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What is the Third Law?*
We discuss entropies of systems at very low temperatures or, equivalently, the third
law of thermodynamics. We conclude that definitive values of such entropies can be
established only by experiments on systems with very few degrees of freedom, such as
one-particle systems. [DOI: 10.1115/1.4026380]

1 Introduction

In contemporary experiments, temperatures of a few nanokel-
vins have been measured [1], and single ions have been trapped
and laser-cooled within suitable electrodes [2]. Such experiments
call for a theoretical understanding of the behavior of
systems with very few particles, and at very low entropies and
temperatures.

In most expositions of thermodynamics, entropy is defined only
for systems that consist of a very large number of particles in
equilibrium states [3], the third law is stated in the form either
“the entropy vanishes at zero temperature” [4] or “the entropy at
zero temperature depends on the ground-energy degeneracy”
[5–10] without reference to the statement of the second law, and
opinions differ about whether the third law is useless [11] or
useful [12,13]. For a system with a large number of particles, the
difference between the two forms of the third law is negligible.

In our exposition [14], entropy is defined for all systems,
including a system consisting of one particle only, and for all
states, including nonequilibri�um states; the third law is useful and
certain of its aspects are direct consequences of the second law;
and the precise form of these aspects can be decided only by
experiments on systems with very few particles.

In this paper, we present the third law in the context of our
exposition. The statement of the second law is discussed in Sec-
tion 2, absolute entropy in Section 3, the third law in Section 4,
the quantum-theoretic underpinning of the third-law in Section 5,
a modified statement of the second law in Section 6, and conclu-
sions in Section 7. Complete definitions of terms, and elaborate
proofs of many assertions herein are found in Ref. 14.

2 The Second Law

The essence of the second law of thermodynamics is contained
in the 1824 pioneering study by the French physicist Nicolas
Leonard Sadi Carnot (1796–1832) entitled “Refl�exions sur la puis-
sance motrice du feu,” the study that gave birth to the science of
thermodynamics.

Of the many correct statements of the second law, the most
notable are those of the German mathematical physicist Rudolf
Julius Emanuel Clausius (1822–1888), the English physicist
William Thomson, Lord Kelvin (1824–1907), the German physi-
cist Max Karl Ernst Planck (1858–1947), the Greek mathemati-
cian Constantin Carath�eodory (1873–1950), and the American
mechanical engineers George Nicholas Hatsopoulos (1926-) and
Joseph Henry Keenan (1900–1977).

In their pioneering textbook “Principles of General
Thermodynamics,” Wiley (1965), Hatsopoulos and Keenan
argue that all correct statements imply the existence of a stable
equilibrium state for each set of values of energy, amounts of con-

stituents, and parameters—an implication that they take to be the
essential element of the second law. In our work, we adopt a state-
ment of the second law which is an outgrowth of the Hatsopouios-
Keenan statement, and prove explicitly that among its implica-
tions are the Clausius, the Planck-Kelvin, and the Carath�eodory
statements.

We state the second law as follows: “Among all the states of a
system that have a given value E of the energy, and are compati-
ble1 with a given set of values n (¼{n1, n2, …, nr}) of the amounts
of the r constituents, and b (¼ {b1, b2, …, bs}) of the s parameters,
there exists one and only one stable equilibrium state. Moreover,
starting from any state of a system it is always possible to reach a
stable equilibrium state with arbitrarily specified values of
amounts of constituents and parameters by means of a reversible
weight process.”

For systems in which all internal mechanisms capable of chang-
ing the values of the amounts of constituents and the parameters
are disallowed, the only states that are compatible with given
values n and b are the states that have the given values. For these
systems, the first part of the second law can be restated in a
simpler but equivalent form, namely, “Among all the states of a
system with given values of the energy, the amounts of constitu-
ents, and the parameters, there exists one and only one stable
equilibrium state.” For simplicity, we restrict our discussion here
to these systems. Moreover, we assume that the value of the
energy of a system can be increased without limit.

The existence of stable equilibrium states for various conditions
of matter has many theoretical and practical consequences. It is a
major augmentation of the principles of mechanics, essential to
understanding and explaining many phenonena, including the
behavior of systems with very few degrees of freedom, such as a
system consisting of one particle only.

