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Abstract

A rigorous and general logical scheme is presented, which provides an operative non-statistical definition of entropy
valid also in the nonequilibrium domain and free of the usual conceptual loops and unnecessary assumptions that
restrict the traditional definition of entropy to the equilibrium domain. The scheme is based on carefully worded
operative definitions for all the fundamental concepts employed, including those of system, state of a system, isolated
system, separable system, systems uncorrelated form each other, environment of a system, process and reversible
process. The treatment considers also systems with movable internal walls and/or semipermeable walls, with chemical
reactions and and/or external force fields, and with small numbers of particles. The definition of entropy involves
neither the concept of heat nor that of quasistatic process; it applies to both equilibrium and nonequilibrium states.
Simple and rigorous proofs of the additivity of entropy and of the principle of entropy nondecrease complete the
logical framework.

Keywords: Definition of entropy, Second Law, foundations of Thermodynamics.

1. Introduction
As is well known, classical thermodynamics was devel-

oped during the 19th century, due to the pioneering contri-
butions by Carnot, Mayer, Joule, Kelvin, Clausius, Maxwell
and Gibbs. In 1897, Planck (Planck 1927) stated the Sec-
ond Law in the form that is still used in most textbooks and
is called Kelvin-Planck’s statement of the Second Law: it is
impossible to construct an engine which, working in a cy-
cle, produces no effect except the raising of a weight and
the cooling of a heat reservoir. In 1908, Poincaré (Poincaré,
1908) presented a complete structure of classical thermody-
namics. The basic approach of Poincaré thermodynamics
is still used in several university textbooks, with very small
changes. In this approach, the First Law is stated as follows:
in a cycle, the work done by a system is proportional to the
heat received by the system. In symbols, for a cycle

Q = JW , (1)

where J is a universal constant which depends only on the
system of units. From Eq. (1) it is easily deduced that, in
a process of a system A from the initial state A1 to the final
state A2, the quantity JQ−W depends only on the states A1
and A2. Then, one defines the energy difference between A2
and A1 as the value of JQ−W for A in the process, i.e.,

EA
2 −EA

1 = (JQ−W )A
12 . (2)

Clearly, Eq. (2) is vitiated by a logical circularity, because
it is impossible to define heat without a previous definition
of energy. The circularity of Eq. (2) was understood and re-
solved in 1909 by Carathéodory (Carathéodory 1909), who
defined an adiabatic process without employing the concept
of heat and stated the First Law as follows: the work per-
formed by a system in any adiabatic process depends only on

the end states of the system. So, the first conceptual loop in
classical thermodynamics, namely the use of the concept of
heat in the definition of energy, was removed. Carathéodory
proposed also a new statement of the Second Law, (in terms
of adiabatic accessibility) which, however, is now used only
in a few axiomatic treatments.

In 1937 Fermi (Fermi 1937) presented a well-known
treatment of classical thermodynamics. In this treatment,
Carathéodory’s statement of the First Law is employed and
rigorous theorems are used to define the thermodynamic tem-
perature of a heat source and the entropy of a system. How-
ever, some unsatisfactory aspects still remain: the unneces-
sary concept of empirical temperature is used; the concepts
of heat and of heat source are not defined rigorously; a re-
versible process is defined as a sequence of stable equilib-
rium states, i.e., as a quasistatic process. Moreover, an in-
completeness is present in the definition of the thermody-
namic temperature of a heat source. Indeed, the definition is
based on a theorem, in which Fermi considers a reversible
cyclic engine which absorbs a quantity of heat Q2 from a
source at (empirical) temperature T2 and supplies a quantity
of heat Q1 to a source at (empirical) temperature T1. He states
that if the engine performs n cycles, the quantity of heat sub-
tracted from the first source is nQ2 and the quantity of heat
supplied to the second source is nQ1. Thus, Fermi assumes
implicitly that the quantity of heat exchanged in a cycle be-
tween a source and a reversible cyclic engine is independent
of the initial state of the source. This incompleteness in the
deductive scheme of thermodynamics is resolved only in the
treatment presented here.

A few decades after Fermi’s contribution, two schools
of thermodynamics produced relevant further developments.
On one hand, the Prigogine school (see, e.g., Prigogine,
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1961) studied the extension of the theory to nonequilibrium
states and developed the thermodynamics of irreversible pro-
cesses, pioneered in 1931 by Onsager (Onsager 1931). Re-
cent contributions to nonequilibrium thermodynamics are in-
numerable (see, for instance, Öttinger and Grmela, 1997,
Müller and Ruggeri, 1998, Jou, Casas Vázquez, and Lebon,
2001, Vilar and Rubi, 2001, Kjelstrup and Bedeaux, 2008).

On the other hand, the Keenan school deepened the con-
ceptual foundations of thermodynamics and strengthened the
bridge between quantum mechanics and thermodynamics.
Some improvements of the logical foundations of thermo-
dynamics due to the Keenan school are as follows. Hat-
sopoulos and Keenan (Hatsopoulos and Keenan, 1965) an-
alyzed deeply the meaning of the Kelvin-Planck statement
of the Second Law. They pointed out that, with the term
reservoir, Planck did not mean a system in either metastable
or unstable equilibrium, but a system in stable equilibrium;
otherwise, the statement of the Second Law would be false.
However, when a stable equilibrium state is defined rigor-
ously, the Kelvin-Planck statement becomes a corollary of
the definition. They called stable equilibrium a state from
which a finite change of state of the system cannot occur
without a corresponding finite permanent change of the state
of the environment; then, they proved a generalized form of
the Kelvin-Planck statement of the Second Law as a conse-
quence of the definitions of stable equilibrium state and of
normal system. Thus, they removed the second conceptual
loop in classical thermodynamics, i.e. the circularity in the
Kelvin-Planck statement.

Hatsopoulos and Keenan stated the Second Law as fol-
lows: A system having specified allowed states and an up-
per bound in volume can reach from any given state a stable
state and leave no net effect on the environment (Gyftopou-
los and Beretta, 2005, p.34, p.373). They also removed from
the logical framework of thermodynamics the use of the un-
necessary concept of empirical temperature. Indeed, they
showed that thermodynamic temperature can be defined di-
rectly, without a previous definition of empirical tempera-
ture. They also tried to remove the concept of heat from the
definition of entropy. Indeed, they presented the definition
of entropy in two ways: the first through the concept of heat
(which they defined rigorously); the second without the con-
cept of heat. The second definition, however, was incom-
plete, because according to it the entropy difference between
two states of a system could be measured only by means of a
standard thermal reservoir, chosen once and for all.

