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Abstract. In the framework of the recent quest for well-behaved nonlinear extensions
of the traditional Schrödinger–von Neumann unitary dynamics that could provide
fundamental explanations of recent experimental evidence of loss of quantum coherence at
the microscopic level, a recent paper [Gheorghiu-Svirschevski 2001 Phys. Rev. A 63 054102]
reproposes the nonlinear equation of motion proposed by the present author [see Beretta
G P 1987 Found. Phys. 17 365 and references therein] for quantum (thermo)dynamics
of a single isolated indivisible constituent system, such as a single particle, qubit, qudit,
spin or atomic system, or a Bose-Einstein or Fermi-Dirac field. As already proved, such
nonlinear dynamics entails a fundamental unifying microscopic proof and extension of
Onsager’s reciprocity and Callen’s fluctuation–dissipation relations to all nonequilibrium
states, close and far from thermodynamic equilibrium. In this paper we propose a brief but
self-contained review of the main results already proved, including the explicit geometrical
construction of the equation of motion from the steepest-entropy-ascent ansatz and its exact
mathematical and conceptual equivalence with the maximal-entropy-generation variational-
principle formulation presented in Gheorghiu-Svirschevski S 2001 Phys. Rev. A 63 022105.
Moreover, we show how it can be extended to the case of a composite system to obtain
the general form of the equation of motion, consistent with the demanding requirements
of strong separability and of compatibility with general thermodynamics principles. The
irreversible term in the equation of motion describes the spontaneous attraction of the
state operator in the direction of steepest entropy ascent, thus implementing the maximum
entropy production principle in quantum theory. The time rate at which the path of
steepest entropy ascent is followed has so far been left unspecified. As a step towards the
identification of such rate, here we propose a possible, well-behaved and intriguing, general
closure of the dynamics, compatible with the nontrivial requirements of strong separability.
Based on the time–energy Heisenberg uncertainty relation, we derive a lower bound to
the internal-relaxation-time functionals that determine the rate of entropy generation.
This bound entails an upper bound to the rate of entropy generation. By this extreme
maximal-entropy-generation-rate ansatz, each indivisible subsystem follows the direction
of steepest locally perceived entropy ascent at the highest rate compatible with the time–
energy uncertainty principle.
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1. Introduction

Recent discussions [1, 2, 3] on possible fundamental tests of standard unitary quantum
mechanics, related to the existence of “spontaneous decoherence” at the microscopic level,
are relevant to understanding and predicting decoherence in important future applications
involving nanometric devices, fast switching times, clock synchronization, superdense coding,
quantum computation, teleportation, quantum cryptography, etc. where entanglement
structure and dynamics play a key role [4]. It has been suggested [1] that long-baseline
neutrino oscillation experiments may provide means of testing the existence of spontaneous
decoherence and, therefore, the validity of linear and nonlinear extensions of standard unitary
QM. In this paper, we restrict our attention to extensions of standard QM that assume a
“broader quantum kinematics”, i.e., an augmented set of true quantum states described by
state operators ρ without the restriction ρ2 = ρ, as recently reproposed in this context [3, 5]
and in other contexts [6].

To our knowledge, the first instance where this broader quantum kinematics has been
considered is in the pioneering work by Hatsopoulos and Gyftopoulos [7], where an extension
of standard QM was proposed so as to provide a non-statistical non-information-theoretic
microscopic unification of mechanics and thermodynamics, based on the (revolutionary [8])
ansatz that, for any system, even if strictly isolated and uncorrelated: (1) the “true” quantum
state (in the sense analogous to that of the wave function of standard quantum mechanics) is
represented by a state operator ρ — a unit-trace, nonnegative-definite, hermitian operator on
the Hilbert space H associated with the system according to standard QM — belonging to a
“broader quantum kinematics” that includes pure states (ρ2 = ρ) as well as non-idempotent
states (ρ2 6= ρ); and (2) the “physical” entropy (as opposed to a statistical or information-
theoretic entropy related to incoherent stochastic mixtures of true states) is represented by
the state functional −kBTr(ρ ln ρ). References [7, 9] give proofs that only this functional can
represent the physical entropy in such context.

The present author, in [10, 11, 12, 13, 14, 15, 16, 17, 18] (see also [5, 19, 20, 21]), addressed
the problem of deriving a well-behaved extension of the Schrödinger–von Neumann unitary
dynamics meeting the very demanding set of strict requirements that appear to be necessary
if one is willing to accept the Hatsopoulos–Gyftopoulos broader kinematics ansatz.

The equation of motion that we proposed and postulated in [10, 11] for the state operator
ρ is rederived in the present paper by means of a the explicit geometrical construction also
detailed in [12] that clarifies the steepest-entropy-ascent, i.e., maximum entropy production,
feature already recognized in [13, 14, 15, 16, 17, 18]. Here, several new interesting additional
features related to separability and correlations are proved. As a result, we also show how the
equivalent variational formulation in [3] can be extended to the composite system case.

The nonlinear extension of the Schrödinger–von Neumann equation of motion is derived,
together with a full discussion of the necessary notation and definitions, in section 3 for a
single indivisible system, and in sections 10 and 11 for a general system consisting of M
distinguishable indivisible subsystems. However, to support some preliminary and motivating
discussion, and to single it out from the many equations in the paper, we anticipate here the
display of the proposed equation of motion.

For a single indivisible system, the rate of change of the state operator is given by the
sum of the usual unitary Hamiltonian term and a nonlinear, entropy-generating term

dρ
dt

= − i
~

[H, ρ] + D̂1(ρ,H,Gi) , (1a)

D̂1(ρ,H,Gi) = − 1
2τ(ρ)

[√
ρD +D†

√
ρ
]
, (1b)

D = [
√
ρ(B ln ρ)]⊥L{√ρI,√ρH,[√ρGi]} , (1c)

where (details in section 3) [
√
ρ(B ln ρ)]⊥L{√ρRi} denotes the component of operator√

ρ(B ln ρ) orthogonal to the linear manifold L{√ρRi} = L{√ρI,√ρH, [√ρGi]} spanned
by all real linear combinations of the set of operators {√ρI,√ρH, [√ρGi]} where I is the
identity operator on the Hilbert space H of the system, B ln ρ the operator obtained from ρ
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by substituting in its spectral expansion each nonzero eigenvalue pi with ln pi, H the usual
Hamiltonian operator associated with the system in standard QM, the Gi’s are additional (not
always necessary) hermitian operators commuting with H that we call the non-Hamiltonian
generators of the motion and that depend on the structure of the system, such as the i-th-type
particle-number operators Ni for a Bose-Einstein or Fermi-Dirac field (in which case H is a
Fock space), or the total momentum component operators Pi of a free particle (in which case
Gheorghiu-Svirschevski [3] proved Galileian invariance).

The Hamiltonian term in the equation of motion, −i[H, ρ]/~, drives the state operator
towards a unitary isoentropic evolution. The entropy-generating but energy-conserving
nonunitary term D̂1(ρ,H,Gi), instead, drives the state operator towards the local direction of
steepest entropy ascent (which is orthogonal to the direction of unitary evolution) compatible
with mean values of the non-Hamiltonian time-invariants. Indeed, for a strictly isolated
system, both terms maintain independently invariant the values of the trace, Tr(ρI) = 1,
the energy, Tr(ρH) = e(ρ), and the mean values of each non-Hamiltonian generator,
Tr(ρGi) = gi(ρ), if any. In other words, the irreversible term pulls the state operator in
the direction of the projection of the gradient of the entropy functional −kBTr(ρ ln ρ) onto
the hyperplane of constant Tr(ρI), Tr(ρH), and Tr(ρGi)’s. Because the system is isolated,
the entropy ceases to increase only when a local entropy maximum is reached, i.e., either an
equilibrium state or a limit cycle.

For a general composite of indivisible subsystems, instead, the equation of motion takes
the following form. The rate of change of the state operator is given by the sum of the usual
unitary Hamiltonian term and a sum of nonlinear terms accounting for “irreversible internal
redistribution along the path of locally maximal entropy generation” within each indivisible
subsystem,

dρ
dt

= − i
~

[H, ρ] + D̂M (ρ,H,Gi) , (2a)

D̂M (ρ,H,Gi) = −
M∑
J=1

1
2τJ(ρ)

[√
ρJDJ+D†J

√
ρJ
]
⊗ρJ , (2b)

DJ = [
√
ρJ(B ln ρ)J ]⊥L{√ρJIJ ,

√
ρJ (H)J ,[

√
ρJ (Gi)J ]} . (2c)

where (F )J = TrJ [(IJ⊗ρJ)F ], for F = B ln ρ, H, and Gi, and the other details are defined
in sections 10 and 11 where we prove that all the necessary requirements (listed in Appendix
A) for a self-consistent and well-defined extension of the Schrödinger–von Neumann equation
of motion compatible with thermodynamic requirements are satisfied, together with a set of
very intriguing mathematical properties and consistent physical consequences.

In [16], we realized that the internal-relaxation times τJ(ρ) need not be constants (as
initially assumed in [11]) but can be positive functionals of ρ. In sections 10 and 11, we note
that these functionals must satisfy conditions of strong separability conceptually equivalent
to those discussed by Czachor [2].

In section 7, we derive a lower bound for τJ(ρ) which corresponds to the highest entropy
generation rate compatible with the time–energy Heisenberg uncertainty principle. Taking
the internal-relaxation times τJ(ρ) exactly equal to these nontrivial lower bounds turns out
to be compatible with the separability condition, and would complete the nonlinear dynamics
in a general way with no need to assume the existence of new physical constants. Not only,
then, the state would evolve along the path of steepest entropy ascent, but it would do so at
the highest rate compatible with the time–energy uncertainty princple. However, other less
extreme options are equally compatible.

We emphasize that the nonlinearity of the dynamics is such that one should not expect
that the form of the equation valid for a single elementary (indivisible) constituent of matter
be valid also for a system with an internal structure, because the equation of motion must
reflect such structure not only through the Hamiltonian operator. However, of course, the
superoperator D̂M reduces to D̂1 [see (108) below] when the system has only one indivisible
subsystem.
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To make the paper self-contained, in section 6 we briefly review the fundamental unifying
extensions to all nonequilibrium (dissipative) states of the Onsager reciprocity relations [22]
and Callen’s fluctuation-dissipation theorem [23] that derive from (1) [16] as well as, in general,
from (2) [18].

In Appendix A and Appendix B, we discuss a set of criteria and the definition of stability
of equilibrium that a fundamental dynamics must satisfy in order to be compatible with
second law and other thermodynamic requirements. In the other appendixes, we discuss some
extensions of the mathematics of (1) and (2).

2. The augmented state domain ansatz

The fundamental ansatz that the postulates of quantum mechanics can be successfully
supplemented by the first and second principles of thermodynamics by assuming a broader
state domain that includes not only ρ2 = ρ but also ρ2 6= ρ state operators, provided that
the functional −kBTr(ρ ln ρ) is taken for the physical entropy, was first proposed (without a
dynamical law) by Hatsopoulos and Gyftopoulos [7].

Thirty years ago, the hypothesis of a state domain augmented with respect to that
of traditional QM was perceived as adventurous [19] and countercurrent to the prevailing
approaches to dissipative quantum dynamics within the frameworks of statistical, stochastic,
phenomenological, information-theoretic, chaotic-behavior and bifurcation theories. For this
reason, the broader quantum kinematics ansatz [7] and, five years later, the new nonlinear
equation of motion have been considered initially as unphysical and substantially ignored
(except for a few exceptions [19, 20, 21]), mainly because their motivation appeared to be
derived from theoretical reasoning only (for example as recently summarized in [24]).

In search for direct experimental evidence, we derived explicit solutions for a two-
level system and computed the effects of the irreversible atomic relaxation implied by the
nonlinear equation of motion onto some basic quantum-electrodynamics results on absorption,
stimulated emission, and resonance fluorescence from a single two-level atom [14, 15]. The
results were obtained in the near-equilibrium linear limit and, of course, in terms of the yet
undetermined internal-relaxation-time functional τ(ρ) that is part of the equation of motion.
To our knowledge no one has yet attempted to verify these results experimentally and estimate
τ(ρ).

The recent experimental evidence of loss of quantum coherence [2, 4, 25, 26] and
the impressive effort devoted to study nonlinear modifications of the standard Schrödinger
equation in the last fourty years [27], finally seem to make more acceptable, if not require, the
ρ2 6= ρ augmented state domain Hatsopoulos–Gyftopoulos ansatz.