The second part of the statement of the second law is an indis-
pensable premise of the exposition of thermodynamics. Its valid-
ity is essential to that of most basic results, such as the existence
of entropy as a property of any state, be it stable equilibrium or
not, and of temperature as a property of stable equilibrium states
only. Yet, in traditional expositions, this part has never been rec-
ognized explicitly.

*Proceedings of the Florence World Energy Research Symposium
FLOWERS’90, Firenze, Italy, 28 May–1 June 1990 in A Future for Energy, edited
by S. Stecco and M. J. Moran, Pergamon Press, pp. 434–444 (1990). Reprinted with
permission.

1The concept of compatibility of a state with a given set of values of amounts of
constituents and parameters plays a special role in the statement of the second law. It
is defined as follows. A state A1 with values (n)1, (b)1, (P)1, where (P)1 denotes the
set of values of all the properties of the system, is compatible with a given set of
values n of the amounts of constituents and b of the parameters if the two sets (n)1,
(b)1 and n, b are compatible. Two sets of values of amounts of constituents and
parameters (n)1, (b)1 and (n)2, (b)2 are compatible if the change from one set to the
other can occur as a result of the allowed internal mechanisms of the system, such as
chemical reactions, interconnections, and internal forces. For example, if a system
has two compartments of volumes V0 and V00 , respectively, interconnected so as to
satisfy the constraint V0 ¼V00¼ constant, then the two sets of values V01, V001 and
V 02;V

00
2 are compatible if V01 þ V001 þ V02 þ V 002 because then the internal

interconnection between the two volumes allows the change from one set of values,
say, V01 ¼ 3 m3 and V 001 ¼ 5 m3, to the other set of values, say, V02 ¼ 2 m3 and
V 002 ¼ 6 m3. The same two sets of values would not be compatible if the two
compartments were not interconnected.
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Among the implications of the second law are its traditional
statements. In terms of the concepts of stable equilibrium
state and temperature, these statements can be expressed as
follows:

• Clausius’ statement (1850): “No process is possible in which
the sole net effect is the transfer of energy from a system in a
stable equilibrium state at a given temperature to a system in
a stable equilibrium state at a higher temperature.”

• Planck’s statement (1897), which is similar to one of several
statements given by Kelvin: “It is impossible to construct an
engine which will work in a complete cycle, and produce no
effect except the raising of a weight and the transfer of
energy out of a system in a stable equilibrium state.” This
statement is known also as the impossibility of a perpetual-
motion machine of the second kind, impossibility of a
PMM2.

• Carath�eodory’s statement (1909): “In the neighborhood of
any given stable equilibrium state there exist stable equilib-
rium states that cannot be reached by any weight process that
starts from the given state.”

Additional implications of the second law are related to the
notions of creation, annihiliation. and formation reactions.
Another important implication is that for each given set of values
of the amounts of constituents and the parameters there is one and
only one ground-energy state. This state is stable equilibrium, and
has a value of entropy that is independent of the values of n and b
and can be taken equal to zero. In traditional expositions, this
implication of the second law is stated as part of the third law.

What does not follow from the second law is that each of the
ground-energy stable equilibrium states has a temperature equal
to zero. We discuss zero temperature in Section 4.

3 Absolute Entropy

Prior to discussing zero temperature, we introduce a new and
very useful graphical representation of the states of a system on
an energy versus entropy graph [14]. For given values of the
amounts of constituents and the parameters, we project the multi-
dimensional state space of a system on the energy versus entropy
plane. This projection of states includes both stable equilibrium
states and other states that are either nonequilibrium or nonstable
equilibrium. It is not to be confused with the standard graphical
representations of thermodynamic relations which are strictly
applicable to stable equilibrium states only.

For any system, the projection has the shape of the cross-
hatched area shown in Figure 1, namely, all the states that share
the given values of the amounts of constituents and the parameters
have property values that project on the area between the vertical
line denoted as the line of the zero-entropy states, and the curve of
the stable equilibrium states.

A point either in the cross-hatched area or on the vertical line
S¼ 0 represents a large number of states. Each such state has the
same values of amounts of constituents, parameters (such as the
volume V), energy E, and entropy S, but differing values of other
properties, and is not a stable equilibrium state. It can be any type
of state except a stable equilibrium state.