Gyftopoulos and Beretta (Gyftopoulos and Beretta, 2005)
completed the definition of entropy outlined by Hatsopoulos
and Keenan. They presented a treatment of thermodynamics
in which the definition of entropy is not based on the con-
cepts of heat and of quasistatic process, so that the definition
applies, potentially, also to local nonequilibrium states. They
also broadened and made more rigorous the set of the basic
definitions on which the theory of thermodynamics is based.

The increasing interest in nonequilibrium thermodynam-
ics, as well as the recent scientific revival of thermodynam-
ics in quantum theory (quantum heat engines (Scully 2001
and 2002), quantum Maxwell demons (see, e.g., Lloyd, 1989,
1997 and Giovannetti et al. 2003), quantum erasers (Scully
et al., 1982, Kim et al., 2000), etc.) and the recent quest
for quantum mechanical explanations of irreversibility (see,
e.g., Goldstein et al., 2006, Bennett 2008, Lloyd 2008, Mac-
cone 2009), suggest the need for further improvements of

the treatment presented in (Gyftopoulos and Beretta, 2005),
in order to obtain a rigorous and general treatment of the
foundations of thermodynamics which, by the simplest pos-
sible conceptual scheme, extends the definition of entropy
to the nonequilibrium domains and, being compatible with
the quantum formalism, is suitable for unambiguous funda-
mental discussions on Second Law implications, even in the
framework of quantum theory.

In the present paper, Ref. (Gyftopoulos and Beretta, 2005)
is assumed as a starting point and two further objectives are
pursued. The basic definitions of system, state, isolated sys-
tem, separable system, environment of a system and process
are further deepened, by developing the logical scheme out-
lined in (Zanchini 1988 and 1992). The operative and general
definitions of these concepts as presented here are valid also
in the presence of internal semipermeable walls and reaction
mechanisms. Moreover, the treatment in (Gyftopoulos and
Beretta, 2005) is, on one hand, simplified by identifying the
minimal set of definitions, assumptions and theorems which
yield the definition of entropy and the principle of entropy
nondecrease in a more direct way. On the other hand, the def-
inition of a reversible process is given with reference to the
concept of scenario; the latter is the largest isolated system
whose subsystems are available for interaction, for the class
of processes under consideration. In this way, the operativ-
ity of the definition is improved and the treatment becomes
also more explicitly compatible with old (see, e.g., Beretta
et al., 1984, Hatsopoulos and Beretta, 2008) and recent (see,
e.g., Goldstein et al., 2006, Bennett 2008, Lloyd 2008, Mac-
cone 2009) interpretations of entropy and irreversibility in
the quantum theoretical framework.

Finally, we emphasize that the fast growing field of
nonequilibrium thermodynamics (see, for instance, Öttinger
and Grmela, 1997, Müller and Ruggeri, 1998, Jou, Casas
Vázquez, and Lebon, 2001, Vilar and Rubi, 2001, Kjelstrup
and Bedeaux, 2008) would rest on shaky grounds without an
operative definition of entropy valid also for nonequilibrium
states. Indeed, research advances in nonequilibrium thermo-
dynamics span from theory to applications in a variety of di-
verse fields, and seem to substantiate from many perspec-
tives the validity of a general principle of maximum entropy
production (for a recent review, see Martyushev et al., 2006)
wherein a clear understanding of the definition of entropy for
nonequilibrium states appears to be an obvious prerequisite.

2. Basic Definitions

Constituents, amounts of constituents. We call con-
stituents the material particles chosen to describe the matter
contained in any region of space R at a given instant of time
t. Examples of constituents are: atoms, molecules, ions, pro-
tons, neutrons, electrons. Constituents may combine and/or
transform into other constituents according to a set of model-
specific reaction mechanisms. We call amount of constituent
i in any region of space R, at a given instant of time t, the
number of particles of constituent i contained in R at time t.

Region of space which contains particles of the i-th con-
stituent. We will call region of space which contains parti-
cles of the i-th constituent a connected region Ri of physical
space (the three-dimensional Euclidean space) in which par-
ticles of the i-th constituent are contained. The boundary sur-
face of Ri may be a patchwork of walls, i.e., surfaces imper-
meable to particles of the i-th constituent, and ideal surfaces
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Figure 1. Collection of matter with two nonreactive con-
stituents and two internal semipermeable membranes: the
overlapping regions of space RA

1 and RA
2 are split, for clar-

ity.

(permeable to particles of the i-th constituent). The geometry
and the permeability features of the boundary surface of Ri
(walls, ideal surfaces) can vary in time, as well as the number
of particles contained in Ri.

Collection of matter. We call collection of matter, de-
noted by CA, a set of particles of one or more constituents
which is described by specifying the allowed reaction mech-
anisms between different constituents and, at any instant
of time t, the set of r connected regions of space, RRRA =
RA

1 , . . . , RA
i , . . . , RA

r , each of which contains nA
i particles of

a single kind of constituent. The regions of space RRRA can
vary in time and overlap. Two regions of space may contain
the same kind of constituent provided that they do not over-
lap. Thus, the i-th constituent could be identical with the j-th
constituent, provided that RA

i and RA
j are disjoint.

Comment. This method allows a simple general description
of the presence of internal walls and/or internal semiperme-
able membranes, i.e., surfaces which can be crossed only by
some kinds of constituents and not others. An example of the
method is illustrated in Figure 1: a collection of matter CA

with constituents O2 and N2, with a movable external wall
and with two movable internal membranes, permeable to O2
and to N2 respectively, is represented by two overlapping re-
gions of space, RA

1 and RA
2 , each bounded by a movable wall:

RA
1 contains O2, while RA

2 contains N2.
In the simplest case of a collection of matter without internal
partitions, the regions of space RRRA coincide at every instant
of time.

Composition. We call composition of a collection of matter
CA, at an instant of time t, the vector nA with r components
which specifies the number of particles contained at time t in
each region of space RA

i of CA.

