilbert space and H the Hamiltonian operator associated
with a system in standard quantum mechanics. We assume that the quantum states
are one-to-one with the linear hermitian operators ρ on H with Tr(ρ) = 1 and
ρ ≥ ρ2, and we assume a dynamical equation of the form13–19,a,d

dρ

dt
= ρ E(ρ, t) + E†(ρ, t) ρ , (1)

where E(ρ, t) is an operator-valued function of ρ and time that we may call the
“evolution” operator and in general is non-hermitian. Without loss of generality, we
write E = E+ + iE− where E+ = (E +E†)/2 and E− = (E −E†)/2i are hermitian
operators that, for convenience, we rename as ∆M(ρ, t)/2kBτ(ρ, t) and H(ρ, t)/�,
respectively, so that Eq. (1) takes the form18,19

dρ

dt
= − i

�
[H(ρ, t), ρ] +

1
2kBτ(ρ, t)

{∆M(ρ, t), ρ} , (2)

where [ · , · ] and { · , · } are the usual commutator and anticommutator, H(ρ, t)
may be assumed independent of ρ (but not necessarily independent of time t) and
identified with the Hamiltonian operator, � is the reduced Planck constant, kB the
Boltzmann constant; moreover, ∆M(ρ, t) is a hermitian operator-valued, possibly
nonlinear function of ρ and time which, together with the positive definite, possibly
nonlinear functional τ(ρ, t), describes the dissipative dynamics of the system, and
is such that Tr[ρ∆M(ρ, t)] = 0 as required to preserve ρ unit trace at all times.

The reason for considering a dynamical law of the form (2) is that the explicit
expression of ∆M(ρ, t) that generates steepest-entropy-ascent (maximal entropy
generation) conservative dynamics of an adiabatic system compatible with all ther-
modynamics requirements4 is known.13–19,a,d The steepest-entropy-ascent form of
the operator function ∆M(ρ) is defined in Sec. 3 in terms of the operator17–19

M(ρ, t) = S(ρ) − H(t)/θ(ρ, t) + µ(ρ, t) ·N/θ(ρ, t), where S(ρ) is the entropy oper-
ator (definition below), and the functionals θ(ρ, t) and µ(ρ, t) are defined in Sec. 3,
Eqs. (3)–(5). We call operator M(ρ, t) the generalized nonequilibrium Massieu-
function operator, because at thermodynamic equilibrium its mean value belongs
to the family of entropic characteristic functions introduced by Massieu,20 i.e.
〈M〉e = 〈S〉e − 〈H〉e/T + µ · 〈N〉e/T where 〈S〉e, 〈H〉e, 〈N〉e, T and µ are the
equilibrium entropy, energy, amounts of constituents, temperature and chemical
potentials, respectively.

dSee the references by the present author cited in Ref. 19 of Ref. 18.a
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We consider the space L(H) of linear operators on H equipped with the real
scalar product (F |G) = Tr(F †G + G†F )/2 = (G|F ), so that for any (time-
independent) hermitian F in L(H) the corresponding mean-value state functional
can be written as 〈F 〉 = Tr(ρF ) = Tr(

√
ρF

√
ρ) = (

√
ρ|√ρF ), and can be viewed

as a functional of
√

ρ, the square-root density operator, obtained from the spectral
expansion of ρ by substituting its eigenvalues with their positive square roots.

For the evolution equation to be well defined, the functional Tr(ρI) where I is
the identity on H must remain equal to unity at all times; therefore, d Tr(ρI)/dt =
2

(√
ρI

∣∣∣√ρE(ρ, t)
)

= 0, implies the condition
(√

ρ
∣∣√ρ∆M(ρ, t)

)
= 0.

For F and G hermitian in L(H), we introduce the following notation:
∆F = F − Tr(ρF )I, 〈∆F∆G〉 = (

√
ρ∆F |√ρ∆G) = Tr(ρ{∆F, ∆G})/2, ∆F =√〈∆F∆F 〉, 〈[F, G]/2i〉 = Tr(ρ[F, G])/2i = 〈[F, G]/2i〉∗ = −〈[G, F ]/2i〉. The rate

of change of the mean value of a time-independent observable F is dTr(ρF )/dt =
2

(√
ρF

∣∣√ρE(ρ, t)
)

= 2〈[F, H(t)]/2i〉/� + 〈∆F∆M(ρ, t)〉/kBτ from which we see
that not all operators F that commute with H(t) correspond to constants of the
motion, but only those for which 〈∆F∆M(ρ, t)〉 = 0, i.e. such that

√
ρ∆F is orthog-

onal to both i
√

ρ∆H(t) and
√

ρ∆M(ρ, t), in the sense of the scalar product defined
above. For an isolated system, conservation of the mean energy functional Tr(ρH(t))
requires an operator function ∆M(ρ, t) that maintains

√
ρ∆M(ρ, t) always orthog-

onal to
√

ρ∆H(t), so that 〈∆H∆M(ρ, t)〉 = 0 for every ρ.
We define the entropy operator S = −kBPρ>0 ln ρ, where Pρ>0 is the projec-

tion operator onto the range of ρ.e The entropy functional is 〈S〉 = Tr(ρS) =
−kBTr(ρ ln ρ) = −2kB

(√
ρ

∣∣√ρ ln
√

ρ
)

and its rate of change using Eq. (2) may be
written as dTr(ρS)/dt = 2

(√
ρS

∣∣√ρE(ρ, t)
)

= 〈∆S∆M(ρ, t)〉/kBτ(ρ, t). Interest-
ingly, the rate of entropy change, being proportional to the correlation coefficient
between entropy measurements and M measurements, under the assumptions made
so far, may be positive or negative, depending on how M is defined, i.e. depending
on the specifics of the physical model in which Eq. (2) is adopted.