A point on the convex curve of the stable equilibrium states
represents one and only one state. For each such state, the value of
any property is uniquely determined only by the values of the
amounts of constituents, the parameters, and the pair (E, S) of the
point on the curve. The temperature T, defined only for these
states, is represented graphically by the slope of the convex curve
of the stable equilibrium states.

For the same values of the amounts of constituents but a differ-
ent value of one of the parameters, say, the volume V, the projec-
tion of the multidimensional state space onto the E versus S plane
is again an area bounded by the zero entropy line and a convex
curve, but the convex curve is shifted in the vertical direction. For
example, for two values of volume V1 and V2, and such that
V1<V2, the relative position of the two convex curves is as shown
in Figure 2a. The two projections may also be presented on differ-
ent planes of a three-dimensional space with axes E, S and V, as
shown in Figure 2b.

For stable equilibrium states having values of energy and en-
tropy that may be both increased and decreased without net
changes in the values of amounts of constituents and parameters,
we show in Ref. 14 that the stable-equilibrium energy versus en-
tropy relation is indeed convex, and that temperature is positive.
We prove also that the value of the entropy of a ground-energy
state, that is, a state for which the value of the energy may be
increased but not decreased (without net changes in the values of
amounts of constituents and parameters) can be taken equal to
zero. The proof is completed by showing that: (1) among all the
stable equilibrium states with given values of the amounts of con-
stituents n and the parameters b, the ground-energy stable equih-
brium state has the lowest entropy and the lowest temperature; (2)
the value Sg of this lowest entropy is the same for all values of n
and b of a system and, hence, it is the same for all ground-energy
states of all systems; and (3) no other state of the system has en-
tropy lower than Sg. Conclusions (2) and (3) do not hold if we
adopt the modified statement of the second law discussed in
Section 6.

In Ref. 14, we first define entropy in terms of an arbitrary refer-
ence value, and then we choose this value by setting Sg¼ 0. We
can do so not only because the value of Sg is common to all the
ground-energy states of all systems and is the lowest possible
value of the entropy, but also because the choice is consistent with
quantum-theoretic considerations (Section 5). In other words, in
view of the conclusions (1), (2), and (3) just cited, we can set

Sg ¼ 0 for all values of n and b (1)

and in the definition of entropy we can choose a reference state Ag

that is a ground-energy state so that the resulting entropy values
are nonnegative. Entropy values thus obtained are called absolute.

4 Third Law

In Section 5, we use quantum-theoretic concepts and show that
the temperature Tg of a ground-energy stable equilibrium state
is equal to zero. However, such concepts are beyond the scope of
a traditional exposition of thermodynamics. Short of quantum
theory, the temperature of each ground-energy stable equilibrium
state cannot be deduced from the first and second laws. It must be

Fig. 1 Schematic representation of the projection of the states
of a system with given values of the amounts of constituents
and the parameters on the energy versus entropy plane
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introduced as an additional fundamental law, the third law of
thermodynamics.2 For systems with energy that can be increased
without limit, we state the third law as follows: “For each given
set of values of the amounts of constituents and the parameters,
there exists one stable equilibrium state with zero temperature.”

For given values of n and b of a system with energy that can be
increased without limit, the temperature is nonnegative and its
lowest value occurs at the ground-energy stable equilibrium state.
So, we readily conclude that the stable equilibrium state with zero
temperature required by the third law is the ground-energy state.
As shown in Figure 3. for given n and b, the least energy Eg corre-
sponds to a unique stable equilibrium state at zero entropy and
zero temperature.

The energy Eg is the least energy for which the system can exist
with the given values of n and b, but it varies as n and b vary.
Nevertheless, for all values of the amounts of constituents and the

parameters, the ground-energy state is always a stable equilibrium
state at zero entropy and zero temperature.