Once the ρ2 6= ρ ansatz is accepted, the nonlinear equation of motion we proposed
completes the dynamics and holds the promise to provide a microscopic-level explanation
of the recent experimental evidence of loss of quantum coherence. It is with this motivation
that Gheorghiu-Svirschevski [3] has “rediscovered” Eq. (1) together with many of its known
features. [3] contributes to confirm the mathematical validity of this equation, including
existence and uniqueness of solutions, and elegantly derives useful expansions and other results
in the near-equilibrium linear limit. However, also in [3] the question of defining the form of
the relaxation-time functional is left unresolved. A related development is also found in [28].

3. The steepest-entropy-ascent ansatz for an indivisible system

In [13, 16, 17], we emphasized that (1) and (2) have an important geometric interpretation.
The Hamiltonian term, −i[H, ρ]/~, and the irreversible term, D̂M (ρ,H,Gi) [or D̂1(ρ,H,Gi)],
compete with each other in the sense that the first drives the state operator towards a unitary
motion tangent to the local constant entropy surface, whereas the second drives it towards the
local direction of steepest entropy ascent along the surface with constant mean values of the
generators of the motion. In this section, we show more explicitly than in the original papers
how (1) can be constructed directly from the steepest-entropy-ascent ansatz.
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Let H (dimH ≤ ∞) be the Hilbert space and H the Hamiltonian operator that are
associated with the given (indivisible) elementary constituent system in standard QM. For
simplicity, we first consider a system composed of a single elementary constituent. The
nontrivial generalization to M constituents is given in section 10.

We assume that the (true) quantum states are one-to-one with the linear hermitian
operators ρ on H with Tr(ρ) = 1 and ρ ≥ 0. As done in [11], we introduce the square-root
state operator

√
ρ obtained from the spectral expansion of ρ by substituting its eigenvalues

with their positive square roots [30].
As a first step to force positivity and hermiticity of the state operator ρ we assume that

the equation of motion may be written as
dρ
dt

=
√
ρE + E†

√
ρ (3)

where the operator E, in general non-hermitian, is defined below after introducing some
necessary notation.

We consider the space L(H) of linear operators onH equipped with the real scalar product

(F |G) =
1
2

Tr(F †G+G†F ) . (4)

so that for any (time-independent) hermitian R in L(H) the corresponding mean-value state
functional, its local gradient operator with respect to

√
ρ, and its rate of change are

r(ρ) = Tr(ρR) = (
√
ρ|√ρR) , (5)

∇√ρ r(ρ) =
∂r(ρ)
∂
√
ρ

=
√
ρR+R

√
ρ , (6)

dr(ρ)
dt

= Tr(
dρ
dt
R) = 2 (E|√ρR) . (7)

Moreover, the entropy state functional, its gradient operator with respect to
√
ρ, and its

rate of change are

s(ρ) = −kBTr(ρ ln ρ) = −kB(
√
ρ|√ρ ln ρ) , (8)

∇√ρ s(ρ) =
∂s(ρ)
∂
√
ρ

= −2kB [
√
ρ+
√
ρ ln ρ] , (9)

ds(ρ)
dt

= −kB

[
Tr(

dρ
dt

) + Tr(
dρ
dt

ln ρ)
]

=
(
E

∣∣∣∣∂s(ρ)
∂
√
ρ

)
=
(
∂s(ρ)
∂
√
ρ

∣∣∣∣E) . (10)

Now it is easy to see from (7) that the values of the mean functionals ri(ρ) are time
invariant if and only if E is orthogonal to

√
ρRi, for all i, i.e., if it is orthogonal to the

linear manifold L{√ρRi} spanned by the set of operators {√ρRi} in which we always have√
ρR0 =

√
ρI (to preserve Trρ = 1) and

√
ρR1 =

√
ρH (to conserve energy), plus the additional

non-Hamiltonian generators of the motion as already discussed.
It is noteworthy that

EH =
i

~
√
ρ [H + c(ρ)I] , (11)

with c(ρ) any real functional of ρ, yields [through (3)] the Hamiltonian part of the equation
of motion, and is orthogonal to L{√ρRi} as well as to the entropy gradient ∂s(ρ)/∂

√
ρ.

Introducing the notation [16]

∆F = F − Tr(ρF )I , (12)

〈∆F∆G〉 = 〈∆G∆F 〉 = (
√
ρ∆F |√ρ∆G) =

1
2

Tr(ρ{∆F,∆G}) , (13)

for F and G hermitian in L(H) and {·, ·} the usual anticommutator, and defining the shortest
characteristic time associated with the Hamiltonian part of the equation of motion by the
relation (see Appendix C)

1
τH(ρ)2

= 4 (EH |EH) , (14)
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we find, from (11) and (
√
ρ|√ρ) = 1,

τH(ρ)2〈∆H∆H〉 = ~2/4− [c(ρ) + Tr(ρH)]2τH(ρ)2 , (15)

so that only the choice c = −e(ρ) = −Tr(ρH) is compatible with the Heisenberg time–
energy uncertainty relation τH(ρ)2〈∆H∆H〉 ≥ ~2/4 which is then satisfied with strict equality.
Therefore,

EH =
i

~
√
ρ∆H , (16)

and

τH(ρ)2〈∆H∆H〉 = ~2/4 . (17)

We may note that the foregoing discussion on the choice of c(ρ) is somewhat artificial
because any c(ρ) cancels out in (3). However, the line of thought becomes important when
we apply it later to the irreversible part of the dynamics.

For the general rate of change of the state operator, we let

E = EH + ED , (18)

so that (3) may be rewritten as

Dρ
Dt

=
dρ
dt

+
i

~
[H, ρ] =

√
ρED + E†D

√
ρ , (19)

and we assume ED orthogonal to L{√ρRi} but in the direction of the entropy gradient
operator. We cannot take ED directly proportional to ∂s(ρ)/∂

√
ρ as such, because the entropy

gradient in general has a component along L{√ρRi} which would not preserve the mean
values of the generators of the motion. We must take ED proportional to the component of
the entropy gradient orthogonal to L{√ρRi}, namely, for the indivisible system,

ED =
1

4kBτ(ρ)

[
∂s(ρ)
∂
√
ρ

]
⊥L{√ρRi}

(20a)

=
1

4kBτ(ρ)

(
∂s(ρ)
∂
√
ρ
−
[
∂s(ρ)
∂
√
ρ

]
L{√ρRi}

)
(20b)

= − 1
2τ(ρ)

(√
ρ ln ρ− [

√
ρ ln ρ]L{√ρRi}

)
(20c)

= − 1
2τ(ρ)

D (20d)

where [∂s(ρ)/∂
√
ρ]L{√ρRi} denotes the projection of ∂s(ρ)/∂

√
ρ onto L{√ρRi} and

D =
√
ρ ln ρ− [

√
ρ ln ρ]L{√ρRi} (21a)

= [
√
ρ ln ρ]⊥L{√ρRi} (21b)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

√
ρ ln ρ

√
ρR0 · · · √

ρRi · · ·

(√ρ ln ρ|√ρR0) (√ρR0|√ρR0) · · · (√ρRi|√ρR0) · · ·
...

...
. . .

...
. . .

(√ρ ln ρ|√ρRi) (√ρR0|√ρRi) · · · (√ρRi|√ρRi) · · ·
...

...
. . .

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Γ({√ρRi})

(21c)
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= − 1
kB

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

√
ρ∆S

√
ρ∆R1 · · · √ρ∆Ri · · ·

〈∆S∆R1〉 〈∆R1∆R1〉 · · · 〈∆Ri∆R1〉 · · ·
...

...
. . .

...
. . .

〈∆S∆Ri〉 〈∆R1∆Ri〉 · · · 〈∆Ri∆Ri〉 · · ·
...

...
. . .

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Γ({√ρRi})

(21d)

where in writing the last equation, which follows [29] from the well-known properties of
determinants together with (12) and (13) and the fact that R0 = I, we defined for convenience
the entropy operator

S = −kBB ln ρ = −kB ln(ρ+ I −B) (22a)

with B obtained from ρ by substituting in its spectral expansion each nonzero eigenvalue with
unity, i.e., more formally, B = B2 = PRan ρ = I − PKer ρ = P⊥Ker ρ, so that

B = B2 , [B, ρ] = 0 , Bρ = ρ . (22b)

Because operator B is the projector onto the range of ρ (and I − B the projector onto the
kernel of ρ) it is easy to show that S is well defined for any ρ, even if singular. In particular,
when ρ2 = ρ, S is the null operator.

The Gram determinant at the denominator,

Γ({√ρRi}) = det[{(√ρRi|
√
ρRj)}] (23a)

=

∣∣∣∣∣∣∣∣∣∣
(√ρR0|√ρR0) · · · (√ρRi|√ρR0) · · ·

...
. . .

...
. . .

(√ρR0|√ρRi) · · · (√ρRi|√ρRi) · · ·
...

. . .
...

. . .

∣∣∣∣∣∣∣∣∣∣
(23b)

= det[{〈∆Ri>0∆Rj>0〉}] (23c)

=

∣∣∣∣∣∣∣∣∣∣
〈∆R1∆R1〉 · · · 〈∆Ri∆R1〉 · · ·

...
. . .

...
. . .

〈∆R1∆Ri〉 · · · 〈∆Ri∆Ri〉 · · ·
...

. . .
...

. . .

∣∣∣∣∣∣∣∣∣∣
, (23d)

is always strictly positive by virtue of the linear independence of the operators in the set
{√ρRi}.

By the well-known properties of determininats, it is easy to verify that EH and ED
are orthogonal, i.e., (ED|EH) = 0, and that the mean value of each Ri is conserved, i.e.,
(ED|

√
ρRi) = 0, therefore, Tr(ρI), Tr(ρH), and the Tr(ρGi)’s are constants of the motion.

A further, compact expression can be written if we choose a set of operators {√ρAi}
which like the set {√ρRi} spans L{√ρI,√ρH, [√ρGi]} but, in addition, forms an orthonormal
set, e.g., obtained from

√
ρI,
√
ρH,

√
ρGi by a Gram-Schmidt orthogonalization procedure

followed by normalization. For example,

A1 = I , (24a)

A2 =
∆H√
〈∆H∆H〉

, (24b)

A3 =
〈∆H∆H〉∆G1 − 〈∆H∆G1〉∆H√

〈∆H∆H〉[〈∆H∆H〉〈∆G1∆G1〉 − 〈∆H∆G1〉2]
, (24c)

· · · .

Then,

(
√
ρAi|
√
ρAj) = δij , (25a)
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ai(ρ) = (
√
ρAi|
√
ρA1) = δi1 , (25b)

D =
√
ρ ln ρ−

a∑
i=1

(
√
ρ ln ρ|√ρAi)

√
ρAi , (25c)

Γ({√ρAi}) = 1 . (25d)

It is noteworthy that operators Ai are nonlinear functions of ρ and, therefore, in general, vary
with ρ as it evolves with time.

We finally obtain the following equivalent expressions for the rate of entropy change

ds(ρ)
dt

=
1

4kBτ(ρ)

([
∂s(ρ)
∂
√
ρ

]
⊥L{√ρRi}

∣∣∣∣∣
[
∂s(ρ)
∂
√
ρ

]
⊥L{√ρRi}

)
(26a)

= 4kBτ(ρ) (E |E ) (26b)
= 4kBτ(ρ) (ED |ED ) (26c)

=
1

kBτ(ρ)

[
〈∆S∆S〉 −

a∑
i=1

(〈∆S∆Ai〉)2

]
(26d)

=
kB

τ(ρ)
(D|D) (26e)

=
kB

τ(ρ)
Γ(
√
ρ ln ρ, {√ρRi})
Γ({√ρRi})

(26f)

=
1

kBτ(ρ)
Γ(
√
ρS, {√ρRi})

Γ({√ρRi})
(26g)

where the Gram determinant

Γ(
√
ρS, {√ρRi}) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(√ρS|√ρS ) (√ρR0|√ρS ) · · · (√ρRi|√ρS ) · · ·

(√ρS|√ρR0) (√ρR0|√ρR0) · · · (√ρRi|√ρR0) · · ·
...

...
. . .

...
. . .

(√ρS|√ρRi) (√ρR0|√ρRi) · · · (√ρRi|√ρRi) · · ·
...

...
. . .

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈∆S∆S〉 〈∆R1∆S〉 · · · 〈∆Ri∆S〉 · · ·

〈∆S∆R1〉 〈∆R1∆R1〉 · · · 〈∆Ri∆R1〉 · · ·
...

...
. . .

...
. . .

〈∆S∆Ri〉 〈∆R1∆Ri〉 · · · 〈∆Ri∆Ri〉 · · ·
...