3. Conservative Steepest-Entropy-Ascent Dynamics
for an Isolated System

We now further assume the explicit form of ∆M(ρ) that yields steepest-entropy-
ascent, conservative dissipative dynamics13,17–19

∆M(ρ, t) = ∆S − ∆H(t)/θ(ρ, t) + µ(ρ, t) · ∆N/θ(ρ, t) , (3)

where S is the entropy operator defined above, H(t) is the Hamiltonian, N =
{N1, . . . , Nr} a (possibly empty) set of operators commuting with H , that we call
non-Hamiltonian generators of the motion (for example, the number-of-particles

eOperator S, first introduced in Refs. 13, 14 and by the present author cited in Ref. 19 of Ref. 18,
is always well defined for any ρ ≥ ρ2. It is the null operator when ρ2 = ρ. In general,

√
ρS =

−kB
√

ρ ln ρ.
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operators or a subset of them, or the momentum component operators for a free
particle), such that operators

√
ρ∆H(t) and

√
ρ∆N are linearly independent, θ(ρ, t)

and µ(ρ, t) = {µ1(ρ, t), . . . , µr(ρ, t)} a set of real functionals defined for each ρ by
the solution of the following system of linear equations:

〈∆S∆H〉 θ +
∑

i

〈∆Ni∆H〉µi = 〈∆H∆H〉 , (4)

〈∆S∆Nj〉 θ +
∑

i

〈∆Ni∆Nj〉µi = 〈∆H∆Nj〉 , (5)

which warrant the conditions that 〈∆H∆M〉 = 0 and 〈∆Nj∆M〉 = 0, and hence
that the mean values Tr(ρH) and Tr(ρN) are maintained time invariant by the
dissipative term of the equation of the motion. For explicit expressions of θ(ρ) and
µi(ρ) see Refs. 14 and 17.

Operators
√

ρ∆M and
√

ρ∆H ′ =
√

ρ[∆H −µ(ρ, t) ·∆N] are always orthogonal
to each other, in the sense that 〈∆M∆H ′〉 = 0 for every ρ. It follows that, in general,
θ = 〈∆H ′∆H ′〉/〈∆S∆H ′〉, 〈∆S∆M〉= 〈∆M∆M〉= 〈∆S∆S〉 − 〈∆H ′∆H ′〉/θ2 ≥ 0,
and hence the rate of entropy generation is always strictly positive except for
〈∆M∆M〉 = 0 (which occurs if and only if

√
ρ∆M = 0), i.e. for

√
ρnd∆Snd =

(
√

ρnd∆H(t) − µnd · √ρnd∆N)/θnd, for some real scalars θnd and µnd. The non-
dissipative density operators take the form

ρnd =
B(t) exp[−(H(t) − µnd · N)/kBθnd]B(t)
TrB(t) exp[−(H(t) − µnd ·N)/kBθnd]

, (6)

where B(t) is a projection operator on H (B2 = B) evolving unitarily according to
dB/dt = −i[H(t), B]/�.

The functional θ(ρ) may be interpreted in this framework as a natural gener-
alization to nonequilibrium of the temperature, at least insofar as for t → +∞,
while the state operator ρ(t) approaches a non-dissipative operator of form (6),
θ(t) approaches smoothly the corresponding thermodynamic equilibrium (or par-
tial equilibrium) temperature θnd.

Because here H(t) always commutes with M(ρ, t),
√

ρ∆M(ρ, t) is always orthog-
onal to i

√
ρ∆H(t). This reflects the fact that on the entropy surface the direction

of steepest entropy ascent is orthogonal to the (constant entropy) orbits that char-
acterize purely Hamiltonian (unitary) motion (in which the entropy is maintained
constant by keeping invariant each eigenvalue of ρ).

