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Abstract – Within the recent revival of interest in quantum heat engines between two thermal
reservoirs whereby the working substance is a two-level system, it has been suggested that the
celebrated Carnot heat-to-work conversion efficiency 1− (Tlow/Thigh) cannot be reached. Contrary
to this suggestion, we show that reaching the Carnot bound not only is not impossible and does
not require an infinite number of heat baths and infinitesimal processes, but it is also within reach
of the current experimental techniques. It is sufficient to cycle smoothly (slowly) over at least three
(in general four) values of the tunable energy level gap Δ of the system, by varying Δ not only along
the isoentropics, but also along the isotherms. This is possible by means of the recently suggested
maser-laser tandem technique. We base our proof on the general thermodynamic equilibrium
properties of a two-level system together with a careful distinction between the Gibbs relation
dE = T dS+(E/Δ)dΔ and the energy balance equation dE = δQ←− δW→. We derive bounds
to the net-work to high-temperature-heat ratio (energy efficiency) for a Carnot cycle and for the
“inscribed” Otto-like cycle. By representing these cycles on useful thermodynamic diagrams, we
infer and confirm important aspects of the second law of thermodynamics.

Copyright c© EPLA, 2012

Introduction. – Recent studies [1–7] of Maxwell
demons, quantum heat engines (often called Carnot
engines even if the cycle is not a Carnot cycle), and
quantum heat pump, refrigeration and cryogenic cycles
operating between two heat sources at Thigh and Tlow find
maximal efficiencies lower than the celebrated Carnot net-
work to high-temperature-heat ratio, 1− (Tlow/Thigh).
In particular, ref. [4], in studying a specific two-iso-
energy-gap/two-isoentropic-processes Otto-type cycle for
a spin-1/2 system, seems to hint that the quantum nature
of the working substance implies a fundamental bound to
the thermodynamic efficiency of heat-to-work conversion,
lower than the celebrated Carnot bound.
Pioneering studies [8] of quantum equivalents of the

Carnot cycle for multilevel atomic and spin systems
appeared soon after the association of negative tempera-
tures with inverted population equilibrium states of pairs
of energy levels [9,10] and the experimental proof of the
maser principle [11].
In tune with these early studies, here we show [12] that

a Carnot cycle for a two-level system is possible, at least in

(a)E-mail: beretta@ing.unibs.it

principle, but requires cycling over a range of values of the
energy level gap Δ. A critical and characteristic feature
of this cycle is that along the isotherms the value of Δ
must vary continuously and hence the two-level system
must experience simultaneously a work and a heat inter-
action. Usually, the different typical time scales under-
lying mechanical and thermal interactions imply funda-
mental technological difficulties that are among the main
reasons why the Carnot cycle has hardly ever been engi-
neered with normal substances. In the framework of quan-
tum thermodynamics the understanding and modeling of
mechanical and thermal interactions is a current research
topic, having to do with entanglement, decoherence [13],
relaxation [14], adiabatic (unitary) accessibility [15], but a
recent suggestion by Scully [1] indicates that the use of a
“maser-laser tandem” may provide an effective experimen-
tal means to implement the simultaneous heat and work
interaction by smooth (slow1) continuous change of the

1The energy level gap ∆ must be tuned slowly so as to maintain
the system along a sequence of thermodynamic-equilibrium states,
thereby avoiding irreversible relaxation effects that would obtain if
fast tuning of ∆ drives the system off equilibrium. Such kind of
inefficiencies are discussed in refs. [5,6].
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magnetic field necessary to realize the isotherms of our
Carnot cycle: the maser serves as the incoherent (heat)
energy and entropy exchange mechanism, the laser as the
coherent (work) energy exchange.
Consider a two-level system with a one-parameter

Hamiltonian H(Δ) such that the energy levels are
ε1 =−Δ/2 and ε2 =Δ/2, for example a spin-1/2 system,
in a magnetic field of intensity B, with Δ= 2µBB and
µB = e�/2me = 9.274× 10

−24J/T Bohr’s magneton.
For our purposes here it suffices to consider the canon-

ical Gibbs states (the stable equilibrium states of quan-
tum thermodynamics), i.e., the two-parameter family of
density operators ρ(T,Δ) with eigenvalues p and 1− p,
mean value of the energy E, and entropy S given by the
relations

ρ(T,Δ)=
exp[−H(Δ)/kBT ]

Tr exp[−H(Δ)/kBT ]
, (1)

p=
1

1+exp(Δ/kBT )
=
1

2
+
E

Δ
, (2)

E =Trρ(T,Δ)H(Δ) =
Δ

2
tanh

[

−
Δ/2

kBT

]

, (3)

S = −kBTrρ ln ρ=−kB[p ln p+(1− p) ln(1− p)]