...
. . .

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(27)

is also strictly positive [except when ρ satisfies (28), see below].
Whereas the unitary Hamiltonian term in (1) maintains unchanged all the eigenvalues

of ρ, the irreversible term maintains zero the initially zero eigenvalues of ρ and, therefore,
conserves the cardinality of the set of zero eigenvalues, dim Ker(ρ) (for proofs see [3, 11]). In
other words, the equation of motion preserves the rank and nullity of ρ. If the isolated system
is prepared in a state that does not ’occupy’ the eigenvector |ψ`〉 of H (and the Gi’s), i.e., if
ρ(0)|ψ`〉 = 0 (so that |ψ`〉 is also an eigenvector of ρ corresponding to a zero eigenvalue), then
such energy eigenvector remains ’unoccupied’ at all times, i.e., ρ(t)|ψ`〉 = 0, the null space of
ρ is an invariant of the motion.

This condition preserves an important feature that in standard QM allows remarkable
model simplifications: the dynamics is fully equivalent to that of a model system with Hilbert
space H′ (a subspace of H) defined by the linear span of all the |ψ`〉’s such that ρ(t)|ψ`〉 6= 0
at some time t (and, hence, by our condition, at all times). The relevant operators X ′
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on H′ (ρ′, H ′, G′i, . . . ) are defined from the original X on H (ρ, H, Gi, . . . ) so that
〈αk|X ′|α`〉 = 〈αk|X|α`〉 with |αk〉 any basis of H′.

It is also consistent with recent experimental tests [31] that rule out, for pure states,
deviations from linear and unitary dynamics and confirm that initially unoccupied eigenstates
cannot spontaneously become occupied. This fundamental intrinsic feature of our extended
microscopic dynamics adds nontrivial experimental and conceptual difficulty to the problem
of designing a fundamental test of QM, but preserves within the extended theory the exact
validity of all the remarkable successes of QM.

4. Nondissipative states and limit cycles: the Schrödinger–von Neumann limit

Eq. (1) reduces to the Schrödinger–von Neumann equation of motion, i~ρ̇ = [H, ρ], when
ρ2 = ρ (thus entailing the usual unitary hamiltonian dynamics of standard QM), and also
when and only when

ρnd =
B exp(C)

Tr[B exp(C)]
, B2 = B , [B,C] = 0 , (28)

or, equivalently,
√
ρnd ln ρnd =

√
ρndC −

√
ρnd ln Tr[B exp(C)] , (29)

where

C = −βH +
∑
i

νiGi , (30)

in which case we say that the state is nondissipative, and the solution of the equation of motion
is

ρnd(t) = B(t) exp(C)/Tr[B(t) exp(C)] , (31a)
B(t) = U(t)B(0)U−1(t) , U(t) = exp(−itH/~) , (31b)

which includes the usual ρ2 = ρ Schrödinger dynamics when C is the null operator [β = νi = 0
in (28)] and, therefore, Tr(B) = 1.

Nondissipative states (28) have a thermal-like distribution (with positive or negative
temperatures) over a finite number, Tr(B), of “occupied” eigenvectors. Because entropy
cannot decrease and s(ρ) is an S-function [32], they are conditionally locally stable equilibrium
states or limit cycles. They constitute the “target” highest-entropy states compatible with
the mean values of the invariant functionals and the invariant null subspace of unoccupied
eigenvectors.

For an initial state ρ commuting with H, i.e., for [B(0), H] = 0, by interpreting the
entropy s(ρ) as a measure of how “well” the energy is distributed within the isolated system
among the available energy levels, the nonlinear dynamics describes a spontaneous internal
redistribution of the energy along the path of maximal entropy increase leading towards an
“optimally” distributed (highest entropy) state compatible with the condition of maintaining
unoccupied the initially unoccupied energy levels.

When [B(0), H] = 0 the nondissipative state is an equilibrium state [or stationary state,
if H = H(t)]. When [B(0), H] 6= 0, instead, the unitary evolution in (31) can be regarded
as a (constant entropy) limit cycle (or “ridge” as termed in [3]), which coincides with the
usual periodic solutions of the Schrödinger equation when B is a one-dimensional projector,
B = |ψ〉〈ψ| [Tr(B) = 1].

The equation of motion attracts the state operator towards such highest entropy state or
limit cycle by rearranging the nonzero eigenvalues of ρ along the direction of steepest entropy
ascent at a rate that depends on the value of internal-relaxation-time functional τ(ρ). A
minor perturbation of the state that changes an initially zero eigenvalue to an arbitrarily
small nonzero value would cause an irreversible departure of the state towards a different
equilibrium state or limit cycle. Hence, by the definition of stability according to Lyapunov,
as long as there are zero eigenvalues of ρ, i.e., unless B = I, all equilibrium states and limit
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cycles are unstable. Without this conclusion, we could not claim that the equation of motion
entails the second law of thermodynamics (see Appendix A and Appendix B, and [7, 11, 13, 32],
for further discussions of this important point). The question of whether the equation could
admit of metastable equilibrium states has not yet been investigated.

The Hamiltonian operator may be set to vary with time in order to model (adiabatic)
energy exchange with the surroundings. Then the unitary part of the equation of motion,
−i[H(t), ρ]/~, may model energy change, but not entanglement nor entropy exchange with
the surroundings. The irreversible term, instead, describes internal relaxation only and does
not contribute to energy change in any case.

5. Highest-entropy equilibrium states

The only globally stable equilibrium states of the dynamics generated by (1) are

ρe =
exp(C)

Tr exp(C)
=

exp(−βH +
∑
i νiGi)

Tr exp(−βH +
∑
i νiGi)

. (32)

The definition of global stability, which is stronger than Lyapunov or local stability and is
required by the second law [32, 33], is given and discussed in Appendix B. The proof was
discussed in [11, 14, 32].

For a system with generators of the motion I, H, Ni, (32) represents in general the grand
canonical thermodynamic equilibrium states. It reduces to the canonical equilibrium states if
Ni = ñiI for all i’s (to the microcanonical if also H = ẽI).

As is well known, states given by (32) are solutions of the constrained maximization
problem

max s(ρ) subject to ri(ρ) = r̃i and ρ ≥ 0 , (33)

where s(ρ) = −kBTr(ρ ln ρ), r1(ρ) = Tr(ρI), r2(ρ) = Tr(ρH), ri(ρ) = Tr(ρGi), r̃1 = 1, r̃2 and
r̃i’s given.

The inequality constraint ρ ≥ 0 can be eliminated recasting the problem in terms of
√
ρ,

max s(
√
ρ) subject to ri(

√
ρ) = r̃i , (34)

where s(
√
ρ) = −kBTr[(

√
ρ)2 ln(

√
ρ)2] = s(ρ) and ri(

√
ρ) = Tr[(

√
ρ)2Ri] = ri(ρ). The method

of Lagrange multipliers then gives the condition (necessary but not sufficient)

∂s(ρ)
∂
√
ρ
−
∑
i

λi
∂ri(ρ)
∂
√
ρ

= 0 , (35)

which, using (6) and (9), becomes

−2kB

√
ρ ln ρ− 2kB

√
ρ−

∑
i

λi(
√
ρRi +Ri

√
ρ) = 0 . (36)

It is noteworthy that (36) is satisfied with obvious identification of multipliers by (29), where∑
i λi
√
ρRi commutes with

√
ρ ln ρ, i.e., with ρ. Therefore, each nondissipative state satisfies

the necessary condition (36) although it is not a solution of the maximization problem (34)
unless B = I.

6. Onsager’s reciprocity and Callen’s fluctuation-dissipation nonequilibrium
relations

First, we introduce a general representation of state operators particularly useful for
representing nonequilibrium states. Any ρ can be written as [16]

ρ =
B exp(−

∑
j fjXj/kB)

TrB exp(−
∑
j fjXj/kB)

, (37)
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where the hermitian operators in the set {I,Xj} span the real space Lh(H) of linear hermitian
operators on H, and B is the usual idempotent operator defined in (22b). Indeed, the operator
B ln ρ is always well-defined and belongs to Lh(H), so that

S = −kBB ln ρ = f0I +
∑
j

fjXj = f0BI +
∑
j

fjBXj (38)

where the second equality follows from B2 = B and f0 is a generalized log-partition function

f0 = kB ln TrB exp(−
∑
j

fjXj/kB) . (39)

Therefore,

− kB

√
ρ ln ρ = f0

√
ρ+

∑
j

fj
√
ρXj , (40)

xj(ρ) = Tr(ρXj) , (41)
√
ρ∆S =

∑
i

fi
√
ρ∆Xi , (42)

〈∆S∆S〉 =
∑
i

∑
j

fifj〈∆Xi∆Xj〉 , (43)

s(ρ) = f0 +
∑
j

fj xj(ρ) , (44)

kBD = −
∑
j

fj

[
√
ρXj −

a∑
k=1

(
√
ρXj |

√
ρAk)

√
ρAk

]
(45)

where, for simplicity, we use the expression (25c) for D in terms of the orthonomal set {√ρAi}
[an equivalent expression in terms of Gram determinants is readily obtained using (40) in
(21c)].

By taking partial derivatives of a symmetrized expansion of f0, we may also obtain the
relations xj(ρ) = ∂f0/∂fj and, equating second order partial derivatives, the generalized
Maxwell relations

∂xi(ρ)
∂fj

∣∣∣∣
fk 6=j

= − 1
kB

〈∆Xi∆Xj〉 =
∂xj(ρ)
∂fi

∣∣∣∣
fk 6=i

. (46)

It is noteworthy that state operator (37) can be viewed as the solution of the constrained
maximization problem

max s(ρ) (47a)
subject to xj(ρ) = Tr(ρXj) = x̃j , (47b)

Tr(ρ) = 1 , ρ ≥ 0 , and ρ = BρB (47c)

or, equivalently,

max s(
√
ρ) (48a)

subject to xj(
√
ρ) = (

√
ρ|√ρXj) = x̃j , (48b)

(
√
ρ|√ρ) = 1 , and

√
ρ = B

√
ρB (48c)

for a given idempotent operator B = B2 and given mean values x̃j of the operators in the set
{Xj}. As a result, the Lagrange multipliers fj can be viewed as functions of the x̃j ’s, defined
implicitly by the relations obtained by substitution of (37) into the constraints. Thus, the
expression for the entropy can be written as

s(x̃) = f0(x̃) +
∑
j

fj(x̃) x̃j (49)

from which we readily obtain that

fj =
∂s(x̃)
∂x̃j

∣∣∣∣
x̃k 6=j

(50)
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may be interpreted as the generalized affinity or force representing the entropy change that
corresponds to an independent change in the mean value of the linear observableXj . Moreover,
by equating second order partial derivatives of s(x̃), we obtain the generalized Maxwell
relations

∂fi(x̃)
∂x̃j

∣∣∣∣
x̃k 6=j

=
∂2s(x̃)
∂x̃i∂x̃j

=
∂fj(x̃)
∂x̃i

∣∣∣∣
x̃k 6=i

. (51)

Next, we define the dissipative rate of change of the linear mean-value functional
associated with operator Xi,

Dxi(ρ)
Dt

= Tr[D̂1(ρ,H,Gi)Xi] = 2(ED|
√
ρXi) . (52)

We use the term dissipative because the irreversible term in the equation of motion conserves
but downgrades the energy, i.e., it describes the irreversible conversion (dissipation) of
mechanical energy into thermal energy. Using ED = −D/2τ(ρ) [(20d)] and (45) yields the
linear interrelations between dissipative rates and generalized affinities,

Dxi(ρ)
Dt

=
∑
j

fj Lij(ρ) , (53)

where the coefficients Lij(ρ), which may be interpreted as generalized (Onsager) dissipative
conductivities, are the nonlinear functionals of ρ given by the relations

Lij(ρ) = Lji(ρ) =
1

kBτ(ρ)

[
(
√
ρXi|
√
ρXj)

−
a∑
k=1

(
√
ρXi|
√
ρAk)(

√
ρAk|

√
ρXj)

]
(54a)

=
1

kBτ(ρ)

[
〈∆Xi∆Xj〉 −

a∑
k=1

〈∆Xi∆Ak〉〈∆Ak∆Xj〉

]
(54b)

=
1

kBτ(ρ)
(
[
√
ρXi]⊥L{√ρRi}

∣∣ [√ρXj ]⊥L{√ρRi}
)

(54c)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈∆Xi∆Xj〉 〈∆R1∆Xj〉 · · · 〈∆Rk∆Xj〉 · · ·

〈∆Xi∆R1〉 〈∆R1∆R1〉 · · · 〈∆Rk∆R1〉 · · ·
...