Compatible compositions, set of compatible composi-
tions. We say that two compositions, n1A and n2A of a given
collection of matter CA are compatible if the change between
n1A and n2A or viceversa can take place as a consequence of
the allowed reaction mechanisms without matter exchange.
We will call set of compatible compositions for a collection
of matter CA the set of all the compositions of CA which are

compatible with a given one, n0A. We will denote a set of
compatible compositions by the symbol (n0A, νννA), where νννA

is the matrix of the stoichiometric coefficients.

External force field. Let us denote by F a force field given
by the superposition of the gravitational field G, the electric
field E and the magnetic field H. Let us denote by ΣA

t the
union of the regions of space RA

t in which the constituents of
CA are contained, at an instant of time t, which will also be
called region of space occupied by CA at time t. Let us denote
by ΣA the union of all the regions of space ΣA

t , i.e., the whole
region of space spanned by the matter and the walls of CA,
during the time evolution of CA.
We call external force field for CA at time t, denoted by FA

e,t ,
the spatial distribution of F which is measured at time t in ΣA

t
if all the constituents and the walls of CA are removed and
placed far away from ΣA

t . We call external force field for CA,
denoted by FA

e , the spatial and time distribution of F which
is measured in ΣA if all the constituents and the walls of CA

are removed and placed far away from ΣA.

Comment. We will assume, in the following, that every sta-
tionary (i.e., time independent) external force field is also
conservative (i.e., the work performed by the external force
field on any particle depends only on the end positions of the
particle); indeed, as far as we know, this property holds for
every superposition of a stationary gravitational, a stationary
electric and a stationary magnetic field in empty space.

System, properties of a system. We will call system A a
collection of matter CA defined by the initial composition
n0A, the stoichiometric coefficients νννA of the allowed reac-
tion mechanisms, and the possibly time-dependent specifica-
tion, over the entire time interval of interest, of:

• the geometrical variables and the nature of the boundary
surfaces that define the regions of space RRRA

t ,
• the rates ṅA←

t at which particles are transferred in or out
of the regions of space, and

• the external force field distribution FA
e,t for CA,

provided that the following conditions apply:

1. an ensemble of identically prepared replicas of CA can
be obtained at any instant of time t, according to a spec-
ified set of instructions or preparation scheme;

2. a set of measurement procedures, PA
1 , . . . ,PA

n , exists,
such that when each PA

i is applied on replicas of CA at
any given instant of time t, the arithmetic mean 〈PA

i 〉t
of the numerical outcomes of repeated applications of
PA

i is a value which is the same for every subensemble
of replicas of CA (the latter condition guarantees the so-
called statistical homogeneity of the ensemble); 〈PA

i 〉t is
called the value of PA

i for CA at time t;
3. the set of measurement procedures, PA

1 , . . . ,PA
n , is com-

plete in the sense that the set of values {〈PA
1 〉t ,. . . , 〈PA

n 〉t}
allows one to predict the value at time t of any other
measurement procedure satisfying condition 2.

Then, each measurement procedure satisfying conditions 2
and 3 is called a property of system A, and the set PA

1 , . . . ,PA
n

a complete set of properties of system A.

State of a system. Given a system A as just defined, we call
state of system A at time t, denoted by At , the set of the values
at time t of
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• all the properties of the system or, equivalently, of a
complete set of properties, {〈P1〉t , . . . ,〈Pn〉t},

• the amounts of constituents, nnnA
t ,

• the geometrical variables and the nature of the boundary
surfaces of the regions of space RRRA

t ,
• the rates ṅA←

t of particle transfer in or out of the regions
of space, and

• the external force field distribution in the region of space
ΣA

t occupied by A at time t, FA
e,t .

Closed system, open system. A system A is called a closed
system if, at every instant of time t, the boundary surface of
every region of space RA

it is a wall. Otherwise, A is called an
open system.

Comment. For a closed system, in each region of space RA
i ,

the number of particles of the i-th constituent can change
only as a consequence of allowed reaction mechanisms.

Composite system, subsystems. If systems A and B, de-
fined in the same time interval, are such that no region of
space RA

i overlaps with any region of space RB
j , we will

say that the system C whose regions of space of are RRRC =
RA

1 , . . . , RA
i , . . . , RA

rA
,RB

1 , . . . , RB
j , . . . , RB

rB
is the composite of

systems A and B, and that A and B are subsystems of C. Then,
we write C = AB and denote its state at time t by Ct = (AB)t .

Isolated system. We say that a closed system I is an isolated
system in the stationary external force field FI

e, or simply an
isolated system, if during the whole time evolution of I: (a)
only the particles of I are present in ΣA, and (b) the external
force field FI

e is stationary, i.e., time independent.
Comment 1. In simpler words, a system I is isolated if, at
every instant of time: no other material particle is present in
the whole region of space ΣI which will be crossed by sys-
tem I during its time evolution; if system I is removed, only a
stationary (vanishing or non-vanishing) force field is present
in ΣI .
Comment 2. If energy were already defined, we could state
our definition of isolated system in a very simple way: a sys-
tem is isolated if neither mass nor energy crosses its bound-
ary. However, since the definition of energy requires a pre-
vious definition of isolated system, we must provide here an
operative definition of isolated system which does not em-
ploy the concept of energy. Our method is as follows.
Consider a system I which, during its whole time evolution,
is surrounded by a region of space which contains no mate-
rial particle, and suppose that only a stationary and conser-
vative force field (vanishing or non-vanishing) is present in
this region of space. Then, system I cannot receive or give
out either mass or energy. In fact, photons are not present
outside the system, because photons are an unsteady electro-
magnetic field; moreover, the total work done by the external
force field on the particles of the system does not change the
total potential plus kinetic energy of the system (i.e., the sys-
tem Hamiltonian).

Separable closed systems. Consider a composite system
AB, with A and B closed subsystems. We say that systems
A and B are separable at time t if, at that instant:

• the force field external to A coincides (where defined)
with the force field external to AB, i.e., FA

e,t = FAB
e,t ;

• the force field external to B coincides (where defined)
with the force field external to AB, i.e. FB

e,t = FAB
e,t .

Comment. In simpler words, system A is separable from B
at time t, if at that instant the force field produced by B is
vanishing in the region of space occupied by A and viceversa.
During the subsequent time evolution of AB, A and B need
not remain separable at all times.