= −kB

[(

1

2
+
E

Δ

)

ln

(

1

2
+
E

Δ

)

+

(

1

2
−
E

Δ

)

ln

(

1

2
−
E

Δ

)]

. (4)

We note that the thermodynamic-equilibrium “fundamen-
tal relation” S = S(E,Δ) for this simplest system takes
the explicit form S = S(E/Δ) given by the last of eqs. (4).
As is well known, all equilibrium properties can be derived
from the fundamental relation. We also note the following
dependences on the two parameters (temperature T and
energy level gap Δ): eq. (3) implies that the ratio E/Δ
depends only on the ratio Δ/T , therefore, eqs. (2) and (4)
imply that also p and S are functions of the ratio Δ/T
only.
It is clear from (3) and (4) that for an isoentropic

process,

S = const ⇔
E

Δ
= const ⇔

Δ

T
= const ⇔

E

T
= const

(5)
and, hence, also the Massieu characteristic function M =
S− (E/T ) is constant. More generally, by differentiat-
ing the second of eqs. (4) and using eqs. (2), (3) and
the identity ln[(1+ tanhx)/(1− tanhx)] = 2x with x=
−Δ/2kBT , we find

dS = −kB ln
p

1− p
dp=−kB ln

1+2E/Δ

1−2E/Δ
d
E

Δ

=
Δ

T
d
E

Δ
=
1

T
dE−

E

TΔ
dΔ, (6)

therefore, the following Gibbs relation holds for all
processes in which the initial and final states of the two-
level system are neighboring thermodynamic-equilibrium
states:

dE = T dS+(E/Δ)dΔ. (7)

Next we write the energy balance equation assuming
that the system experiences both net heat and work
interactions [16] with other systems in its environment
(typically a heat bath or thermal reservoir at some
temperature TQ, and a work sink or source, respectively),

dE = δQ←− δW→, (8)

where we adopt the standard notation by which a left
(right) arrow on symbol δQ (δW ) means heat (work)
received by (extracted from) the system, when δQ←

(δW→) is positive (negative).
Comparing the right-hand sides of eqs. (7) and (8),

the following identification of addenda, δQ← = T dS and
δW→ = (−E/Δ)dΔ is tempting, but not valid in general
unless we make further important assumptions. To prove
and clarify this last assertion, we consider two counterex-
amples, in both of which the system changes between
neighboring thermodynamic-equilibrium states so that
both eqs. (7) and (8) hold.
As a first counterexample, consider a system which

experiences a work interaction with no heat interaction
(δQ← = 0). The energy change dE is provided by the work
interaction only, while the entropy change dS, required
to maintain the system at thermodynamic equilibrium, is
generated within the system by irreversible relaxation and
decoherence. In this case, the entropy balance equation is
dS = δSgen, where δSgen denotes the entropy generated by
irreversibility. The work is

δW→ =−
E

Δ
dΔ−T δSgen

[

�−
E

Δ
dΔ if T > 0

]

,

(9)
and, of course, the process is possible only if dS � 0.
As a second counterexample, consider a system which

experiences no (net) work interaction and a heat interac-
tion with a source at temperature TQ so that the entropy
exchanged with the heat source is δS← = δQ←/TQ. In this
case, the energy change dE is provided by the heat interac-
tion only, while the entropy change dS required to main-
tain the system at thermodynamic equilibrium is partly
provided by the heat source and partly generated within
the system by irreversibility (dS = δQ←/TQ+ δSgen). The
heat is

δQ← = T dS+
E

Δ
dΔ [�= T dS if dΔ �= 0], (10)

and the process is possible, for T > 0, only if

E

Δ
dΔ�

(

1−
T

TQ

)

dE. (11)

The two examples show clearly that the correct associa-
tion between the work and heat exchanged, and the energy
and entropy changes, cannot be made by just compar-
ing eqs. (7) and (8) without considering also the entropy
balance equation

dS =
δQ←

TQ
+ δSgen, with δSgen � 0, (12)
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written here assuming the system experiences heat inter-
action(s) with a single heat source, bath or thermal reser-
voir at temperature TQ. This balance equation specifies
unambiguously what part of the entropy change is due to
exchange via heat interaction(s) and what part is gener-
ated spontaneously within the system due to its internal
dynamics (relaxation, decoherence). Eliminating dE and
dS from eqs. (7), (8) and (12), we find

δW→ =−
E

Δ
dΔ+

(

1−
T

TQ

)

δQ←−T δSgen. (13)