...
. . .

...
. . .

〈∆Xi∆Rk〉 〈∆R1∆Rk〉 · · · 〈∆Rk∆Rk〉 · · ·
...

...
. . .

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
kBτ(ρ) Γ({√ρRk})

. (54d)

These relations are at the same time a proof and a generalization of Onsager’s reciprocity
relations [22] extended to all nonequilibrium (dissipative) states. Moreover, they give explicit
expressions for the nonlinear dependence of the dissipative conductivities Lij(ρ) on the state
operator ρ, the generators of the motion and the internal-relaxation-time τ(ρ). Of course, at
any stable equilibrium, ρe, and at any nondissipative state or limit cycle, ρnd, all dissipative
rates are zero and, therefore,∑

j

fj e/nd Lij(ρe/nd) = 0 . (55)

Using (26) and (40), the rate of entropy change may be rewritten as a quadratic form in
the generalized affinities,

ds(ρ)
dt

=
∑
i

fi
Dxi(ρ)

Dt
=
∑
i

∑
j

fifjLij(ρ) . (56)
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The symmetric matrix [{Lij(ρ)}] is a Gram matrix [see (54c)] and, as such, it is nonegative
definite, i.e., its determinant

det[{Lij(ρ)}] ≥ 0 , (57)

with strict positivity only if all operators

[
√
ρXi]⊥L{√ρRi} (58)

are linearly independent, in which case (53) may be solved to yield

fj =
∑
i

L−1
ij (ρ)

Dxi(ρ)
Dt

(59)

and the rate of entropy change can be written as a quadratic form in the dissipative rates

ds(ρ)
dt

=
∑
i

∑
j

L−1
ij (ρ)

Dxi(ρ)
Dt

Dxj(ρ)
Dt

. (60)

Eqs. (54) are also a proof and generalization of Callen’s fluctuation-dissipation theorem
[23] extended to all nonequilibrium (dissipative) states. Indeed, we interpret 〈∆Xi∆Xj〉 as the
codispersion (covariance) of measurement results of observables Xi and Xj when the system
is in state ρ and 〈∆Xi∆Xi〉 as the dispersion (or fluctuations) of measurement results of
observable Xi. As in Callen’s fluctuation-dissipation theorem, the expressions in (54) relate
codispersions with generalized conductivities.

A judicious choice of the set {√ρXj} may greatly simplify these relations. In particular,
if {√ρXj} is any orthogonal extension of the orthonormal subset {√ρAi}, in the sense that
(
√
ρXj |

√
ρAi) = 0 for all Ai’s and j > a, then for all i and j > a,

Lij(ρ) =
1

kBτ(ρ)
〈∆Xi∆Xj〉 , (61)

which relates directly [through the internal-relaxation time τ(ρ)] covariances and fluctuations
in the observables Xi with their associated dissipative conductivities.

Onsager’s [22] and Callen’s [23] theorems are keystones of our understanding of
irreversibility. Indeed, the proof we proposed emerges not from the analysis of the Hamiltonian
term of the equation of motion supplemented with the so-called assumption of microscopic
reversibility, but from the irreversible term of the equation of motion, i.e., the only term
responsible for irreversibility, with no additional assumptions.

Onsager’s result [22] was obtained from empirical observations on nonequilibrium
phenomena very close to stable thermodynamic equilibrium, so that the list of Xi’s was indeed
very short, and the result valid only for a limited class of states. Our result generalizes the
validity of Onsager’s reciprocity relations to all nonequilibrium states, close and far from stable
thermodynamic equilibrium. Of course, the price we have to pay to describe nonequilibrium
states far from stable equilibrium is that we must use a much larger, possibly infinite list of
Xi’s in (37).

7. Internal relaxation time vs time–energy Heisenberg uncertainty:
maximal-entropy-generation-rate ansatz

By analogy with what was done for the Hamiltonian characteristic time τH(ρ), we define the
shortest characteristic time of the irreversible part of the rate of change of the state operator
by the relation (see Appendix C)

1
τD(ρ)2

= 4 (ED|ED) . (62)

From (20a) and (21) and (
√
ρ|√ρ) = 1 [or, directly, from (26)], we find

τD(ρ)2 = k2
Bτ(ρ)2 Γ({√ρRi})

Γ(
√
ρS, {√ρRi})

=
τ(ρ)2

(D|D)
. (63)
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From this relation we may extract a possible ansatz on the functional form or at least
a lower bound for the internal-relaxation-time functional τ(ρ) in (1) by assuming that also
τD(ρ), like τH(ρ), should satisfy the Heisenberg uncertainty relation

τD(ρ)2〈∆H∆H〉 ≥ ~2/4 . (64)

This implies

τ(ρ)2 ≥ ~2

4k2
B

Γ(
√
ρS, {√ρRi})

〈∆H∆H〉Γ({√ρRi})
=

~2(D|D)
4〈∆H∆H〉

(65)

or, using (26) and (56),

τ(ρ) ≥ ~2

4kB〈∆H∆H〉
∑
i

∑
j

fifjLij(ρ) . (66)

Relation (65) implies an upper bound to the rate of entropy generation,

ds(ρ)
dt

≤ 2
~

√
〈∆H∆H〉Γ(

√
ρS, {√ρRi})

Γ({√ρRi})
. (67)

By analogy with the Hamiltonian time, a possible ansatz that is worthy of careful consideration
is that also τD(ρ) and, therefore, τ(ρ) be equal exactly to the lower bound [i.e., strict equality
in (65), (66) and (67)], corresponding to the maximal entropy generation rate compatible
with the time–energy uncertainty relation. This corresponds to a truly maximal entropy
generation dynamics. The square-root state operator

√
ρ not only moves in the direction of

steepest entropy ascent, but it does so at the highest rate compatible with the uncertainty
principle.

This ansatz is very intriguing, conceptually appealing and fraught with far-reaching
physical consequences. But, like any other hypotheses on the functional form of τ(ρ), it
should be verified against known behavior in worked-out specific cases, such as the examples
considered in [3, 15, 20] and the variety of physical problems for which nonlinear modifications
of the Schrödinger equation have been deemed necessary but have not yet been resolved [27].

If proved valid, this ansatz would complete the dynamics without need of additional
physical constants and would provide a fundamental microscopic foundation of the macroscopic
observation that Nature always evolves at the fastest possible rate along the most direct path
towards maximum entropy compatible with the system’s structure and external constraints.
Interpreted in this way, our nonlinear dynamics would provide a unifying fundamental
microscopic foundation of all phenomenological theories of irreversible processes advanced
in the last seventy years after the pioneering work of Onsager.

8. Variational principle formulation

Following Gheorghiu-Svirschevski [3], the direction of steepest-entropy-ascent can also be
found by considering the constrained maximization problem

max
ds
dt

(ED) (68a)

subject to
dri
dt

(ED) = ṙi and (ED|ED) =
1

4τ2
D

, (68b)

where ṙi and τ2
D are given real functionals of ρ. The necessary solving condition in terms of

Lagrange multipliers is
∂

∂ED

ds
dt
−
∑
i

λi
∂

∂ED

dri
dt
− λ0

∂

∂ED
(ED|ED) = 0 . (69)

Using (7) and (10), it becomes

∂s(ρ)
∂
√
ρ
− 2

∑
i

λi
√
ρRi − λ0ED = 0 , (70)
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or, with (9),

−2kB [
√
ρ+
√
ρ ln ρ]− 2

∑
i

λi
√
ρRi − λ0ED = 0 , (71)

where the multipliers must be determined by substitution in the system of constraint equations.
It is easy to verify that our expression for ED = −D/2τ(ρ) in (20a) and (21) is an

explicit solution of (70) in the case ṙi = 0 and τD given by the explicit expression in (63). See
Appendix E for ṙi 6= 0.

9. Bloch near-equilibrium linear limit

In [11] we have shown that in the neighbourhood of each equilibrium state ρe {given by (28)
with the additional condition [B,H] = 0}, if we assume τ(ρ) constant (e.g., τe = τ(ρe) 6= 0),
the initial state operators ρ(0) in the subset with B(0) = Be and Tr(ρ(0)Ri) = Tr(ρeRi) (i.e.,
with the same nullity, rank and mean values of the generators as the equilibrium state) obey
a linearized form of the equation of motion that has the form of a Bloch relaxation equation,

dρ
dt
→ − i

~
[H, ρ]− ρ− ρe

τe
, (72)

so that the solution of the equation of motion is

ρ(t)→ exp(−t/τe)U(t)ρ(0)U−1(t)
+ [1− exp(−t/τe)] ρe , (73)

with U(t) given by (31b) {note that if there are no non-Hamiltonian generators the condition
[B,C] = 0 implies [ρ,H] = 0 and, therefore, U(t)ρ(0)U−1(t) = ρ(0)}.

Gheorghiu-Svirschevski [3], derived a more general linearized form for the case with no
non-Hamiltonian generators valid also when [ρ,H] 6= 0 (but assuming τ → τe 6= 0), and
showed that it yields a generalized Fokker-Planck equation for a free particle, and a Langevin
equation for a harmonic oscillator.

It is however noteworthy that such linearized limit behavior should be revised if we take
τ(ρ) equal to the lower bound imposed by the time–energy uncertainty relation [(65) with
strict equality], because then, if 〈∆H∆H〉 6= 0, τ(ρ)→ 0 as ρ→ ρe.

10. Divisible composite systems dynamics: locally perceived overall energy and
entropy operators

The composition of the system is embedded in the structure of the Hilbert space as a direct
product of the subspaces associated with the individual elementary constituent subsystems,
as well as in the form of the Hamiltonian operator.

In this section, we consider a system composed of M distinguishable and indivisible
elementary constituent subsystems. For example, each subsystem may be a different
elementary particle or a Fermi-Dirac or Bose-Einstein field (in which case the corresponding
HJ is a Fock space). The Hilbert space is

H = H1⊗H2⊗ · · ·⊗HM , (74)

and the Hamiltonian operator

H =
M∑
J=1

HJ⊗IJ + V , (75)

where HJ is the Hamiltonian operator onHJ associated with the J-th subsystem when isolated
and V (on H) the interaction Hamiltonian among the M subsystems.

For convenience, we denote by HJ the direct product of the Hilbert spaces of all
subsystems except the J-th one, so that the Hilbert space of the overall system is

H = HJ⊗HJ (76)
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and the identity operator I = IJ⊗IJ .
The subdivision into elementary constituents, each considered as indivisible, is reflected

by the structure of the Hilbert space H as a direct product of subspaces, and is particularly
important because it defines the level of description of the system and specifies its elementary
structure. This determines also the structure of the nonlinear dynamical law (2) we proposed
in [10, 11] and rederive in the next section. In a sense, this is a price we have to pay in order
to free ourselves from the assumption of linearity of the law of motion.

In other words, the form of superoperators D̂M and D̂1 are different depending on whether
the system is or is not subdivisible into indivisible subsystems, i.e., whether or not it has an
internal structure. For example, consistently with the conditions listed in Appendix A, we
request that superoperator D̂M satisfies the strong separability conditions [2, 20]

D̂M (ρA⊗ρB , HA⊗IB+IA⊗HB , GiA⊗IB+IA⊗GiB)
= D̂MA

(ρA,HA,GiA)⊗ρB+ρA⊗D̂MB
(ρB ,HB ,GiB) for any ρA, ρB , (77a)

TrB [D̂M (ρ,HA⊗IB+IA⊗HB , GiA⊗IB+IA⊗GiB)]
= F̂MA

(ρ,HA,GiA) for any ρ, (77b)
TrA[D̂M (ρ,HA⊗IB+IA⊗HB , GiA⊗IB+IA⊗GiB)]
= F̂MB

(ρ,HB ,GiB) for any ρ, (77c)

where subsystems A and B are obtained by partitioning the set of constituents 1, 2, . . . , M
into two disjoint subsets of MA and MB constituents, respectively (MA + MB = M). Note
that, of course, if ρ = ρA⊗ρB then we must have F̂MA

(ρ,HA,GiA) = D̂MA
(ρA,HA,GiA) and

F̂MB
(ρ,HB ,GiB) = D̂MB

(ρB ,HB ,GiB).
It is noteworthy that trying to apply the same conditions to superoperator D̂1 would

be physically meaningless. For a subdivisible system, D̂1 cannot be the irreversible
evolution superoperator because it would entail for example exchange of energy between
noninteracting subsystems. Conditions (77b) and (77c) instead, prevent non-locality problems
by guaranteeing that changes of the Hamiltonian (or the other generators of the motion)
in one of two noninteracting subsystems cannot affect the mean values of local observables
of the other subsystem. For example, assume that subsystems A and B are correlated but
not interacting. We may switch on a measurement apparatus within B and therefore alter
the Hamiltonian HB . By virtue of (77b) and (77c), the rate of change of the reduced state
operator ρA = TrB(ρ) does not depend on HB and, therefore, all the functionals of ρA (local
observables) remain unaffected by the change in B, i.e., no faster-than-light communication
can occur between B and A (of course, if we exclude the projection postulate [34]).