5 Quantum-Theoretic Considerations

Within the mathematical framework of quantum theory [15],
the third law cited in Section 4 follows as a theorem. To see this
clearly, we consider a system for which the energy E, entropy S,
and temperature T of the stable equilibrium states are related by
the canonical formulas

EðT; n; bÞ ¼ Tr
Hðn;bÞ exp½�Hðn;bÞ=kT�

Tr exp½�Hðn; bÞ=kT� (2)

and

SðT; n;bÞ ¼ �kTr
exp½�Hðn; bÞ=kT�

Tr exp½�Hðn;bÞ=kT� ln
exp½�Hðn;bÞ=kT

Tr exp½�Hðn;bÞ=kT�
(3)

where H(n,b) is the Hamiltonian operator, Tr the trace functional
on the Hilbert space of the system, and k the Boltzmann constant.
For such a system, the Hamiltonian operator is a function of the
amounts of constituents n and the parameters b. For example, if
the system consists of structureless particles in a box. the Hamilto-
nian is a function of the number of particles and the geometrical
characteristics of the box. We emphasize that all that we say holds
even if the number of particles is unity, that is, even if it consists
of a single particle.

The spectral expansion of the Hamiltonian operator can be writ-
ten in general as

Hðn;bÞ ¼
X1
j¼0

�jðn;bÞPjðn;bÞ (4)

where �j(n,b) is the jth eigenvalue, and Pj(n,b) the projection oper-
ator onto the corresponding eigenspace. Without loss of general-
ity, we assume that the eigenvalues are listed in increasing order
with respect to the index j, that is, �0 < �1 < � � � �j < � � �. The
dimensionality of each eigenspace Dj(n,b)¼Tr Pj(n,b). It is called
the multiplicity or degeneracy of the corresponding eigenvalue.
Alternatively, for given values of n and b we say that the jth
energy eigenvalue �j is either Dj fold degenerate (or, simply,
degenerate) if Dj (n,b)> 1, or nondegenerate if Dj (n,b)¼ 1.

Fig. 2 Projections of the states of a system with given values of amounts of constituents, and
two different values of the volume. V1 and V2 (a) Projection on the same E versus S plane; and
(b) projections on two different planes in E-S-V space.

Fig. 3 Schematic representation of the energy versus entropy
relation for stable equilibrium states with given values of n and
b at low temperatures

2In some expositions, the third law is referred to as Nernst’s principle.
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In terms of the spectral expansion, and for a given set of values
of n and b, we can write

exp½�Hðn;bÞ=kT�
Tr exp½�Hðn; bÞ=kT� ¼

P0 þ
X1
j¼1

Pj exp½�ð�j � �0Þ=kT�

D0 þ
X1
j¼1

Djexp½�ð�j � �0Þ=kT�
(5)

where, for simplicity, we drop the explicit dependences but recall
that Pj, �j, Dj for j¼ 0, 1, 2,…,1 are, in general, all functions of
n and b.

Substituting Eqs. (4) and (5) into Eq. (2), and using the property
of orthonormality of the projectors Pj, that is, the fact that
PiPj ¼ dijPj, we find

EðT; n; bÞ ¼
�0D0 þ

X1
j¼1

�jDj exp½�ð�j � �0Þ=kT�

D0 þ
X1
j¼1

Dj exp½�ð�j � �0Þ=kT�
� �0ðn; bÞ (6)

where dij is the Kronecker delta, the inequality follows from the

fact that �j>�0 for any j> 0 and, therefore, �0Do þ
P1

j¼i �j

Dj exp ½�ð�j � �0Þ=kT � �0D0 þ
P1

j¼i �0 Dj exp ½�ð�j � �0Þ=kT�
¼ �0ðD0 þ

P1
j¼i Dj exp½�ð�j � �0Þ=kT�Þ; and the equality obtains

for T¼ 0, that is, E(0; n, b)¼ �0ðn; bÞ. Thus we conclude that,
for given values of n and b, the lowest energy equals the lowest
eigenvalue of the Hamiltonian operator, that is, Eg(n, b)¼ �0ðn;bÞ,
and that the stable equilibrium state with lowest energy has tem-
perature T¼ 0. These conclusions are equivalent to the implica-
tions of the third law given in the preceding section. But within the
quantum-theoretic context, the third law is a theorem and not an
independent postulate.

