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Starting from the properties of the electromagnetic radiation field at stable equilibrium,
we derive expressions for the flows of energy and entropy between two black bodies at
different temperatures, interacting only through electromagnetic radiation. We find that
in general the interaction through radiation is nonwork but not heat. It is heat only if the
temperature difference between the interacting systems is infinitesimal. [DOI: 10.1115/
1.4026381]

1 Introduction

The electromagnetic field pervades all matter, fills the intera-
tomic and intermolecular spaces, and interacts with atoms and
molecules. As such it is one of the constituents of every physical
system. Its properties are well known and experimentally verified
[1–6]. Its stable equilibrium states provided the seminal ideas of
modem physics. Its interactions with atoms and molecules are the
subject of extensive experimental studies and the source of many
recent technological developments.

In this paper we review the stable-equilibrium-state properties
of the electromagnetic field, and discuss the model for a special
class of nonequilibrium states that constitutes the foundation
of the engineering discipline traditionally called radiative heat
transfer. In general, the interactions considered in this discipline
are nonwork because electromagnetic radiation flow carries both
energy and entropy. Under very special limiting conditions, these
interactions become heat. These limiting conditions are of interest
in the exposition of thermodynamics because they provide a prac-
tical proof of existence of the heat interactions defined in Ref. 7,
and discussed in a companion paper presented at this meeting [8].
In addition, the results provide a vivid illustration of entropy as a
property of a system because even a single photon may have
entropy in the same sense that it has energy.

2 Stable-Equilibrium-State Properties of the

Electromagnetic Field

The stable-equilibrium-state principle implies that within the
set of the stable equilibrium states of a system the value of any
property is fully and uniquely determined by the values of the
energy, the amounts of constituents, and the parameters such as
the volume. In particular, for a system with volume V as the
only parameter, and amounts of its r constituents denoted by
n ¼ fn1; n2;…nrg, the entropy S of the stable equilibrium states is
fully and uniquely determined by the value of the energy, U, and
the values of V and n so that

S ¼ SðU;V; nÞ (1)

We emphasize that, in our exposition [7], this conclusion is
reached without any extraneous considerations such as lack of
information, difficulty associated with complicated calculations,
unpredictability of initial conditions, lack of interest in making
detailed analyses of large systems, weak interactions between
members of a statistical ensemble, or equilibrium with a reservoir.
It is a precise, simple, exact, general, and far-reaching conse-
quence of the first and second laws of thermodynamics about the
existence of very restrictive interrelations among the properties of
stable equilibrium states of any system.

For each system and most ranges of conditions, no explicit
analytical expression of the fundamental relation (1) is available
because the mathematical expressions of the interrelations
between stable-equilibrium-state properties are transcendental. So
the stable-equilibrium-state principle and its innumerable implica-
tions are used mostly to provide guidance about the number of
properties that need be considered, about interpolations between
and extrapolations of experimental results, and about procedures
for carrying out measurements of properties. Exceptions to these
general observations obtain for either special ranges of conditions,
or special systems, or both. Examples of these exceptions are the
high-temperature, low-pressure behavior of any substance (ideal
gases), and the high temperature behavior of the electromagnetic
field in a cavity.

For our purposes, we consider first the high temperature stable
equilibrium states of the electromagnetic field in a cavity of vol-
ume V that confines all frequency modes. For this system, there is
only one constituent, that is, the electromagnetic field. Its amount
is fixed and equal to unity, that is, equation (1) becomes
S ¼ SðU;VÞ because n is fixed and equal to unity. The fundamen-
tal relation is given by the expression

S ¼ 4

3
ðaVU3Þ1=4

(2)

where a ¼ 8p5k4=15h3c3 ¼ 7:565� 10�16 J/m3K4, k is the Boltz-
mann constant ðk ¼ 1:38066� 10�23 J/K), h the Planck constant
(h ¼ 6:6260� 10�34 Js), and c the speed of light in vacuum
(c ¼ 2:9979� 108 m/s).