In addition, we must consider the following additional non-trivial conditions of separate
energy conservation of noninteracting (possibly correlated) subsystems (see Appendix A,
Condition 6)

Tr[(HA⊗IB) D̂M (ρ,HA⊗IB+IA⊗HB , Gi)] = 0 , (78a)
Tr[(IA⊗HB) D̂M (ρ,HA⊗IB+IA⊗HB , Gi)] = 0 , (78b)

for any ρ, and of separate entropy nondecrease for uncorrelated (possibly interacting)
subsystems (see Appendix A, Condition 7)

Tr[(SA⊗IB) D̂M (ρA⊗ρB , H,Gi)] ≥ 0 , (79a)
Tr[(IA⊗SB) D̂M (ρA⊗ρB , H,Gi)] ≥ 0 , (79b)

for any ρA and ρB , where SA = −kBBA ln ρA, SB = −kBBB ln ρB .
For each type of particle in the system, we may write without loss of generality the

number-of-particles-of-i-th-type operator associated with the system as

Ni =
M∑
J=1

NiJ⊗IJ for i = 1, 2, . . . , r , (80)

where NiJ denotes the number-of-particles-of-i-th-type operator associated with the J-th
subsystem [35]. In general, we assume that the set of linear hermitian operators I, H, Gi
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on H, always including I and H, are the generators of the motion of the composite system.
For example, the list of non-Hamiltonian generators Gi may coincide with that of the number
operators defined in (80).

Next, we introduce a useful notation that allows the definition of important local
observables. For each subsystem J we denote by L(HJ) the space of linear operators on
HJ equipped with the real scalar product

(FJ |GJ) =
1
2

Tr
(
F †JGJ +G†JFJ

)
. (81)

For a given state operator ρ on H, given linear hermitian F and G on H, and each
subsystem J , in addition to that already defined in (4), (12) and (13), we define the following
convenient notation [11, 16]

ρJ = TrJ(ρ) , (82)
ρJ = TrJ(ρ) , (83)

(F )J = TrJ [(IJ⊗ρJ)F ] , (84)

〈∆F∆G〉J = (
√
ρJ(∆F )J |√ρJ(∆G)J)

=
1
2

Tr(ρJ{(∆F )J , (∆G)J}) = 〈(∆F )J(∆G)J〉 , (85)

where TrJ denotes the partial trace over HJ , TrJ over HJ , ρJ is the reduced state operator
of elementary subsystem J and ρJ that of the composite of all other subsystems.

In view of the special role they play in the equation of motion, we interpret the operators
(H)J and (S)J ,

(H)J = TrJ [(IJ⊗ρJ)H] , (86)

(S)J = TrJ [(IJ⊗ρJ)S] , (87)

as “locally perceived overall-system energy” and “locally perceived overall-system entropy”
operators, respectively, associated with a measure of how the overall-system energy and
entropy operators, H and S = −kBB ln ρ, are “felt” locally within the J-th constituent
subsystem.

For a given ρJ , we further define the operators
√
ρJ , (88)

BJ , (89)
SJ = −kBBJ ln ρJ , (90)

obtained from ρJ by substituting in its spectral expansion each nonzero eigenvalue pi with its
positive square root

√
pi, unity and −kB ln pi, respectively. Note that, of course, SJ 6= (S)J .

Moreover, for given linear hermitian FJ and GJ on HJ , we define the notation

〈FJ〉 = Tr[ρ (FJ⊗IJ))] = Tr(ρJFJ) , (91)

〈∆FJ∆GJ〉 = (
√
ρJ∆FJ |

√
ρJ∆GJ) =

1
2

Tr(ρJ{∆FJ ,∆GJ}) . (92)

SJ may be interpreted as the subsystem entropy operator only if subsystem J is not correlated
with the other subsystems, i.e., if ρ can be written as

ρ = ρJ⊗ρJ ; (93)

then the subsystem entropy is defined and given by the nonlinear state functional of the
reduced state operator,

sJ(ρJ) = 〈SJ〉 = Tr(ρJSJ) = −kBTr(ρJ ln ρJ)
= Tr[ρ(SJ⊗IJ)] = (

√
ρJ |
√
ρJSJ) , (94)

S = SJ⊗IJ + IJ⊗SJ , (95)
s(ρ) = sJ(ρJ) + sJ(ρJ) , (96)
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and we also have (∆S)J = ∆SJ .
When subsystem J is correlated, instead, its entropy is not defined; however, the

functional

sJ(ρ) = 〈(S)J〉 = Tr[ρJ(S)J ] = (
√
ρJ |
√
ρJ(S)J) (97)

may be interpreted as the subsystem’s local perception of the overall-system entropy. Only
when J is uncorrelated, sJ(ρ) = s(ρ) = sJ(ρJ) + sJ(ρJ).

The energy is defined for a subsystem J only if it is not interacting with the other
subsystems, i.e., if H can be written as

H = HJ⊗IJ + IJ⊗HJ ; (98)

then it is given by the mean-value state functional

eJ(ρJ) = 〈HJ〉 = Tr(ρJHJ) = (
√
ρJ |
√
ρJHJ) , (99)

and we also have (∆H)J = ∆HJ .
When subsystem J is interacting, instead, its energy is not defined; however the functional

eJ(ρ) = 〈(H)J〉 = Tr[ρJ(H)J ] = (
√
ρJ |
√
ρJ(H)J) (100)

may be interpreted as the subsystem’s local perception of the overall-system energy. Only
when J is non-interacting, eJ(ρ) = e(ρ) = eJ(ρJ) + eJ(ρJ).

The number-of-particles-of-i-th-type of the overall system in state ρ and of each subsystem
J are given by the mean-value state functionals ni(ρ) = 〈Ni〉 = Tr(ρNi) and niJ(ρJ) =
〈NiJ〉 = Tr[ρ(NiJ⊗IJ)] = nJi (ρ) = 〈(NiJ⊗IJ)J〉 = Tr(ρJNiJ) = (√ρJ |

√
ρJNiJ), respectively,

and from (80) we clearly have ni(ρ) =
∑M
J=1 niJ(ρJ). Indeed, it is noteworthy that, for any

ρ,

(NiJ⊗IJ)J = NiJ . (101)

For generality, we assume that the generators of the motion on H are I, H and Gi,
with [Gi, H] = 0 but not necessarily with the separated structure of the number operators.
Moreover, for each state ρ and each constituent J , we denote by {RiJ , i = 0, 1, 2, . . . , zJ(ρ)}
a set of hermitian operators in L(H) such that the operators in the set {√ρJ(RiJ)J}, where

(RiJ)J = TrJ [(IJ⊗ρJ)RiJ ] (102)

are linearly independent and span the linear manifold generated by the operators √ρJIJ ,
√
ρJ(H)J , √ρJ(Gi)J . If the latter operators are linearly independent, for subsystem J , then

the set {RiJ} may be chosen to coincide with the generators of the motion. If they are not
independent, then it could be a smaller subset (in which it is convenient, though not necessary,
to maintain R0J = I and, if possible, R1J = H). In any case, we call the operators in the
set {RiJ} the (instantaneous) “generators of the motion of subsystem J”. The structure of
the irreversible term D̂M is invariant under transformation from one set {RiJ} to any other
{R′

iJ
} with the same defining properties.
For each instantaneous generator RiJ of subsystem J , we define the “local perception”

mean functional

rJ
iJ

(ρ) = Tr[ρJ(RiJ)J ] = (
√
ρJ |
√
ρJ(RiJ)J) . (103)

We denote by

L{√ρJ(RiJ)J} = L{√ρJIJ ,
√
ρJ(H)J ,

√
ρJ(Gi)J} (104)

the linear span of the operators {√ρJ(RiJ)J} or, that is the same, the linear span of the
operators √ρJIJ , √ρJ(H)J , √ρJ(Gi)J .

By definition of the set {RiJ}, the Gram determinant

Γ({√ρJ(RiJ)J}) = det[{(√ρJ(RiJ)J |√ρJRjJ)J)J}]

= det[{〈∆RiJ∆RjJ〉
J}] (105)
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is always strictly positive.
The set {RiJ} can be conveniently chosen so that {√ρJ(RiJ)J} is (instantaneously) an

orthonormal set, in which case we denote it by {√ρJ(AiJ)J} and

(
√
ρJ(AiJ)J |√ρJAjJ)J) = δij , (106)

ΓJ({√ρJ(AiJ)J}) = 1 . (107)

11. The steepest-entropy-ascent ansatz for a composite system

Maintaining the validity of (3) and (18), we now assume

√
ρED =

M∑
J=1

√
ρJ EDJ⊗ρJ , (108)

as a first step to guarantee the strong separability condition (77) [see Appendix G for a
discussion related to the form of (108)].

The second step is to make sure that EDJ , which in general may be a function of the
operators ρ, H and Gi on H, reduces to a function of the operators ρJ , HJ and GiJ on
HJ only, whenever the constituent is, at the same time, uncorrelated (ρ = ρJ⊗ρJ), non-
interacting (H = HJ⊗IJ+IJ⊗HJ) and not coupled through the non-Hamiltonian generators
(Gi = GiJ⊗IJ+IJ⊗GiJ).

To preserve the formal analogy with the notation for the indivisible system, we define the
local “partial gradient” operators[

∂rJ
iJ

(ρ)
∂
√
ρJ

]
(RiJ )J

=
√
ρJ(RiJ)J + (RiJ)J

√
ρJ , (109)

[
∂sJ(ρ)
∂
√
ρJ

]
(S)J

= 2
√
ρJ(S)J . (110)

Now, it is easy to show that the structure of dρ/dt assumed with (3), (18) and (108)
yields [37]

driJ(ρ)
dt

= Tr(
dρ
dt
RiJ) = 2

M∑
J=1

(
EDJ

∣∣∣√ρJ(RiJ)J
)
, (111)

ds(ρ)
dt

= − kBTr(
dρ
dt

)− kBTr(
dρ
dt
B ln ρ)

=
M∑
J=1

[
− 2kB(EDJ |

√
ρJIJ)J + 2

(
EDJ

∣∣√ρJ(S)J
)]

=
M∑
J=1

[
− 2kB(

√
ρJIJ |EDJ)+

([∂sJ(ρ)
∂
√
ρJ

]
(S)J

∣∣∣∣∣EDJ
)]

. (112)

Finally, we assume that each EDJ is: (A) orthogonal to L{√ρJ(RiJ)J}, so that all the
rates of change in (111) and the first term in the rate of entropy change in (112) are zero;
and (B) in the direction of the local partial gradient of the “locally perceived” overall-system
entropy functional, sJ(ρ), i.e., we take

EDJ =
1

4kBτJ(ρ)

[∂sJ(ρ)
∂
√
ρJ

]
(S)J


⊥L{√ρJ (RiJ )J}

= − 1
2τJ(ρ)

DJ , (113)

where, similarly to what is done for the indivisible system,

DJ =
[√

ρJ(B ln ρ)J
]
⊥L{√ρJ (RiJ )J}

(114a)
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=
√
ρJ(B ln ρ)J −

[√
ρJ(B ln ρ)J

]
L{√ρJ (RiJ )J}

(114b)

= −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

√
ρJ(∆S)J √

ρJ(∆R1J)J · · · √ρJ(∆RiJ)J · · ·

〈∆S∆R1J 〉
J 〈∆R1J∆R1J 〉

J · · · 〈∆RiJ∆R1J 〉
J · · ·

...
...

. . .
...

. . .
〈∆S∆RiJ 〉

J 〈∆R1J∆RiJ 〉
J · · · 〈∆RiJ∆RiJ 〉

J · · ·
...

...
. . .

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
kB Γ({√ρJ(RiJ)J})

.

(114c)

Most of the results found for the single constituent extend to the composite system in a
straightforward way. In particular, using the properties of determinants it is easy to verify
that

(EDJ |
√
ρJ) = Tr(

√
ρJE

†
DJ + E†DJ

√
ρJ) = 0 (115)

and that the mean value of each RiJ is independently conserved by each subsystem, i.e.,
(EDJ |

√
ρJ(RJ

iJ
) = 0, and therefore Tr(ρI), Tr(ρH), and the Tr(ρGi)’s are time invariant.