Systems uncorrelated from each other. Consider a com-
posite system AB such that at time t the states At and Bt of
the two subsystems fully determine the state (AB)t , i.e., the
values of all the properties of AB can be determined by local
measurements of properties of systems A and B. Then we
say that systems A and B are uncorrelated from each other at
time t, and we write the state of AB at time t as (AB)t = AtBt .

Environment of a system, scenario. If a system A is a sub-
system of an isolated system I = AB, we can choose AB as
the isolated system to be studied. Then, we call B the envi-
ronment of A, and we call AB the scenario under which A is
studied.

Comment. The chosen scenario AB contains as subsystems
all and only the systems that are allowed to interact with A;
all the remaining systems in the universe are considered as
not available for interaction.

Process, cycle. We call process for a system A from state A1
to state A2 in the scenario AB, denoted by (AB)1 → (AB)2,
the time evolution from (AB)1 to (AB)2 of the isolated system
AB which defines the scenario. We call cycle for a system A
a process whereby the final state A2 coincides with the initial
state A1.

Restriction, for brevity. In the following (for brevity) we
will consider only closed systems and only states of a closed
system A in which A is separable and uncorrelated from its
environment. Moreover, for a composite system AB, we will
consider only states such that the subsystems A and B are
separable and uncorrelated from each other.

Reversible process, reverse of a reversible process. A pro-
cess for A in the scenario AB, (AB)1 → (AB)2, is called a
reversible process if there exists a process (AB)2 → (AB)1
which restores the initial state of the isolated system AB.
The process (AB)2→ (AB)1 is called the reverse of process
(AB)1→ (AB)2.

Comment. A reversible process need not be slow. In the
general framework we are setting up, it is noteworthy that
nowhere we state nor we need the concept that a process to
be reversible needs to be slow in some sense.

Weight. We call weight a system M always separable and
uncorrelated from its environment, such that:

• M is closed, it has a single constituent, with fixed num-
ber of particles and mass m, contained in a single region
of space whose shape and volume are fixed;

• in any process, the difference between the initial and the
final state of M is determined uniquely by the change
in the position z of the center of mass of M, which can
move only along a straight line whose direction, k, co-
incides with that of a uniform and stationary external
gravitational force field Ge =−gk, where g is a constant
gravitational acceleration.

Weight process, work in a weight process. A process of a
system A is called a weight process, denoted by (A1→ A2)W ,
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Figure 2. Schematic illustration of a weight process for sys-
tem A.

if the only net effect external to A is the displacement of the
center of mass of a weight M between two positions z1 and
z2 (see sketch in Figure 2). We call work done by A in the
weight process and work received by A in the weight process,
respectively denoted by the symbols W A→

12 and W A←
12 , the op-

posite quantities

W A→
12 = mg(z2− z1) and W A←

12 = mg(z1− z2) . (3)

Equilibrium state of a closed system. A state At of a system
A, with environment B, is called an equilibrium state if:

• state At does not change with time;
• state At can be reproduced while A is an isolated system

in the external force field FA
e , which coincides with FAB

e .

Stable equilibrium state of a closed system. An equilib-
rium state of a closed system A is called a stable equilibrium
state if it cannot be modified in any process such that neither
the geometrical configuration of the walls which bound the
regions of space RRRA nor the state of the environment B of A
have net changes.

Comment. The definition can be paraphrased as follows. Let
Ase be a stable equilibrium state of A and let B be the en-
vironment of A. Suppose that a process (AseB1)→ (A2B2)
took place and that A2 is different from Ase. Then, no matter
what kind of interaction between system and environment
occurred: either B2 is different from B1, or the position of
some wall which bounds the matter of A, in state A2, is dif-
ferent from the position it had in state A1, or both.

3. Definition of Energy for a Closed System

First Law. Every pair of states (A1, A2) of a system A can
be interconnected by means of a weight process for A. The
works done by the system in any two weight processes be-
tween the same initial and final states are identical.

Definition of energy for a closed system. Proof that it is a
property. Let (A1, A2) be any pair of states of a system A.
We call energy difference between states A2 and A1 either the
work W A←

12 received by A in any weight process from A1 to
A2 or the work W A→

21 done by A in any weight process from
A2 to A1; in symbols:

EA
2 −EA

1 = W A←
12 or EA

2 −EA
1 = W A→

21 . (4)

The First Law guarantees that at least one of the weight pro-
cesses considered in Eq. (4) exists. Moreover, it yields the
following consequences:
(a) if both weight processes (A1 → A2)W and (A2 → A1)W

Ase 

W
A 

 > 0 

A2 

 2 

 1 

W
A!

 > 0 

Figure 3. Schematic illustration of the proof of Theorem 1.

exist, the two forms of Eq. (4) yield the same result (W A←
12 =

W A→
21 );

(b) the energy difference between two states A2 and A1 de-
pends only on the states A1 and A2;
(c) (additivity of energy differences) consider a pair of states
A1B1 and A2B2 of a composite system AB; then

EAB
2 −EAB

1 = EA
2 −EA

1 +EB
2 −EB

1 ; (5)

(d) (energy is a property) let A0 be a reference state of a sys-
tem A, to which we assign an arbitrarily chosen value of en-
ergy EA

0 ; the value of the energy of A in any other state A1 is
determined uniquely by either

EA
1 = EA

0 +W A←
01 or EA

1 = EA
0 +W A→

10 (6)

depending on whether state A1 can be interconnected to A0
by means of a weight process (A0 → A1)W or (A1 → A0)W ,
respectively. Of course, both relations apply when the inter-
connecting weight processes are possible in both directions.
Rigorous proofs of these consequences can be found in
(Gyftopoulos and Beretta, 2005) and (Zanchini, 1986).

4. Definition of Entropy for a Closed System

Assumption 1: restriction to normal systems. We call nor-
mal system any system A that, starting from every state, can
be changed to a nonequilibrium state with higher energy by
means of a weight process for A in which the regions of space
RRRA occupied by the constituents of A have no net changes.
From here on, we consider only normal systems.

Comment. In traditional treatments of thermodynamics,
Assumption 1 is not stated explicitly, but it is used, for
example when one states that any amount of work can be
transferred to a thermal reservoir by a stirrer.

Theorem 1. Impossibility of a PMM2. If a normal system
A is in a stable equilibrium state, it is impossible to lower
its energy by means of a weight process for A in which the
regions of space RRRA occupied by the constituents of A have
no net change.