This reduces to δW→ = (−E/Δ)dΔ if and only if

δSgen =
δQ←

T
−
δQ←

TQ
, (14)

i.e., only when entropy generation is due exclusively
to the heat interaction across the finite temperature
difference between system and heat source, and not to
other irreversible spontaneous processes induced in the
system by other interactions that tend to pull the system
off thermodynamic equilibrium (see footnote 1).
Equation (14) and the condition δSgen � 0 imply that

the system can receive heat only if −1/TQ �−1/T , which
for positive temperatures implies TQ � T . As evidenced
by Ramsey [10], −1/T measures the thermodynamic equi-
librium escaping tendency of energy by heat interaction,
and is a better indicator of “hotness” than the tempera-
ture T because it validly extends to negative-temperature
states. Figure 1 shows graphs of energy E, entropy S, and
Massieu function plotted as functions of −1/kBT and Δ,
as well as graphs of E, S and Δ vs. S.
Each graph in fig. 1 shows a Carnot cycle, i.e., a

sequence of an isothermal process 1-2 at a high tempera-
ture Thigh, an isoentropic 2-3, another isothermal process
at a temperature Tlow <Thigh, and another isoentropic 4-1.
Because S = S(Δ/T ) (S decreasing with Δ/T for T > 0),
it is clear that the isoentropic changes between Tlow and
Thigh and the isothermal changes between S1 = S4 and
S2 = S3 are possible only by changing the energy level
gap Δ. Therefore, to have S2 >S1, we need Δ2/Thigh =
Δ3/Tlow <Δ4/Tlow =Δ1/Thigh, i.e.,

Δhigh
Δlow

[

Tlow
Thigh

]2

=
Δ4
Δ2
>
Δ4
Δ1
=
Tlow
Thigh

=
Δ3
Δ2
>
Δlow
Δhigh

,

(15)
where, noting that Δ3 <Δ2 <Δ1 and Δ3 <Δ4 <Δ1, we
set Δlow =Δ3 and Δhigh =Δ1. Relations (15) imply (see
also figure legend) general bounds on the net-work to high-
temperature-heat ratio (Carnot coefficient),

1−
Δhigh
Δlow

[

Tlow
Thigh

]2

<
W→net,1234
Q←12

= 1−
Tlow
Thigh

< 1−
Δlow
Δhigh

.

(16)
Notice that Δ2 ≷Δ4 depending on whether
Δlow/Δhigh ≷ (Tlow/Thigh)

2. Indeed, we may choose
arbitrarily Thigh, Tlow <Thigh, Δhigh =Δ1, and

Δlow =Δ3 <ΔhighTlow/Thigh. Then, we must set
Δ2 =ΔlowThigh/Tlow and Δ4 =ΔhighTlow/Thigh. To
obtain a Carnot cycle between only three values of Δ, we
may set Δlow =Δhigh(Tlow/Thigh)

2 so that Δ2 =Δ4.
Of course, if the cycle is reversed, we obtain, instead of

a heat-engine effect, a refrigeration or heat-pump effect.
Each graph in fig. 1 shows also an Otto-type cycle [4,6]

bound by the same Thigh and Tlow, i.e., a sequence of an
iso-energy-gap process 1′-2′ at Δ′high, an isoentropic 2

′-3′,
another iso-energy-gap process 3′-4′ at Δ′low, and another
isoentropic 4′-1′. Here, the fact that S = S(Δ/T ) is a
decreasing function of Δ/T for T > 0, implies that to have
S2′ >S1′ , we need Δ

′

high/Thigh =Δ
′

low/T3′ <Δ
′

high/T1′ =
Δ′low/Tlow, i.e.,

Thigh
Tlow

[

Δ′low
Δ′high

]2

=
T3′

T1′
>
T3′

Thigh
=
Δ′low
Δ′high

=
Tlow
T1′
>
Tlow
Thigh

.

(17)
Relations (17) imply (see also figure legend) general
bounds on the net-work to high-temperature-heat ratio,

1−
Thigh
Tlow

[

Δ′low
Δ′high

]2

<
W→net,1′2′3′4′

Q←1′2′
= 1−

Δ′low
Δ′high

<1−
Tlow
Thigh

.

(18)
Notice that T3′ ≷ T1′ depending on whether (Δ

′

low/
Δ′high)

2 ≷ Tlow/Thigh. Thus, to obtain a special Otto-like

cycle with T3′ = T1′ and efficiency 1− (Tlow/Thigh)
1/2,

we may set (Δ′low/Δ
′

high)
2 = Tlow/Thigh so that

Δ2 =Δ4. Notice also that in terms of the iso-
energy-level gaps of the Carnot cycle in which the
Otto cycle is inscribed, the case T3′ >T1′ obtains for
(Tlow/Thigh)