Another important theorem regards the heat capacity at constant
volume and other parameters CV at T¼ 0. Starting from Eq. (2),
we can readily verify that3

CV ¼
@E

@T

� �
n;b

! 0 as T ! 0 (7)

In addition, for T¼ 0 Eq. (5) becomes

exp½�Hðn;b=kTÞ
Tr exp½�Hðn; bÞ=kT� ¼

P0

TrP0

¼ P0

D0

(8)

and, therefore, Eq. (3) yields

Sð0; n;bÞ ¼ �kTr
P0

D0

ln
P0

D0

¼ �k
TrP0 ln P0

D0

þ k
TrP0

D0

ln D0

¼ k ln D0ðn; bÞ (9)

because Tr P0 ln P0¼ 0 and Tr P0¼D0. If D0(n, b)> 1, the value
of the entropy4 of the ground-energy stable equilibrium state
S(0;n, b)¼ k ln D0(n, b) 6¼ 0. This conclusion is in conflict with
the second law—more precisely, with conclusions (2) and (3)
listed in Section 3. One way to avoid the conflict is by asserting
that every system has a Hamiltonian operator with a nondegener-
ate lowest energy eigenvalue, that is,

D0ðn;bÞ ¼ 1 for all values of n and b (10)

because only then

Sð0; n;bÞ ¼ 0 ¼ Sgðn; bÞ (11)

However, many authors [6–8] question the generality of Condition
(10) because of lack of conclusive experimental evidence. As a
result, they suggest that, in general, D0(n, b) � 1.

In our exposition, the question of degeneracy of the lowest
energy eigenvalue concerns neither the statement of the third law
given in Section 4, nor the first part of the statement of the second
law. The possibility that D0(n, b)> 1 is in conflict only with the
part of the statement of the second law which avers that “Starting
from any state of a system it is always possible to reach, a stable
equilibrium state with arbitrarily specified values of amounts of
constituents and parameters by means of a reversible weight
process.” In the next section we show how a slight modification of
this part eliminates the conflict with the possibility that D0(n,
b)> 1 without affecting any of the major implications of the sec-
ond law, such as the existence of entropy as a property of any state.

6 Modified Statement of the Second Law

To account for the existence of a system with a Hamiltonian
operator such that D0(n, b)> 1 for some or all sets of values of n
and b, we express the second part of the statement of the second
law as follows: “Starting from any state of a system it is always
possible to reach either a stable equilibrium state or a ground-
energy state with arbitrarily specified values of amounts of con-
stituents and parameters by means of a reversible weight proc-
ess.” In this form, the second law is consistent with the possibility
that for a given set of values of amounts of constituents and
parameters a system admits many ground-energy states, that is,
many states with energy equal to the lowest eigenvalue of the
Hamiltonian operator for the given values of n and b. Of course,
the first part of the statement of the second law remains
unchanged and implies that even among all these ground-energy
states one and only one is stable equilibrium. Moreover, by virtue
of either the quantum-theoretic treatment or the statement of the
third law, the temperature of the ground-energy stable equilibrium
state is equal to zero.

Indeed, with the modified statement of the second law. we con-
clude that the curved boundary of the projection onto the E versus
S plane can take the shape shown in Figure 4, rather than the
shape shown in Figure 3. Specifically, the horizontal line EgAg

represents the E versus S relation for all the states that are not sta-
ble equilibrium but have the ground-state energy Eg, and the curve
AgAE1 the E versus S relation for the stable equilibrium states.
Each point on the line EgAg, except Ag, represents the projection
of many states none of which is stable equilibrium and, hence,
none of which has a temperature, whereas each point on the curve
AgAE1 represents only one state—a stable equilibrium state.

3Indeed,

CV ¼
@E

@T

� �
n;b

¼ 1

kT2

X1
j¼0

�2
j Dj exp½��j=kT�

X1
j¼0

Dj exp½��j=kT�
�

X1
j¼0

�jDj exp½��j=kT

X1
j¼0

Dj exp½��j=kT

0
BBBB@

1
CCCCA

22
66664

3
77775

¼
D0

X1
j¼1

ð�j � �0Þ2Dj exp½�ð�j � �0=kT�=kT2

D0 þ
X1
j¼1

Dj exp½�ð�j � �0Þ=kT�
 !2

þ

X1
i¼1

X1
j¼1

ð�i � �jÞ2Di exp½�ð�i � �0Þ=kT�Dj exp½�ð�j � �0Þ=kT�=kT2

2 D0 þ
X1
j¼1

Dj exp½ð�j � �0Þ=kT

 !2

Because �j � �0> 0 for every j� 1, and exp(�a/T)/T2! 0 for a> 0 and T ! 0, we
readily verify Relation 7.