Proof. (See sketch in Figure 3) Suppose that, starting from a
stable equilibrium state Ase of A, by means of a weight pro-
cess Π1 with positive work W A→ = W > 0, the energy of A
is lowered and the regions of space RRRA occupied by the con-
stituents of A have no net change. On account of Assumption
1, it would be possible to perform a weight process Π2 for A
in which the regions of space RRRA occupied by the constituents
of A have no net change, the weight M is restored to its initial
state so that the positive amount of energy W A← = W > 0 is
supplied back to A, and the final state of A is a nonequilib-
rium state, namely, a state clearly different from Ase. Thus,
the zero-work sequence of weight processes (Π1, Π2) would
violate the definition of stable equilibrium state.
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Second Law. Among all the states of a system A such that
the constituents of A are contained in a given set of regions of
space RRRA, there is a stable equilibrium state for every value
of the energy EA.

Lemma 1. Uniqueness of the stable equilibrium state.
There can be no pair of different stable equilibrium states
of a closed system A with identical regions of space RRRA and
the same value of the energy EA.

Proof. Since A is closed and in any stable equilibrium state
it is separable and uncorrelated from its environment, if two
such states existed, by the First Law and the definition of
energy they could be interconnected by means of a zero-work
weight process. So, at least one of them could be changed to
a different state with no external effect, and hence would not
satisfy the definition of stable equilibrium state.

Comment. Recall that for a closed system, the composition
nnnA belongs to the set of compatible compositions (n0A, νννA)
fixed once and for all by the definition of the system.

Lemma 2. Any stable equilibrium state Ase of a system A is
accessible via an irreversible zero-work weight process from
any other state A1 with the same regions of space RRRA and the
same value of the energy EA.

Proof. By the First Law and the definition of energy, Ase
and A1 can be interconnected by a zero-work weight pro-
cess for A. However, a zero-work weight process from Ase
to A1 would violate the definition of stable equilibrium state.
Therefore, the process must be in the direction from A1 to
Ase. The absence of a zero-work weight process in the op-
posite direction implies that any zero-work weight process
from A1 to Ase is irreversible.

Corollary 1. Any state in which a closed system A is sepa-
rable and uncorrelated from its environment can be changed
to a unique stable equilibrium state by means of a zero-work
weight process for A in which the regions of space RRRA have
no net change.

Proof. The thesis follows immediately from the Second Law,
Lemma 1 and Lemma 2.

Systems in mutual stable equilibrium. We say that two
systems A and B, each in a stable equilibrium state, are in
mutual stable equilibrium if the composite system AB is in a
stable equilibrium state.

Thermal reservoir. We call thermal reservoir a closed and
always separable system R with a single constituent, con-
tained in a fixed region of space, with a vanishing external
force field, with energy values restricted to a finite range in
which any pair of identical copies of the reservoir, R and Rd ,
is in mutual stable equilibrium when R and Rd are in stable
equilibrium states.

Comment. Every single-constituent system without internal
boundaries and applied external fields, and with a number of
particles of the order of one mole — so that the simple sys-
tem approximation as defined in (Gyftopoulos and Beretta,
2005, p.263) applies — when restricted to a fixed region of
space of appropriate volume and to the range of energy val-
ues corresponding to the so-called triple-point stable equilib-
rium states, is a thermal reservoir.
Indeed, for a system contained in a fixed region of space,
only when three different phases (such as, solid, liquid and
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Figure 4. Illustration of the proof of Theorem 2: standard
weight processes ΠARrev (reversible) and ΠAR; Rd is a dupli-
cate of R; see text.

vapor) are present, two stable equilibrium states with differ-
ent energy values have the same temperature (here not yet
defined), and thus fulfil the condition for the mutual stable
equilibrium of the system and a copy thereof.

Reference thermal reservoir. A thermal reservoir chosen
once and for all is called a reference thermal reservoir. To
fix ideas, we choose water as the constituent of our reference
thermal reservoir, i.e., sufficient amounts of ice, liquid water,
and water vapor at triple point conditions.

Standard weight process. Given a pair of states (A1,A2)
of a system A and a thermal reservoir R, we call standard
weight process for AR from A1 to A2 a weight process for the
composite system AR in which the end states of R are stable
equilibrium states. We denote by (A1R1 → A2R2)sw a stan-
dard weight process for AR from A1 to A2 and by (∆ER)sw

A1A2
the corresponding energy change of the thermal reservoir R.

Assumption 2. Every pair of states (A1, A2) of a system A
can be interconnected by a reversible standard weight pro-
cess for AR, where R is an arbitrarily chosen thermal reser-
voir.

Comment. Statements of the Second Law. The combina-
tion of Assumption 2 with the statement of the Second
Law and Lemma 1 given above, forms our re-statement
of the Gyftopoulos-Beretta statement of the Second Law
(Gyftopoulos and Beretta, 2005, p. 62-63), which, in turn,
is a restatement of that introduced by Hatsopoulos and
Keenan (Hatsopoulos and Keenan, 1965, p.34, p.373). The
motivation for the separation of the statement proposed
in (Gyftopoulos and Beretta, 2005) into three parts is as
follows: to extract from the postulate a part which can
be proved (Lemma 1); to separate logically independent
assumptions, i.e., assumptions such that a violation of
the first would not imply a violation of the second, and
vice-versa.

In addition to the Kelvin-Planck statement discussed
above, the well-known historical statements due to Clausius
and to Carathéodory unfold as rigorous theorems in our
logical scheme. Proofs can be found in (Gyftopoulos and
Beretta, 2005, p.64, p.121, p.133).

Theorem 2. For a given system A and a given reservoir
R, among all the standard weight processes for AR between
a given pair of states (A1, A2) of A, the energy change
(∆ER)sw

A1A2
of the thermal reservoir R has a lower bound

which is reached if and only if the process is reversible.

Proof. Let ΠAR denote a standard weight process for AR
from A1 to A2, and ΠARrev a reversible one; the energy
changes of R in processes ΠAR and ΠARrev are, respectively,
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Figure 5. Illustration of the proof of Theorem 3, part a): re-
versible standard weight processes ΠAR′ and ΠAR′′ , see text.