5/2 <Δlow/Δhigh < (Tlow/Thigh)
3/2. In this

range, the Otto cycle cannot be run in reverse (refrigera-
tion or heat-pump) mode between two heat baths, for in
such mode the hot bath temperature must be at most T1′

and the cold bath at least T3′ .
Because the iso-energy-gap processes (iso-magnetic field

for spin-1/2 system) which characterize the Otto-type
cycle are not isotherms, if they are obtained [4] by
contacts with heat baths at Thigh and Tlow, respectively,
they involve entropy generation due to irreversibility
resulting from the heat exchange (see eq. (14)) across
a large temperature difference (decreasing as T1′→ Thigh
and T3′→ Tlow). These and other realistic irreversibilities
are modeled in ref. [6] with a Kossakowski-Lindblad-type
linear dissipative term in the quantum dynamical law,
as a means to describe relaxation to equilibrium and
decoherence, required for example to decouple the system
from the heat source, i.e., to model dynamically the heat
interactions. The only way to avoid these inefficiencies
is the impractical sequence of infinitesimal contacts with
an infinite collection of hot heat baths covering the
temperature range between T1′ and Thigh and an infinite
collection of cold heat baths covering the temperature
range between T3′ and Tlow.
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Fig. 1: (Color online) Graphs of thermodynamic equilibrium properties of a spin-1/2 system. Panels (a) and (c): graphs of
energy E, entropy S, Massieu function M = S− (E/T ) vs. −1/kBT at four values of the energy level gap Δ. Panels (b)
and (d): graphs of energy E and temperature T vs. entropy S at four values of Δ, and of the energy level gap Δ vs. S
at four values of temperature. The four values of Δ in (a) and (b) correspond to magnetic-field intensities of 1600, 500,
250, and 800T, respectively; in (b) and (d) of 1600, 1000, 500, and 800T (these extremely large values are chosen for
ease of visualization at ordinary temperatures and intermediate entropies). On each graph, the 1-2-3-4 paths represents a
Carnot cycle: isotherm 1-2 at Thigh = 600K, isoentropic 2-3, isotherm 3-4 at Tlow = 300K, isoentropic 4-1. For these cycles,
Q←12 = Thigh(S2−S1), W

←

12 =E2−E1−Q
←

12, W
←

23 =E3−E2, Q
→

34 = Tlow(S2−S1), W
→

34 =E3−E4−Q
→

34, W
→

41 =E4−E1 and,
therefore, W→

net,1234 =W
→

34 +W
→

41 −W
←

12 −W
←

23 = (Thigh−Tlow)(S2−S1) =Q
←

12[1− (Tlow/Thigh)]. The 1
′-2′-3′-4′ paths (2′ = 2

and 4′ = 4 in (c) and (d)) represent instead an Otto-type cycle of the kind considered in refs. [4,6]: iso-energy-gap process 1′-2′

with T � Thigh = 600K, isoentropic 2
′-3′, iso-energy-gap 3′-4′ with T � Tlow = 300K, isoentropic 4

′-1′. For these Otto-type cycles,
Δ1′ =Δ2′ =Δ

′

high =max(Δ2,Δ4), Δ3′ =Δ4′ =Δ
′

low =min(Δ2,Δ4), Q
←

1′2′ =E2′ −E1′ , W
→

4′1′ =E4′ −E1′ =E1′ [(Δ
′

low/Δ
′

high)−
1], W←

2′3′ =E3′ −E2′ =E2′ [(Δ
′

low/Δ
′

high)− 1] and, therefore, W
→

net,1′2′3′4′ =W
→

4′1′ −W
←

2′3′ =Q
←

1′2′ [1− (Δ
′

low/Δ
′

high)].

In this paper, instead, by showing the feasibility of
a Carnot cycle for a two-level system, with no need of
sequences of infinitesimal heat exchanges with an infinite
number of heat baths, we show that the quantum nature
of the working substance does not impose any fundamen-
tal bound, other than the celebrated Carnot bound, to the
thermodynamic efficiency of heat-to-work conversion when
two different temperature thermal reservoirs are avail-
able. The possibility of engineering simultaneously heat
and work interactions as needed for the isotherms of the

Carnot cycle seems within the reach of the current exper-
iments, e.g., via a maser-laser tandem technique [1]. The
Carnot cycle “efficiency” is higher, as it should, than that
of the “inscribed” Otto-like cycle at the center of recent
studies [1–6].
Only twenty years ago quantum thermodynamics and

pioneering proposals to incorporate the second law of
thermodynamics into the quantum level of description
were considered “adventurous” schemes [17,18]. Discus-
sions in quantum terms of old thermodynamic problems
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such as that of “unitary accessibility” [15] or of defining
entropy for non-equilibrium states, were perceived as
almost irrelevant speculations. Today’s experimental
techniques bring thermodynamics questions back to the
forefront of quantum theory. Remarkably, the rigorous
application of energy and entropy balances, provides ideas
and guidance, and the second law remains a perpetual
source of inspiration towards the discovery of new physics.
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