As shown in references by the present author cited in Ref. 19 of Ref. 18a, the
dissipative dynamics generated by Eq. (2) with a time-independent Hamiltonian H

and ∆M(ρ) as just defined: (i) maintains ρ(t) ≥ ρ2(t) at all times, both forward
and backward in time for any initial density operator ρ(0) (see also Refs. 5 and 17);
(ii) maintains the cardinality of ρ(t) invariant; (iii) entails that the entropy func-
tional is an S-function in the sense defined in Ref. 21 and therefore that maximal
entropy density operators obtained from (6) with B = I are the only equilibrium
states of the dynamics that are stable with respect to perturbations that do not alter
the mean values of the energy and the other time invariants (if any): this theorem of
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the dynamics coincides with the well-known Hatsopoulos-Keenan general statement
of the second law of thermodynamics8,22; (iv) entails Onsager reciprocity in the
sense defined in Ref. 16; (v) can be derived from a variational principle,5,17 equiv-
alent to our steepest entropy ascent geometrical construction,19,d by maximizing
the entropy generation rate subject to the Tr(ρ), Tr(ρH), and Tr(ρN) conservation
constraints and the additional constraint (

√
ρE|√ρE) = c(ρ).17,19

We finally note that assuming in Eq. (2), in addition to ∆M(ρ) given by (3)–(5),
the nonlinear relaxation time τ(ρ) given by17,19 τ(ρ) = �∆M/2kB∆H , we obtain
the most dissipative (maximal entropy generation rate17) dynamics in which the
entropic characteristic time19 τS = ∆S/|d〈S〉/dt| is always compatible with the
time-energy uncertainty relation τS∆H ≥ �/2 and the rate of entropy generation is
always given by 2∆M∆H/�.

The usefulness and physical meaning of the proposed nonlinear model equation
is worth further investigations and experimental validation in specific far nonequi-
librium contexts in which linear models of Lindblad form are insufficient. One
such context may be the currently debated so-called “fluctuation theorems”23–26

whereby fluctuations and, hence, uncertainties are measured on a microscopic sys-
tem (optically trapped colloidal particle,27,28 electrical resistor29) driven at steady
state (off thermodynamic equilibrium) by means of a work interaction, while a
heat interaction (with a bath) removes the entropy being generated by irreversibil-
ity. Another such context may be that of pion-nucleus scattering, where available
experimental data have recently allowed partial validation30 of “entropic” uncer-
tainty relations.31–33 Yet another is within the model we propose in Ref. 18 for the
description of the irreversible time evolution of a perturbed, isolated, physical sys-
tem during relaxation toward thermodynamic equilibrium by spontaneous internal
rearrangement of the occupation probabilities, rather than by interactions with a
thermal bath.

4. MIT School Unified Theory of Mechanics and Thermodynamics

Thanks to impressive technological advances during the last decades in the manip-
ulation of smaller and smaller systems, down to the single atom scale, the laws of
thermodynamics, that fifty years ago were invariably understood as pertaining only
to macroscopic phenomena have gradually earned a central role also in studies of
mesoscopic phenomena first, and more recently even microscopic phenomena. A new
important convergence seems to be emerging around the idea that physical entropy
may be a microscopic quantity and that irreversibility should be incorporated in the
microscopic description. The differences of interpretation and the various schools
of thought still make this subject very controversial. But there is no doubt that
credit for this fundamental ansatz, as well as for including it in a coherent and
complete new quantum theory that goes beyond quantum mechanics without con-
tradicting it, by incorporating equilibrium and nonequilibrium thermodynamics,
must be given to the pioneering contributions of the MIT school.3,8,14,15,34,a,d
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The fundamental observation of this school is that the postulates of quan-
tum mechanics should be supplemented with the principles of thermodynamics
by assuming a state domain broader than that of the pure states assumed in
standard QM. It has been first proposed by Hatsopoulos and Gyftopoulos8 on
physical and theoretical reasoning only,35,36 that in addition to the pure states of
standard QM there are states (true states, not heterogeneous preparations13) that
need to be represented by nonidempotent density operators ρ2 �= ρ. The entropy
functional −kBTrρ ln ρ is a measure of the nonidempotence of these states, and
emerges from the theory as an intrinsic property of matter, the physical entropy
of thermodynamics,37 that can be assigned to each and every individual member
system of an homogeneous ensemble. The present author added13 an equation of
motion to complete this theory with a dynamical law that extends the Schrödinger
equation to the domain of nonidempotent density operators.

Thirty years ago, the hypothesis of a state domain augmented with respect to
that of traditional QM was perceived as adventurous38,a and countercurrent to the
prevailing understanding of dissipative quantum dynamics within the frameworks
of statistical, stochastic, phenomenological, information-theoretic, chaotic-behavior
and bifurcation theories.

The recent advances and the impressive effort devoted to study nonlinear mod-
ifications of the standard Schrödinger equation in the last twenty years, finally
seem to make more acceptable,5 if not require, the ρ2 �= ρ augmented state domain
Hatsopoulos–Gyftopoulos (HG) ansatz.39

Once the ρ2 �= ρ ansatz is accepted, the nonlinear equation of motion we pro-
posed completes the dynamics and holds the promise to provide a microscopic-level
explanation of the recent experimental evidence of spontaneous losses of quantum
coherence. It is with this motivation that Gheorghiu-Svirschevski2,5 has “rediscov-
ered” our equation of motion. However, in Ref. 5, the question of defining the form
of the relaxation-time functional is left unresolved, together with the nontrivial
problem to extend the nonlinear dynamics to composites of possibly interacting
and entangled subsystems, that we address in Refs. 15 and 17.a
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