(∆ER)sw
A1A2

and (∆ER)swrev
A1A2

. With the help of Figure 4, we
will prove that, regardless of the initial state of R:
a) (∆ER)swrev

A1A2
≤ (∆ER)sw

A1A2
;

b) if also ΠAR is reversible, then (∆ER)swrev
A1A2

= (∆ER)sw
A1A2

;
c) if (∆ER)swrev

A1A2
= (∆ER)sw

A1A2
, then also ΠAR is reversible.

Proof of a). Let us denote by R1 and R2 the initial and the
final states of R in process ΠARrev. Let us denote by Rd the
duplicate of R which is employed in process ΠAR, and by Rd

3
and Rd

4 the initial and the final states of Rd in this process.
Let us suppose, ab absurdo, that (∆ER)swrev

A1A2
> (∆ER)sw

A1A2
.

Then, the sequence of processes (−ΠARrev, ΠAR) would be
a weight process for RRd in which, starting from the sta-
ble equilibrium state R2Rd

3 , the energy of RRd is lowered
and the regions of space occupied by the constituents of RRd

have no net changes, in contrast with Theorem 1. Therefore,
(∆ER)swrev

A1A2
≤ (∆ER)sw

A1A2
.

Proof of b). If ΠAR is reversible too, then, in addi-
tion to (∆ER)swrev

A1A2
≤ (∆ER)sw

A1A2
, the relation (∆ER)sw

A1A2
≤

(∆ER)swrev
A1A2

must hold too. Otherwise, the sequence of pro-
cesses (ΠARrev, −ΠAR) would be a weight process for RRd

in which, starting from the stable equilibrium state R1Rd
4 , the

energy of RRd is lowered and the regions of space occupied
by the constituents of RRd have no net changes, in contrast
with Theorem 1. Therefore, (∆ER)swrev

A1A2
= (∆ER)sw

A1A2
.

Proof of c). Let ΠAR be a standard weight process for AR,
from A1 to A2, such that (∆ER)sw

A1A2
= (∆ER)swrev

A1A2
, and let R1

be the initial state of R in this process. Let ΠARrev be a re-
versible standard weight process for AR, from A1 to A2, with
the same initial state R1 of R. Thus, Rd

3 coincides with R1
and Rd

4 coincides with R2. The sequence of processes (ΠAR,
−ΠARrev) is a cycle for the isolated system ARB, where B is
the environment of AR. As a consequence, ΠAR is reversible,
because it is a part of a cycle of the isolated system ARB.

Theorem 3. Let R′ and R′′ be any two thermal
reservoirs and consider the energy changes, (∆ER′)swrev

A1A2

and (∆ER′′)swrev
A1A2

respectively, in the reversible standard
weight processes ΠAR′ = (A1R′1 → A2R′2)

swrev and ΠAR′′ =
(A1R′′1 → A2R′′2)

swrev, where (A1, A2) is an arbitrarily cho-
sen pair of states of any system A. Then the ratio
(∆ER′)swrev

A1A2
/(∆ER′′)swrev

A1A2
:

a) is positive;
b) depends only on R′ and R′′, i.e., it is independent of (i) the
initial stable equilibrium states of R′ and R′′, (ii) the choice
of system A, and (iii) the choice of states A1 and A2.

Proof of a). With the help of Figure 5, let us suppose that
(∆ER′)swrev

A1A2
< 0. Then, (∆ER′′)swrev

A1A2
cannot be zero. In fact,

in that case the sequence of processes (ΠAR′ , −ΠAR′′ ), which
is a cycle for A, would be a weight process for R′ in which,

starting from the stable equilibrium state R′1, the energy of
R′ is lowered and the regions of space occupied by the con-
stituents of R′ have no net changes, in contrast with Theorem
1. Moreover, (∆ER′′)swrev

A1A2
cannot be positive. In fact, if it

were positive, the work done by R′R′′ as a result of the over-
all weight process (ΠAR′ , −ΠAR′′ ) for R′R′′ would be

W R′R′′→ =−(∆ER′)swrev
A1A2

+(∆ER′′)swrev
A1A2

, (7)

where both terms are positive. On account of Assumption
1 and Corollary 1, after the process (ΠAR′ , −ΠAR′′ ), one
could perform a weight process ΠR′′ for R′′ in which a posi-
tive amount of energy equal to (∆ER′′)swrev

A1A2
is given back to

R′′ and the latter is restored to its initial stable equilibrium
state. As a result, the sequence (ΠAR′ , −ΠAR′′ , ΠR′′) would
be a weight process for R′ in which, starting from the stable
equilibrium state R′1, the energy of R′ is lowered and the re-
gions of space occupied by the constituents of R′ have no net
changes, in contrast with Theorem 1. Therefore, the assump-
tion (∆ER′)swrev

A1A2
< 0 implies (∆ER′′)swrev

A1A2
< 0.

Let us suppose that (∆ER′)swrev
A1A2

> 0. Then, for process

−ΠAR′ one has (∆ER′)swrev
A2A1

< 0. By repeating the pre-
vious argument, one proves that for process −ΠAR′′ one
has (∆ER′′)swrev

A2A1
< 0. Therefore, for process ΠAR′′ one has

(∆ER′′)swrev
A1A2

> 0.

Proof of b). Given a pair of states (A1, A2) of a closed
system A, consider the reversible standard weight process
ΠAR′ = (A1R′1 → A2R′2)

swrev for AR′, with R′ initially in
state R′1, and the reversible standard weight process ΠAR′′ =
(A1R′′1 → A2R′′2)

swrev for AR′′, with R′′ initially in state R′′1 .
Moreover, given a pair of states (A′1, A′2) of another closed
system A′, consider the reversible standard weight process
ΠA′R′ = (A′1R′1 → A′2R′3)

swrev for A′R′, with R′ initially in
state R′1, and the reversible standard weight process ΠA′R′′ =
(A′1R′′1 → A′2R′′3)

swrev for A′R′′, with R′′ initially in state R′′1 .
With the help of Figure 6, we will prove that the changes in
energy of the reservoirs in these processes obey the relation

(∆ER′)swrev
A1A2

(∆ER′′)swrev
A1A2

=
(∆ER′)swrev

A′1A′2

(∆ER′′)swrev
A′1A′2

. (8)