In general, by virtue of (19), (75), (108), and (115), the rate of change of the reduced
state operator of subsystem J is given by the equation

dρJ
dt

= − i
~

[HJ , ρJ ]− i

~
TrJ([V, ρ]) +

(
Dρ
Dt

)J
(116)

where we defined(
Dρ
Dt

)J
= TrJ

(
Dρ
Dt

)
=
√
ρJE

†
DJ + E†DJ

√
ρJ . (117)

Indeed, in general, we have

Dρ
Dt

=
dρ
dt

+
i

~
[H, ρ] =

M∑
J=1

(
Dρ
Dt

)J
⊗ρJ . (118)

The rate of entropy change is given by the relations

ds(ρ)
dt

=
M∑
J=1

kB

τJ(ρ)
(DJ |DJ) (119a)

=
M∑
J=1

4kBτJ(ρ) (EDJ |EDJ ) (119b)

=
M∑
J=1

1
kBτJ(ρ)

Γ(√ρJ(S)J , {√ρJ(RiJ)J})
Γ({√ρJ(RiJ)J})

. (119c)

The dynamics reduces to the Schrödinger-von Neumann unitary Hamiltonian dynamics
when

√
ρJ(B ln ρ)J =

√
ρJ(C)J with C =

∑
i

λiJRiJ , (120)

for each J and, therefore, the state is nondissipative {equilibrium if [B,H] = 0, limit cycle if
[B,H] 6= 0, including the case of pure-state standard QM when Tr(B) = 1}.

The maximum entropy thermodynamic equilibrium states are given by (32).
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Onsager’s reciprocity relations follow again from (38) for the operator B ln ρ. Eqs. (53)
and (56) are still valid [of course, with D̂M in (52) instead of D̂1], with the dissipative
conductivities given by

Lij(ρ) = Lji(ρ) =
M∑
J=1

LJij(ρ) , (121a)

LJij(ρ) = LJji(ρ)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈∆Xi∆Xj〉J 〈∆R1∆Xj〉J · · · 〈∆Rk∆Xj〉J · · ·

〈∆Xi∆R1〉J 〈∆R1∆R1〉J · · · 〈∆Rk∆R1〉J · · ·
...

...
. . .

...
. . .

〈∆Xi∆Rk〉J 〈∆R1∆Rk〉J · · · 〈∆Rk∆Rk〉J · · ·
...

...
. . .

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
kBτJ(ρ) Γ({√ρJ(RiJ)J})

.

(121b)

Callen’s fluctuation-dissipation relations, implied by the explicit structure [(121)] of the
Onsager dissipative conductivities, are greatly simplified if we choose the orthonormal set
{√ρJ(AiJ)J} instead of {√ρJ(RiJ)J} and the set {√ρJ(XjJ)J} to be an orthogonal extension
of {√ρJ(AiJ)J}; then,

LJij(ρ) =
1

kBτJ(ρ)
〈∆Xi∆Xj〉J . (122)

The assumption about the time–energy Heisenberg uncertainty relation in section 7 can
be extended as well. We assume that each EDJ gives rise to a characteristic time τDJ(ρ)
defined by (see Appendix C)

1
τDJ(ρ)2

= 4 (EDJ |EDJ) , (123)

which should independently satisfy the uncertainty relation

τDJ(ρ)2〈∆H∆H〉J ≥ ~2/4 . (124)

Therefore, using (113) and (114), we obtain the lower bounds to the internal relaxation times,

τJ(ρ)2≥ ~2

4k2
B

Γ(√ρJ(S)J , {√ρJ(RiJ)J})

〈∆H∆H〉J Γ({√ρJ(RiJ)J})
=

~2(DJ |DJ)

4〈∆H∆H〉J
(125)

or, using, (119) and (56),

τJ(ρ) ≥ ~2

4kB〈∆H∆H〉J
∑
i

∑
j

fifjL
J
ij(ρ) , (126)

and the upper bound to the entropy generation rate

ds(ρ)
dt
≤

M∑
J=1

2
~

√√√√ 〈∆H∆H〉J Γ(√ρJ(S)J , {√ρJ(RiJ)J})
Γ({√ρJ(RiJ)J})

. (127)

Taking strict equalities in each of (125) yields the maximum entropy generation rate
compatible with the time–energy uncertainty relations, and corresponds to a possible
“extreme” closure ansatz.
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The variational formulation can be found, after assuming the structure of (108), by solving
the constrained maximization problem

max
ds
dt

({EDJ}) (128a)

subject to
driJ
dt

({EDJ}) = ṙiJ and (EDJ |EDJ) =
1

4τ2
DJ

,

(128b)

where ṙiJ and τ2
DJ

are given real functionals of ρ. By virtue of (111) and (112), the necessary
solving conditions in terms of Lagrange multipliers for each EDJ become[

∂sJ(ρ)
∂
√
ρJ

]
(S)J

− 2
∑
i

λJi
√
ρJ(RiJ)J− λJ0EDJ = 0 , (129)

clearly verified by the EDJ ’s given in (113) and (114).
If two subsystems A and B are non-interacting but in correlated states, the reduced state

operators obey the equations

dρA
dt

= − i

~
[HA, ρA]−

M∑
J=1
J∈A

1
2τJ(ρ)

[√
ρJDJ+D†

J

√
ρJ
]
⊗(ρA)J , (130a)

dρB
dt

= − i

~
[HB , ρB ]−

M∑
J=1
J∈B

1
2τJ(ρ)

[√
ρJDJ+D†

J

√
ρJ
]
⊗(ρB)J , (130b)

where (ρA)J = TrJ(ρA) and (ρB)J = TrJ(ρB).
The strong separability conditions (77) are satisfied provided the internal-relaxation-time

functionals are either all constants or satisfy the following set of nontrivial conditions,

τJ(ρA⊗ρB , HA⊗IB+IA⊗HB , GiA⊗IB+IA⊗GiB)

=
{
τJ(ρA,HA,GiA) for J ∈ A
τJ(ρB ,HB ,GiB) for J ∈ B for any ρA and ρB , (131a)

τJ(ρ,HA⊗IB+IA⊗HB , GiA⊗IB+IA⊗GiB)

=
{
τJ
′(ρ,HA,GiA) for J ∈ A

τJ
′(ρ,HB ,GiB) for J ∈ B for any ρ . (131b)

It is noteworthy that Conditions (131) are satisfied by the maximal-entropy-generation-rate
ansatz, i.e., if we assume that each τJ(ρ) is given by (125) with strict equality. Indeed, if
A and B are noninteracting, the structure [114c)] of each operator DJ with J ∈ A is such

that any dependence on HB cancels out, moreover 〈∆H∆H〉J = 〈∆HA∆HA〉J . Thus, any
dependence on HB cancels out in (11a) and, similarly, any dependence on HA cancels out in
(11b).

It is interesting, however, that dρA/dt in general may depend not only on the “local”
(reduced) state operator ρA but also on the overall state ρ through the operators (B ln ρ)J

(with J ∈ A), thus determining a collective-behavior effect on the local dynamics originating
from existing correlations. In fact, operators DJ are in terms of (∆S)J which may differ,
when the subsystems are correlated, from operators (∆SA)J . In other words, the lack of
interactions between two subsystems does guarantee that the energy of each subsystem is
defined and conserved [(78)] and that the reduced dynamics of each subsystem is local, in the
sense of independent of the Hamiltonian operator (and the other generators) of the other
subsystem, but does not necessarily imply that each subsystem evolves independently of
existing correlations with the other subsystem.

Regarding the time evolution of correlations, in [11] we defined the correlation functional
between two subsystems A and B,

σAB(ρ) = Tr(ρ ln ρ)− TrA(ρA ln ρA)− TrB(ρB ln ρB) , (132)
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which is nonnnegative definite in general, and zero only if ρ = ρA⊗ρB . The rate of change of
the correlation can be written as

dσAB(ρ)
dt

= σ̇AB |H − σ̇AB |D . (133)

Based on our understanding of the equation of motion, we conjectured that σ̇AB |D should
always be nonnegative, if it is true that the irreversible term can only destroy correlations
between subsystems, but cannot create them. However, this conjecture remains to be proved.
The corresponding entropy inequality to our knowledge has not yet been studied.

12. Conclusions

Based on unpublished geometrical reasoning [10], on the ansatz that a broader quantum
kinematics may unite mechanics and thermodynamics [7, 19], and on the ansatz of a maximal
entropy generation quantum dynamics may entail and extend the traditional Schrödinger–von
Neumann unitary dynamics, we rederived most previous results in [10, 11, 13, 14, 15, 16]
on the well-behaved nonlinear equation of motion proposed by the present author in
his 1981 doctoral thesis for quantum thermodynamics, which entails the second law and
nonequilibrium steepest-entropy-ascent dynamics with Onsager’s reciprocity and Callen’s
fluctuation-dissipation relations.

Together with the variational principle formulation derived in [3] and the observation
in [7, 9] that only the functional −kBTr(ρ ln ρ) can represent the physical entropy, we may
conclude that all the results so far confirm that our equation of motion has all the necessary
features to provide a self-consistent and conceptually-sound resolution of the century-old
dilemma on the nature of entropy and irreversibility, alternative to Boltzmann’s statistical
approach and valid also for systems with few degrees of freedom.

The nonlinear dynamics encompasses within a unified framework all the successful results
of quantum mechanics, equilibrium and nonequilibrium thermodynamics. It also holds
the promise to provide a fundamental framework within which to address the currently
unexplained evidence on loss of quantum coherence, to design new fundamental experiments,
to examine new applications on the lines of those developed in [3, 15, 20], and to further
investigate the dependence of the internal-relaxation-time functional on the state operator
and physical constants, as well as possibly verify the ansatz proposed in this paper by which
each indivisible subsystem follows the direction of steepest perceived entropy ascent at the
highest rate compatible with the time–energy uncertainty principle.

The equation of motion satisfies the set of conditions discussed in Appendix A and,
therefore, preserves most of the traditional conceptual keystones of physical thought, including
a strongest form of the non-relativistic principle of causality, by which future states of a
strictly isolated system should unfold deterministically from initial states along smooth unique
trajectories in state domain defined for all times (future as well as past [38]). Interestingly,
while the maximum entropy states are attractors in forward time, the unitary-solutions
boundary limit cycles of standard quantum mechanics are attractors in backward time.

As pointed out by Onsager and Machlup [23], the fluctuation-dissipation relations cannot
be derived in any rigorous way from the traditional Hamiltonian dynamical principles,
unless these are complemented by some additional postulate closely related to the additional
principles, assumptions, or approximations needed to derive the Onsager reciprocity relations.
This is sometimes referred to as the irreversibility paradox. In other words, in order to
infer any feature of irreversibility (including its very existence) from the irreducibly reversible
dynamical principle of standard Hamiltonian mechanics, we must complement it with some
additional postulate that seems to contradict it.

Within our nonlinear quantum (thermo)dynamics based on (1) and (2) the paradox is
resolved. The augmented state domain ansatz broadens the set of conceivable states but
includes the standard pure states, and the nonlinear equation of motion describes irreversibile
time evolutions and entails reciprocity and fluctuation-dissipation relations, but maintains the
standard unitary dynamics of pure states. In fact, the proof emerges not from the Hamiltonian
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term of the equation of motion but from the irreversible, maximum entropy production term
and is, thus, accomplished without the aid of the usual empirical and heuristic assumptions
(microscopic reversibility and small deviations from stable equilibrium).

Finally, from the Heisenberg time–energy uncertainty principle we derived a plausible
lower bound for the internal-relaxation-time functionals from which follows an upper bound
for the rate of entropy generation. Consequently, we proposed a rather extreme but physically
intriguing maximal-entropy-generation-rate ansatz, by which each indivisible subsystem
follows the direction of steepest perceived entropy ascent at the highest rate compatible with
the time–energy uncertainty principle. If this ansatz is experimentally verified, the nonlinear
dynamics is complete and self-consistent, with no need of new physical constants.