4As we discuss in Section 7, we are especially concerned with systems with few
particules. Accordingly, the discussions in Refs. [8] to [10] about taking the limit as
the number of particules goes to infinity are not germaine to our purposes.
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To verify the last assertion, we note that given a set of values of
n and b for which Ag is the ground-energy stable equilibrium state,
a reversible weight process starting from a state A1 can reach
either a stable equilibrium state if the entropy S1 of A1 is greater
than or equal to the entropy Sg of Ag, or a ground-energy state
with energy E¼Eg if the entropy 0 � S1< Sg. In the latter case,
the final state is not a stable equilibrium state because its entropy
is smaller than the largest value corresponding to the given values
Eg, n, b.

Whereas the zero slope of the stable-equilibrium-state curve
E¼E(S, n, b) at state Ag corresponds to a zero value of the tem-
perature, the slope of the horizontal line EgAg for 0� S< Sg is
zero but does not correspond to a temperature because no single-
valued relation of the form E¼E(S, n, b) exists for the states rep-
resented by points on this line.

The modified statement of the second law results in an interest-
ing exception to our general understanding of irreversibility. Start-
ing from any state A1 with entropy S1< Sg, and using a reversible
weight process we can reach a ground-energy state A2 that is not
stable equilibrium (Figure 4). The amount of energy that can be
transferred to a weight in a reversible weight process is repre-
sented by the length W1¼A1A2. Similarly, starting from any state
A3 with energy E3¼E1 and entropy S1< S3< Sg, and using a re-
versible weight process we can reach a state A4 that is not stable
equilibrium. Now, the energy transferred to the weight is the same
as in the weight process starting from A1, and is represented by
the length W3¼A3A4. But state A1 can evolve spontaneously into
A3, and the increase in entropy S3 – S1 is generated by irreversibil-
ity. Thus, for the states with entropy between zero and Sg, we con-
clude that irreversibility does not reduce the value of the energy
that can be transferred to a weight—a conclusion that is an excep-
tion to our general understanding of the adverse effects of
irreversibility.

This exception does not contradict any experimental observa-
tion. As such it is not sufficient to dismiss the existence of degen-
erate ground-energy eigenvalues. Rather, the exception should
stimulate further theoretical and experimental investigations.

7 Conclusions

The third law can be stated in a manner consistent with the sec-
ond law. This can be done for all systems, including one that con-

sists of very few particles. A question that remains unresolved is:
Is there any experimental evidence that can be rationalized only in
terms of a Hamiltonian operator with a degenerate lowest eigen-
value? If the answer is yes, then the modified statement of the sec-
ond law should be adopted, and the exception cited in Section 6
better understood.

Should Condition 10 be satisfied by all systems? We have seen
that neither the formalism of quantum theory nor the laws of
thermodynamics forbid to model a system with a Hamiltonian
operator that has a degenerate lowest eigenvalue, thus violating
Condition 10. The question is whether such a system describes
something that exists in nature and, therefore, can only be
resolved experimentally.

Though presented in different terms, the question has been long
debated [6–13]. Invariably, with various justifications [9,10], the
question is analyzed for systems with a very large or infinite num-
ber of particles N. In this limit, however, the entropy per particle
varies as (1/N)k ln D0(n, b) and is negligible and hardly measura-
ble if the dependence of D0(n, b) on N is weaker than (lþ a)N,
where a is of the order of unity [10]. In addition, the Hamiltonian
operator must be necessarily based on an oversimplified model of
the interactions between the many particles, otherwise the model
is intractable. So, in our view, the question cannot be resolved by
studying systems with many particles.

We suggest that the question is more likely to find a resolution
from experimental studies of systems with very small values of
the amounts of constituents, that is, systems with very few par-
ticles. Then, the entropy Sg(n, b)¼ k ln D0(n, b) is nonnegligible
unless D0(n, b)¼ 1. In view of the experimental achievements
mentioned in the introduction [1–2], we believe that such a study
is feasible with current techniques. But, of course, the study
requires that it be fully understood that the laws of thermodynam-
ics hold for all systems, including one that consists of a single par-
ticle [15].
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Fig. 4 Shape of the energy versus entropy diagram consistent
with the statement of the second law modified to account for
the possibility that for a given set of values of n and b a system
admits more that a single ground-energy state.
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