Let us assume: (∆ER′)swrev
A1A2

> 0 and (∆ER′)swrev
A′1A′2

> 0, which

implies, on account of part a) of the proof, (∆ER′′)swrev
A1A2

> 0

and (∆ER′′)swrev
A′1A′2

> 0. This is not a restriction, because it is
possible to reverse the processes under consideration. Now,
as is well known, any real number can be approximated
with arbitrarily high accuracy by a rational number. There-
fore, we will assume that the energy changes (∆ER′)swrev

A1A2

and (∆ER′)swrev
A′1A′2

are rational numbers, so that whatever is the
value of their ratio, there exist two positive integers m and n
such that (∆ER′)swrev

A1A2
/(∆ER′)swrev

A′1A′2
= n/m, i.e.,

m (∆ER′)swrev
A1A2

= n (∆ER′)swrev
A′1A′2

. (9)

Therefore, as sketched in Figure 6, let us consider the se-
quences ΠA and Π′A defined as follows. ΠA is the follow-
ing sequence of weight processes for the composite system
AR′R′′: starting from the initial state R′1 of R′ and R′′2 of R′′,
system A is brought from A1 to A2 by a reversible standard
weight process for AR′, then from A2 to A1 by a reversible
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Figure 6. Illustration of the proof of Theorem 3, part b): sequence of processes (ΠA, ΠA′ ), see text.

standard weight process for AR′′; whatever the new states of
R′ and R′′ are, again system A is brought from A1 to A2 by a
reversible standard weight process for AR′ and back to A1 by
a reversible standard weight process for AR′′, until the cycle
for A is repeated m times. Similarly, ΠA′ is a sequence of
weight processes for the composite system A′R′R′′ whereby
starting from the end states of R′ and R′′ reached by sequence
ΠA, system A′ is brought from A′1 to A′2 by a reversible stan-
dard weight process for A′R′′, then from A′2 to A′1 by a re-
versible standard weight process for A′R′; and so on until the
cycle for A′ is repeated n times.
Clearly, the composite sequence (ΠA, ΠA

′) is a cycle for
AA′. Moreover, it is a cycle also for R′. In fact, on ac-
count of Theorem 2, the energy change of R′ in each pro-
cess ΠAR′ is equal to (∆ER′)swrev

A1A2
regardless of its initial state

and in each process −ΠA′R′ is equal to −(∆ER′)swrev
A′1A′2

. There-

fore, the energy change of R′ in the sequence (ΠA, Π′A) is
m (∆ER′)swrev

A1A2
−n (∆ER′)swrev

A′1A′2
and equals zero on account of

Eq. (9). As a result, after (ΠA, Π′A), reservoir R′ has been
restored to its initial state, so that (ΠA, Π′A) is a reversible
weight process for R′′.
Again on account of Theorem 2, the overall energy change of
R′′ in the sequence is−m (∆ER′′)swrev

A1A2
+n (∆ER′′)swrev

A′1A′2
. If this

quantity were negative, Theorem 1 would be violated. If this
quantity were positive, Theorem 1 would also be violated by
the reverse of the process, (−Π′A, −ΠA). Therefore, the only
possibility is that −m (∆ER′′)swrev

A1A2
+n (∆ER′′)swrev

A′1A′2
= 0, i.e.,

m (∆ER′′)swrev
A1A2

= n (∆ER′′)swrev
A′1A′2

. (10)

Finally, taking the ratio of Eqs. (9) and (10), we obtain Eq.
(8) which is our thesis.
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Figure 7. Schematic illustration of the processes used to de-
fine the temperature of a thermal reservoir.

Temperature of a thermal reservoir. (Figure 7) Let R be a
given thermal reservoir and Ro a reference thermal reservoir.
Select an arbitrary pair of states (A1, A2) of a system A and
consider the energy changes (∆ER)swrev

A1A2
and (∆ERo

)swrev
A1A2

in
two reversible standard weight processes from A1 to A2, one

for AR and the other for ARo, respectively. We call tempera-
ture of R the positive quantity

TR = TRo
(∆ER)swrev

A1A2

(∆ERo)swrev
A1A2

, (11)

where TRo is a positive constant associated arbitrarily with the
reference thermal reservoir Ro. Clearly, the temperature TR
of R is defined only up to the arbitrary multiplicative constant
TRo . If for Ro we select a thermal reservoir consisting of ice,
liquid water, and water vapor at triple-point conditions, and
we set TRo = 273.16 K, we obtain the Kelvin temperature
scale.

Corollary 2. The ratio of the temperatures of two thermal
reservoirs, R′ and R′′, is independent of the choice of the ref-
erence thermal reservoir and can be measured directly as

TR′

TR′′
=

(∆ER′)swrev
A1A2

(∆ER′′)swrev
A1A2

, (12)

where (∆ER′)swrev
A1A2

and (∆ER′′)swrev
A1A2

are the energy changes of
R′ and R′′ in two reversible standard weight processes, one
for AR′ and the other for AR′′, which interconnect the same
pair of states (A1, A2).

Proof. Let (∆ERo
)swrev

A1A2
be the energy change of the refer-

ence thermal reservoir Ro in any reversible standard weight
process for ARo which interconnects the same states (A1, A2)
of A. From Eq. (11) we have

TR ′ = TRo
(∆ER′)swrev

A1A2

(∆ERo)swrev
A1A2

, TR ′′ = TRo
(∆ER′′)swrev

A1A2

(∆ERo)swrev
A1A2

, (13)

so that the ratio TR ′/TR ′′ is given by Eq. (12).

Corollary 3. Let (A1, A2) be any pair of states of system A,
and let (∆ER)swrev

A1A2
be the energy change of a thermal reser-

voir R with temperature TR, in any reversible standard weight
process for AR from A1 to A2. Then, for the given system A,
the ratio (∆ER)swrev

A1A2
/TR depends only on the pair of states

(A1, A2), i.e., it is independent of the choice of reservoir R
and of its initial stable equilibrium state R1.