Subject, of course, to experimental and further theoretical validation, this extreme ansatz
represents a possible closure of the original nonlinear dynamics with no need of new physical
constants. Physically, it would imply for example that energy is spontaneously redistributed
among the initially occupied energy levels of the system, at the fastest rate compatible with (a)
the time–energy uncertainty limitations, (b) the system structure, and (c) the energy exchange
rates among subsystems (as driven by the usual interaction terms in the Hamiltonian operator
through the usual unitary-dynamics term in the equation of motion).
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Appendix A. Criteria for a general (nonlinear) quantum dynamics compatible
with thermodynamics

Within a quantum theory that accepts the augmented set of true quantum states described
by state operators ρ without the restriction ρ2 = ρ, and a nonlinear dynamical law for a
strictly isolated system, the following demanding set of conditions should be satisfied in order
for the theory to be compatible or, better, imply the second law of thermodynamics without
contradicting the fundamental results of standard quantum mechanics (QM). Obviuosly these
are the criteria we followed in designing (1) and (2), and discussed at length in [13, 18].

Conditions 6, 7 and 8 are closely related to the condition recently referred to as strong
separability [2]. We also added a condition on correlations and locality to reflect the need to
avoid, and possibly resolve, physical inconsistencies related to nonlocality issues, as well as a
strong causality condition that is nontrivial and quite demanding both from the conceptual
and the technical mathematical points of view.

Certainly, when viewed from different perspectives — e.g., different physical
interpretations of the augmented state domain ρ2 6= ρ ansatz, of the role of the nonlinear
extension of the Schrödinger equation of motion, of the Shannon-von Neumann entropy
functional −kBTr(ρ ln ρ) versus other nonextensive functionals, of the role of the system’s
environment and the measuring apparati, and so on — some authors might view this set of
conditions as too strong in many respects. Nevertheless, our equation of motion demonstrates
that at least a satisfactory dynamics exists which satisfies all such conditions and, in our view,
features a number of intriguing, unifying and far-reaching implications.

1. Causality. Forward and backward in time

We consider the set P of all linear, hermitian, nonnegative-definite, unit-trace operators ρ
on the standard QM Hilbert space H associated with the strictly isolated system[36]. Every
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solution of the equation of motion, i.e., every trajectory u(t, ρ) passing at time t = 0 through
state ρ in P, should lie entirely in P for all times t, −∞ < t < +∞.

2. Conservation of energy and number of particles

Since the system is isolated, the value of the energy functional e(ρ) = Tr(ρH), where H is
the standard QM Hamiltonian operator, must remain invariant along every trajectory. If H
is the Fock space of an isolated system consisting of M types of elementary constituents (e.g.,
atoms and molecules if chemical and nuclear reactions are inhibited; or atomic nuclei and
electrons for modelling chemical reactions) each with a number operator Ni ([H,Ni] = 0 and
[Ni, Nj ] = 0), then also the value of each number-of-constituents functional ni(ρ) = Tr(ρNi)
must remain invariant along every trajectory. Depending on the type of system, there may
be other time-invariant functionals, e.g., the total momentum components pj(ρ) = Tr(ρPj),
with j = x, y, z, for a free particle (in which case Galileian invariance must also be verified,
for [H,Pj ] = 0 and [Pi, Pj ] = 0). In what follows, we denote by gi(ρ) = Tr(ρGi) the set of
non-Hamiltonian time-invariant functionals, if any, with [H,Gi] = 0 and [Gi, Gj ] = 0 (clearly,
H and the Gi’s have a common eigenbasis that we denote by {|ψ`〉}).

3. Standard QM unitary evolution of pure (ρ2 = ρ) states

The unitary time evolution of the states of QM according to the Schrödinger equation of
motion must be compatible with the more general dynamical law. These trajectories, passing
through any state ρ such that ρ2 = ρ and entirely contained in the state domain of Quantum
Mechanics, must be solutions also of the more general dynamical law. In view of the fact that
the states of QM are the extreme points of the augmented state domain P, the trajectories of
QM must be boundary solutions (limit cycles) of the dynamical law.

If the complete dynamics preserves the feature of uniqueness of solutions throughout the
state domain P, then pure states can only evolve according to the Schrödinger equation of
motion and, therefore, D̂M (ρ,H,Gi, . . .) = 0 when ρ2 = ρ. This feature may be responsible
for hiding the presence of deviations from QM in experiments where the isolated system is
prepared in a pure state. It also implies that no trajectory can enter or leave the state
domain of QM. Thus, by continuity, there must be trajectories that approach indefinitely
these boundary solutions (of course, this can only happen backward in time, as t→ −∞, for
otherwise the entropy of the isolated system would decrease in forward time).

4. Entropy nondecrease. Irreversibility

The principle of nondecrease of entropy for an isolated system must be satisfied, i.e., the rate
of change of the entropy functional −kBTr(ρ ln ρ) must be nonnegative along every trajectory,
−kBTr[u(t, ρ) lnu(t, ρ)] ≥ −kBTr(ρ ln ρ).

5. Stability of the thermodynamic equilibrium states. Second law

A state operator ρ of the isolated system represents an equilibrium state if dρ/dt = 0. For each
given set of feasible values of the energy functional e(ρ) and the number-of-particle functionals
ni(ρ) (i.e., the functionals that must remain invariant according to Condition 2 above), among
all the equilibrium states that the dynamical law may admit there must be one and only one
which is globally stable (definition and discussion in Appendix B). This stable equilibrium
state must represent the corresponding state of equilibrium thermodynamics and, therefore,
must be of the form given by (32). All the other equilibrium states that the dynamical law
may admit must not be globally stable.

6. Non-interacting subsystems. Separate energy conservation

For an isolated system composed of two distinguishable subsystems A and B with associated
Hilbert spaces HA and HB , so that the Hilbert space of the system is H = HA⊗HB , if the
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two subsystems are non-interacting, i.e., the Hamiltonian operator H = HA⊗IB + IA⊗HB ,
then the functionals Tr[(HA⊗IB)ρ] = TrA(HAρA) and Tr[(IA⊗HB)ρ] = TrB(HBρB) represent
the energies of the two subsystems and must remain invariant along every trajectory, even if
the states of A and B are correlated, i.e., even if ρ 6= ρA⊗ρB . Of course, ρA = TrB(ρ),
ρB = TrA(ρ), TrB denotes the partial trace over HB and TrA the partial trace over HA.

7. Independent states. Weak separability. Separate entropy nondecrease

Two distinguishable subsystems A and B are in independent states if the state operator ρ =
ρA⊗ρB , so that the entropy operator S = −kBB ln ρ = SA⊗IB+IA⊗SB = −kB[BA ln ρA⊗IB+
IA⊗BB ln ρB ]. For permanently non-interacting subsystems, every trajectory passing through
a state in which the subsystems are in independent states must maintain the subsystems in
independent states along the entire trajectory. When two uncorrelated systems do not interact
with each other, each must evolve in time independently of the other.

In addition, if at some instant of time two subsystems A and B, not necessarily
non-interacting, are in independent states, then the instantaneous rates of change of
the subsystem’s entropy functionals −kBTr(ρA ln ρA) and −kBTr(ρB ln ρB) must both be
nondecreasing in time.

8. Correlations and locality. Strong separability

Two non-interacting subsystems A and B initially in correlated states (possibly due to a
previous interaction that has then been turned off) should each proceed in time towards
less correlated states or, at least, maintain the same level of quantum entanglement. The
generation of quantum entanglement between interacting subsystems should emerge only
through the Schrödinger-von Neumann term −i[H, ρ]/~ of the equation of motion, whereas
the other terms, that might entail loss of correlations between subsystems, must not be able to
create them. This condition is perhaps too strong and its validity for our equation is still only
conjectural. In any case, the dynamics should not generate locality problems, i.e., faster-than-
light communication between noninteracting subsystems, even if in entangled or correlated
states. In other words, when subsystem A is not interacting with subsystem B, it should
never be possible to influence the local observables of A by acting only on the interactions
within B, such as switching on and off parameters or measurement devices within B. This
does not mean that existing correlations between A and B established by past interactions
should have no influence whatsoever on the time evolution of the local observables of either
A or B. In particular, we see no physical reason to request that two different states ρ and ρ′

such that ρ′A = ρA should evolve in such a way that dρ′A/dt = dρA/dt whenever A is isolated
(but not uncorrelated) from the rest of the overall system. For example, state ρ′ could be the
maximum entropy stable equilibrium state (and, therefore, ρ′ = ρ′A⊗ρ′B , dρ′/dt = 0) whereas
in state ρ subsystems A and B could be correlated and evolving in time towards the stable
equilibrium state or ρ could even be a pure entangled state evolving along a unitary trajectory
according to Condition 3 above, and therefore it would never reach stable equilibrium.

Appendix B. Lyapunov stability and thermodynamic stability

The condition concerning stability of the thermodynamic equilibrium states is extremely
restrictive and requires further discussion.

In order to implement Condition 5 in Appendix A, we need to establish the relation
between the notion of stability implied by the second law of thermodynamics [32, 33] and the
mathematical concept of stability. An equilibrium state is stable, in the sense required by the
second law, if it can be altered to a different state only by interactions that leave net effects
in the state of the enviromment. We call this notion of stability global stability. The notion
of stability according to Lyapunov is called local stability.

We denote the trajectories generated by the dynamical law on our state domain by u(t, ρ),
i.e., u(t, ρ) denotes the state at time t along the trajectory that at time t = 0 passes through
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state ρ. A state ρe is an equilibrium state if and only if u(t, ρe) = ρe for all times t. An
equilibrium state ρe is locally stable (according to Lyapunov) if and only if for every ε > 0
there is a δ(ε) > 0 such that d(ρ, ρe) < δ(ε) implies d(u(t, ρ), ρe) < ε for all t > 0 and every
ρ, i.e., such that every trajectory that passes within the distance δ(ε) from state ρe proceeds
in time without ever exceeding the distance ε from ρe. Conversely, an equilibrium state ρe is
unstable if and only if it is not locally stable, i.e., there is an ε > 0 such that for every δ > 0
there is a trajectory passing within distance δ from ρe and reaching at some later time farther
than the distance ε from ρe.

The Lyapunov concept of instability of equilibrium is clearly equivalent to that of
instability stated in thermodynamics according to which an equilibrium state is unstable
if, upon experiencing a minute and short lived influence by some system in the environment
(i.e., just enough to take it from state ρe to a neighbouring state at infinitesimal distance δ),
proceeds from then on spontaneously to a sequence of entirely different states (i.e., farther
than some finite distance ε).

It follows that the concept of stability in thermodynamics implies that of Lyapunov local
stability. However, it is stronger because it also excludes the concept of metastability. Namely,
the states of equilibrium thermodynamics are global stable equilibrium states in the sense
that not only they are locally stable but they cannot be altered to entirely different states
even by means of interactions which leave temporary but finite effects in the environment.
Mathematically, the concept of metastability can be defined as follows. An equilibrium state
ρe is metastable if and only if it is locally stable but there is an η > 0 and an ε > 0 such that
for every δ > 0 there is a trajectory u(t, ρ) passing at t = 0 between distance η and η+ δ from
ρe, η < d(u(0, ρ), ρe) < η + δ, and reaching at some later time t > 0 a distance farther than
η + ε, d(u(t, ρ), ρe) ≥ η + ε. Thus, the concept of global stability implied by the second law is
as follows. An equilibrium state ρe is globally stable if for every η > 0 and every ε > 0 there is
a δ(ε, η) > 0 such that every trajectory u(t, ρ) with η < d(u(0, ρ), ρe) < η+δ(ε, η), i.e., passing
at time t = 0 between distance η and η + δ from ρe, remains within d(u(t, ρ), ρe) < η + ε for
every t > 0, i.e., proceeds in time without ever exceeding the distance η + ε.

The second law requires that for each set of values of the invariants Tr(ρH) and Tr(ρGi)
(as many Gi’s as required by the structure of the system), and of the parameters embedded in
the Hilbert space H and the Hamiltonian H describing the external forces (such as the size of
a container), there is one and only one globally stable equilibrium state. Thus, the dynamical
law may admit many equilibrium states that all share the same values of the invariants and
the parameters, but among all these only one is globally stable, i.e., all the other equilibrium
states are either unstable or metastable.

Interestingly, we may use this condition to show that a unitary (Hamiltonian) dynamical
law would be inconsistent with the second-law stability requirement. A unitary dynamical law
in the augmented kinematics would be expressed by an equation of motion i~ρ̇ = [H, ρ] with
trajectories u(t, ρ) = U(t)ρU−1(t) with U(t) = exp(−itH/~). Such a dynamical law would
admit as equilibrium states all the states ρe such that ρeH = Hρe. Of these states there
are more than just one for each set of values of the invariants. With respect to the metric
d(ρ1, ρ2) = Tr|ρ1−ρ2|, it is easy to show that every trajectory u(t, ρ) would be equidistant from
any given equilibrium state ρe, i.e., d(u(t, ρ), ρe) = d(u(0, ρ), ρe) for all t and all ρ. Therefore,
all the equilibrium states would be globally stable and there would be more than just one for
each set of values of the invariants, thus violating the second-law requirement.

The entropy functional −kBTr(ρ ln ρ) plays a useful role in proving the stability of the
states of equilibrium thermodynamics [(32)] provided that the dynamical law guarantees that
−kBTr[u(t, ρ) lnu(t, ρ)] ≥ −kBTr(ρ ln ρ) for every trajectory, i.e., provided Condition 4 above
is satisfied. The proof of this is nontrivial and is given in [32] where, however, we also show
that the entropy functional is not a Lyapunov function, even if, in a strict sense that depends
on the continuity and the conditional stability of the states of equilibrium thermodynamics,
it does provide a criterion for the stability of these states. Anyway, even if the entropy were
a Lyapunov function, this would suffice only to guarantee the local stability of the states
of equilibrium thermodynamics but not to guarantee, as required by the second law, the
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instability or metastability of all the other equilibrium states.

Appendix C. Characteristic times

Using (3), the rate of change of the mean functional f(ρ) = Tr(ρF ) may be written as

df(ρ)
dt

= Tr
(

dρ
dt
F

)
= 2 (

√
ρF |E ) . (C.1)

For the Schrödinger–von Neumann evolution, the characteristic time of change of f(ρ)
may be defined as [39]

1
τ2
FH

=
[df(ρ)/dt]2

〈∆F∆F 〉
=

4
(√
ρ∆F |EH

)2
〈∆F∆F 〉

. (C.2)

Because operators
√
ρ∆F/

√
〈∆F∆F 〉 are unit norm, in the sense that (

√
ρ∆F |√ρ∆F )/〈∆F∆F 〉 =

1, it follows that the characteristic times τFH are bounded by the value attained for an operator
F such that

√
ρ∆F is in the same direction as EH , i.e., such that
√
ρ∆F√
〈∆F∆F 〉

=
EH√

(EH |EH )
. (C.3)

Therefore,
1

τ2
FH

≤ 4 (EH |EH ) =
1
τ2
H

. (C.4)

For this reason, in (14) we take τH equal to the lower bound of the τFH ’s.
By analogy, but considering separately the contribution of each subsystem to the overall-

system dynamics embedded in our nonlinear dynamics, we define the characteristic time of
the irreversible part of the rate of change of the mean functional f(ρ) = Tr(ρF ) due to the
J-th constituent subsystem as

1
τ2
FDJ

=
[Df(ρ)/Dt]2

J

〈∆F∆F 〉J
=

4
(√

ρJ(∆F )J |EDJ
)2

〈∆F∆F 〉J
. (C.5)

Again, because operators √ρJ(∆F )J/
√
〈∆F∆F 〉J are unit norm, in the sense that

(√ρJ(∆F )J |√ρJ(∆F )J)/〈∆F∆F 〉J = 1, it follows that the characteristic times τFDJ are
bounded by the value attained for an operator F such that √ρJ(∆F )J is in the same direction
as EDJ , i.e., such that

√
ρJ(∆F )J√
〈∆F∆F 〉J

=
EDJ√

(EDJ |EDJ )
. (C.6)

Therefore,
1

τ2
FDJ

≤ 4 (EDJ |EDJ ) =
1
τ2
DJ

. (C.7)

For this reason, in (62) and (123) we take τD and τDJ equal to the respective lower bounds
of the τFDJ ’s.
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Appendix D. Special form of the equation of motion

If, for a given state operator ρ, we construct the set {√ρXj} so as to be an orthogonal extension
of the orthonormal subset {√ρAi}, i.e., with Xi = Ai for i ≤ a and (

√
ρXi|
√
ρXj) = δij for all

i and j, then D = −
∑
j>a fj

√
ρXj [(45)] and the one-constituent equation of motion reduces

to the (only apparently linear) form

dρ
dt

= − i
~

[H, ρ] +
1

2τ(ρ)

∑
j>a

fj(ρ) {Xj(ρ), ρ} , (D.1)

where the dependences of fj , Xj and τ on ρ are evidenced in order to emphasize the
nonlinearity.

For such special choice of the Xj ’s, assuming X1 = I, we have x1(ρ) = Tr(ρ) = 1,
xi6=1(ρ) = Tr(ρXi6=1) = 0, 〈∆X1∆Xi〉 = 0, 〈∆Xi6=1∆Xj 6=1〉 = δij , Lij(ρ) = 0 and
Dxi(ρ)/Dt = 0 for i or j ≤ a, Lij(ρ) = δij/τ(ρ) and Dxi(ρ)/Dt = fi(ρ)/τ(ρ) for i and
j > a, so that

ds(ρ)
dt

=
kB

τ(ρ)

∑
k>a

fk(ρ)2 , (D.2)

τ(ρ)|min =
~

2〈∆H∆H〉

√∑
k>a

fk(ρ)2 , (D.3)

ds(ρ)
dt

∣∣∣∣
max

=
2kB

~
√
〈∆H∆H〉

√∑
k>a

fk(ρ)2 , (D.4)

where in the last two equations we made use of (26), (65) and (66) with strict equality.
In view of the dependence of the Xj ’s on ρ and, therefore, on time, the apparently simple

form of (D.1) may not be as useful as it seems.

Appendix E. Extension to time-varying rates of the generators of the motion

For the purposes of quantum thermodynamics, in our view the irreversile part of the equation
of motion should not account for rates of change of the mean values of the generators of the
motion other than through the Hamiltonian term, consistently with all the results of standard
QM.

Nevertheless, the mathematical extension of (1) and (2) to (artificially) imposed rates
ṙi 6= 0 (arbitrarily specified as functions of time) is straightforward and may be useful
in modeling applications or other frameworks [6, 17]. It does emerge naturally from the
maximization problem (47); it does so, however, implicitly, through substitution of (70) back
into the constraint Eqs. (68b).

The explicit form in terms of projections and, therefore, the equivalent expressions by
means of Gram determinants amount to assuming, for the operator D in the equation of
motion, instead of (1c) or the equivalent (21),

D = [
√
ρ ln ρ]⊥L{√ρRi} +

∑
j

αj [
√
ρRj ]⊥L{√ρ ln ρ,

√
ρRi6=j} , (E.1)

where the explicit expression for the j-th term in the summation is obtained from the ratio of
determinants in (21c) by interchanging everywhere

√
ρ ln ρ with

√
ρRj so that

αj = τ(ρ) ṙj
Γ(
√
ρ ln ρ, {√ρRi6=j})

Γ(
√
ρ ln ρ, {√ρRi})

. (E.2)

Geometrically, the additional terms are in the steepest-rj-ascent direction compatible with
maintaining constant the mean values of the other generators and the entropy.
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Analogous obvious extension to the composite system case can be obtained by assuming
for the operator DJ , instead of (2c),

DJ = [
√
ρJ(B ln ρ)J ]⊥L{√ρJ (Ri)J}

+
∑
j

αJj [
√
ρJ(Rj)J ]⊥L{√ρJ (B ln ρ)J ,

√
ρJ (Ri6=j)J} , (E.3)

with the αJj ’s such that

ṙj =
M∑
J=1

αJj
τJ(ρ)

Γ(√ρJ(B ln ρ)J , {√ρJ(Ri)J})
Γ(√ρJ(B ln ρ)J , {√ρJ(Ri6=j)J})

. (E.4)

Appendix F. Extension to other entropy or mean value functionals

For the purposes of quantum thermodynamics, in our view the necessary entropy functional
is −kBTr(ρ ln ρ), for the reasons given in [7, 9, 11, 13, 16, 18, 24].

However, in view of the recent literature on nonextensive quantum theories, as suggested
also in [3], it may be useful to note that the entire formalism of our equation of motion can
be readily reformulated in the case of any other well-behaved entropy functional s(ρ) and set
of nonlinear generator functionals ri(ρ).

For the single constituent system it suffices to substitute throughout the operator
(−2kB

√
ρI) + 2

√
ρS = (−2kB

√
ρ) − 2kB

√
ρ ln ρ (notice that in the Gram determinants the

addenda in parantheses cancel out) with the new entropy gradient operator, ∂s(ρ)/∂
√
ρ, and

the operators 2
√
ρRi with [operators which when symmetrized ({A,A†}/2) are equal to] the

gradient operators of the new generator functionals, ∂ri(ρ)/∂
√
ρ.

However, for a composite system, consistently with the nonextensivity of these theories,
it may be difficult or not at all possible to identify the operators corresponding to (S)J and
(Ri)J representing the subsystems’ local perceptions of the entropy and the generators.

Appendix G. A noteworthy equation for a composite system that fails to meet a
separability condition

It is interesting to note that the role of the √ρJ operators in (2) [and that of
√
ρ in (1)]

is formally useful but only auxiliary, because wherever there is a √ρJ , another √ρJ comes
in front or behind it. In fact, in [10] the equation of motion was in terms of ρJ only. We
realized the usefulness of the √ρJ formalism only later, in connection with the proof of the
steepest-entropy-ascent geometric property [13].

By allowing a more relevant role of the
√
ρ operator [30], an alternative to the construction

in (108) might appear formally better, and suggest the apparently alternative equation of
motion based on the following definitions

ED = −
M∑
J=1

1
2τJ(ρ)

D′
J
⊗√ρJ , (G.1)

(
√
ρF )J√ = TrJ [(IJ⊗

√
ρJ)
√
ρF ] , (G.2)

D′
J

= [(
√
ρ ln ρ)J√]⊥L{(√ρ)J√,(

√
ρH)J√,[(

√
ρGi)J√]} . (G.3)

In fact, it can be readily verified that for a given F on H with [F,H] = 0 the rate of change of
Tr(ρF ) would be zero if and only if (

√
ρF )J√ is in L{(√ρ)J√, (

√
ρH)J√, [(

√
ρGi)J√]}, and so Tr(ρ),

Tr(ρH), and Tr(ρGi) would be conserved. The expressions for the rate of entropy generation,
the Onsager relations and the other results would be almost identical to those obtained from
our equation, except for the substitution throughout of √ρJ(F )J with (

√
ρF )J√.

However, the resulting dynamics would fail to satisfy at least the important property
expressed by (78), because it can be verified that if H = HJ⊗IJ + IJ⊗HJ but ρ 6= ρJ⊗ρJ
then separate conservation of the non-interacting subsystem’s energy would not be guaranteed.

Symmetries in Science XIV IOP Publishing
Journal of Physics: Conference Series 237 (2010) 012004 doi:10.1088/1742-6596/237/1/012004

30



References

[1] Domokos G and Kovesi-Domokos S 1999 J. Phys. A 32 4105
[2] Czachor M 1998 Phys. Rev. A 57 4122; Czachor M and Kuna M 1998 Phys. Rev. A 58 128; Czachor M

and Naudts J 1999 Phys. Rev. E 59 R2497
[3] Gheorghiu-Svirschevski S 2001 Phys. Rev. A 63 022105 and the Addendum, Gheorghiu-Svirschevski S

2001 Phys. Rev. A 63 054102
[4] For an account of the vaste literature on these applications see the following papers and references therein:

Weinberg S 1989 Phys. Rev. Lett. 62 485; Stern A, Aharonov Y and Imry Y 1990 Phys. Rev. A 41
3436; Ekert A K 1991 Phys. Rev. Lett. 67 661; Holyst J A and Turski L A 1992 Phys. Rev. A 45 6180;
Vidal G and Werner R F 1993 Phys. Rev. A 65 032314; Unruh W G and Wald R M 1995 Phys. Rev.
D 52 2176; Bennett C H et al 1996 Phys. Rev. Lett. 76 722; Grigorescu M 1998 Physica A 256 149;
Miranowicz A, Matsueda H and Wahiddin M R B 2000 J. Phys. A 33 5159

[5] Englman R 2002 appendix in Lemanska M and Jaeger Z 2002 Physica D 170 72
[6] Aerts D et al 2003 Phys. Rev. E 67 051926
[7] Hatsopoulos G N and Gyftopoulos E P 1976 Found. Phys. 6 15; Hatsopoulos G N and Gyftopoulos E P

1976 Found. Phys. 6 127; Hatsopoulos G N and Gyftopoulos E P 1976 Found. Phys. 6 439; Hatsopoulos
G N and Gyftopoulos E P 1976 Found. Phys. 6 561

[8] We use the term “revolutionary” in the sense introduced by Kuhn T S 1970 The Structure of Scientific
Revolutions (Chicago: The University of Chicago Press)
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