Proof. Let us consider two reversible standard weight pro-
cesses from A1 to A2, one for AR′ and the other for AR′′,
where R′ is a thermal reservoir with temperature TR′ and R′′

is a thermal reservoir with temperature TR′′ . Then, equation
(12) yields

(∆ER′)swrev
A1A2

TR′
=

(∆ER′′)swrev
A1A2

TR′′
. (14)
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Definition of (thermodynamic) entropy, proof that it is a
property. Let (A1 , A2) be any pair of states of a system A,
and let R be an arbitrarily chosen thermal reservoir placed in
the environment B of A. We call entropy difference between
A2 and A1 the quantity

SA
2 −SA

1 =−
(∆ER)swrev

A1A2

TR
(15)

where (∆ER)swrev
A1A2

is the energy change of R in any reversible
standard weight process for AR from A1 to A2, and TR is the
temperature of R. On account of Corollary 3, the right hand
side of Eq. (15) is determined uniquely by states A1 and A2.
Let A0 be a reference state of A, to which we assign an arbi-
trarily chosen value SA

0 of the entropy. Then, the value of the
entropy of A in any other state A1 of A is determined uniquely
by the equation

SA
1 = SA

0 −
(∆ER)swrev

A0A1

TR
, (16)

where (∆ER)swrev
A0A1

is the energy change of R in any reversible
standard weight process for AR from A0 to A1, and TR is the
temperature of R. Such a process exists for every state A1, on
account of Assumption 2. Therefore, entropy is a property of
A, defined for every state A1 of A.

Comment. In view of the growing revival of interest in the
field of nonequilibrium thermodynamics, it is worth em-
phasizing that one of the most important consequences of
the above definition — and of that proposed in 1991 in
(Gyftopoulos and Beretta, 2005), here improved — is that
entropy is well and rigorously defined also for nonequilib-
rium states.

Theorem 4. Additivity of entropy differences. Consider
the pair of states (C1 = A1B1,C2 = A2B2) of the composite
system C = AB. Then,

SAB
A2B2
−SAB

A1B1
= SA

2 −SA
1 +SB

2 −SB
1 . (17)

Proof. Let us choose a thermal reservoir R, with tempera-
ture TR, and consider the sequence (ΠAR, ΠBR) where ΠAR
is a reversible standard weight process for AR from A1 to
A2, while ΠBR is a reversible standard weight process for BR
from B1 to B2. The sequence (ΠAR, ΠBR) is a reversible
standard weight process for CR from C1 to C2, in which
the energy change of R is the sum of the energy changes in
the constituent processes ΠAR and ΠBR, i.e., (∆ER)swrev

C1C2
=

(∆ER)swrev
A1A2

+(∆ER)swrev
B1B2

. Therefore:

(∆ER)swrev
C1C2

TR
=

(∆ER)swrev
A1A2

TR
+

(∆ER)swrev
B1B2

TR
. (18)

Equation (18) and the definition of entropy (15) yield Eq.
(17).

Comment. As a consequence of Theorem 4, if the values of
entropy are chosen so that they are additive in the reference
states, entropy results as an additive property.

Theorem 5. Let (A1, A2) be any pair of states of a system A
and let R be a thermal reservoir with temperature TR. Let
ΠARirr be any irreversible standard weight process for AR
from A1 to A2 and let (∆ER)swirr

A1A2
be the energy change of

R in this process. Then

−
(∆ER)swirr

A1A2

TR
< SA

2 −SA
1 . (19)

Proof. Let ΠARrev be any reversible standard weight process
for AR from A1 to A2 and let (∆ER)swrev

A1A2
be the energy change

of R in this process. On account of Theorem 2,

(∆ER)swrev
A1A2

< (∆ER)swirr
A1A2

. (20)

Since TR is positive, from Eqs. (20) and (15) one obtains

−
(∆ER)swirr

A1A2

TR
<−

(∆ER)swrev
A1A2

TR
= SA

2 −SA
1 . (21)

Theorem 6. Principle of entropy nondecrease. Let
(A1,A2) be a pair of states of a system A and let (A1→ A2)W
be any weight process for A from A1 to A2. Then, the entropy
difference SA

2 − SA
1 is equal to zero if and only if the weight

process is reversible; it is strictly positive if and only if the
weight process is irreversible.

Proof. If (A1→ A2)W is reversible, then it is a special case of
a reversible standard weight process for AR in which the ini-
tial stable equilibrium state of R does not change. Therefore,
(∆ER)swrev

A1A2
= 0 and by applying the definition of entropy, Eq.

(15), one obtains

SA
2 −SA

1 =−
(∆ER)swrev

A1A2

TR
= 0 . (22)

If (A1 → A2)W is irreversible, then it is a special case of an
irreversible standard weight process for AR in which the ini-
tial stable equilibrium state of R does not change. Therefore,
(∆ER)swirr

A1A2
= 0 and Equation (19) yields

SA
2 −SA

1 >−
(∆ER)swirr

A1A2

TR
= 0 . (23)

Moreover, if a weight process (A1→ A2)W for A is such that
SA

2 −SA
1 = 0, then the process must be reversible, because we

just proved that for any irreversible weight process SA
2 −SA

1 >
0; if a weight process (A1 → A2)W for A is such that SA

2 −
SA

1 > 0, then the process must be irreversible, because we just
proved that for any reversible weight process SA

2 −SA
1 = 0.

5. Conclusions
A general definition of thermodynamic entropy has been

presented, based on operative definitions of all the concepts
employed in the treatment, designed to provide a clarify-
ing and useful, complete and coherent, minimal but general,
rigorous logical framework suitable for unambiguous funda-
mental discussions on Second Law implications.

Operative definitions of system, state, isolated system,
separable system, environment of a system, process and sys-
tem uncorrelated from its environment have been stated,
which are valid also in the presence of internal semiperme-
able walls, reaction mechanisms and external force fields.
The concepts of heat and of quasistatic process are never
mentioned, so that the treatment holds also for nonequilib-
rium states, both for macroscopic and few particles systems.

A definition of thermal reservoir less restrictive than in
previous treatments has been adopted: it is fulfilled by any
single-constituent simple system contained in a fixed region
of space, provided that the energy values are restricted to a
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suitable finite range. The proof that entropy is a property of
the system has been completed by a new explicit proof that
the entropy difference between two states of a system is in-
dependent of the initial state of the thermal reservoir chosen
to measure it.

The definition of a reversible process has been given with
reference to a given scenario, i.e., the largest isolated sys-
tem whose subsystems are available for interaction; thus, the
operativity of the definition is improved and the treatment
becomes also more explicitly compatible with old (see, e.g.,
Beretta et al., 1984, Hatsopoulos and Beretta, 2008) and re-
cent (see, e.g., Goldstein et al., 2006, Bennett 2008, Lloyd
2008, Maccone 2009) interpretations of irreversibility in the
quantum theoretical framework.
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