Using equation (2) and the definitions of temperature.
T ¼ 1=½ð@S=@UÞV �, and pressure, p ¼ Tð@S=@VÞU, we find the
expressions for the internal energy U ¼ UðS;VÞ, the temperature
T ¼ TðS;VÞ (also T ¼ TðU;VÞÞ, and the pressure p¼ p(S, V)
(also, p¼ p(U, V)):

U ¼ 3

4

� �4=3 S4

aV

� �1=3

(3)

T ¼ 3S

4aV

� �1=3

¼ U

aV

� �1=4

(4)

p ¼ 1

3

3

4

� �4=3
1

V

S4

aV

� �1=3

¼ U

3V
(5)

Rearranging these expressions, and defining the energy per unit
volume u¼U/V and the entropy per unit volume s¼ S/V, we find

u ¼ U

V
¼ aT4 (6)

s ¼ S

V
¼ 4

3
aT3 (7)

*Proceedings of the Winter Annual Meeting of the American Society of
Mechanical Engineers, Dallas, Texas, November 25–30, 1990, in Fundamentals of
Thermodynamics and Exergy Analysis, edited by G. Tsatsaronis, R. A. Gaggioli,
Y. M. El-Sayed, and M. K. Drost, ASME book G00566, AES-Vol. 19, pp. 1–6
(1990). Reprinted with permission.
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p ¼ 1

3
aT4 (8)

Next, we consider the high temperature stable equilibrium
states of the electromagnetic field in a cavity of volume V that
confines only the modes with frequencies between � and � þ d�
in the limit as d� tends to zero. The fundamental relation for this
system can be expressed as

dSð�Þ ¼ k dUð�Þ
h�

1þ bV�3d�

dUð�Þ

� �
ln 1þ bV�3d�

dUð�Þ

� ��

� bV�3d�

dUð�Þ ln
bV�3d�

dUð�Þ

�
(9)

where b ¼ 8ph=c3 ¼ 5:553� 10�57 Js4/m3.
Defining U� ¼ dUð�Þ=d�; S� ¼ dSð�Þ=d�,

u� ¼
U�

V
¼ 1

V

dUð�Þ
d�

(10)

s� ¼
S�
V
¼ 1

V

dSð�Þ
d�

(11)

and substituting in equation (9), we find

s� ¼
ku�
h�

1þ b�3

u�

� �
ln 1þ b�3

u�

� �
� b�3

u�
ln

b�3

u�

� �
(12)

Moreover, using the definition of temperature, we find

1

T
¼ @dSð�Þ

@dUð�Þ

� �
V

¼ k

h�
ln 1þ b�3

u�

� �
(13)

u� ¼
8ph�3=c3

expðh�=kTÞ � 1
(14)

s� ¼
8pk�2

c3

h�=kT

expðh�=kTÞ � 1
þ ln

1

1� expð�h�=kTÞ

� �
(15)

Of course, we can express the same results also in terms of the
wavelength k ¼ c=�. For a cavity that confines the modes with
frequencies between k ¼ c=� and kþ dk the fundamental relation
can be written as

dSðkÞ ¼ kk dUðkÞ
hc

1þ b0V dk

k5dUðkÞ

 !
ln 1þ b0V dk

k5dUðkÞ

 !"

� b0V dk

k5dUðkÞ
ln

b0V dk

k5dUðkÞ

#
(16)

where b0 ¼ 8phc ¼ 4:992� 10�24 Jm.
Defining Uk ¼ dUðkÞ=dk; Sk ¼ dSðkÞ=dk,

uk ¼
Uk

V
¼ 1

V

dUðkÞ
dk

(17)

sk ¼
sk

V
¼ 1

V

dSðkÞ
dk

(18)

we find

sk ¼
kkuk

hc
1þ b0

k5uk

� �
ln 1þ b0

k5uk

� �
� b0

k5uk
ln

b0

k5uk

� �
(19)

1

T
¼ @dSðkÞ

@dUðkÞ

� �
V

¼ kk

hc
ln 1þ b0

k5uk

� �
(20)

uk ¼
8phc=k5

expðhc=kkTÞ � 1
(21)

sk ¼
8pk

k4

hc=kkT

expðhc=kkTÞ � 1
þ ln

1

1� expð�hc=kkTÞ

� �
(22)

A graph of the dimensionless spectral energy density
u�=ð8ph�3=c3Þ (or uk=ð8phc=k5Þ) versus dimensionless spectral
entropy density s�=ð8pk�2=c3Þ (or sk=ð8pk=k4Þ) for a given fre-
quency � ðk ¼ c=�Þ is shown in Figure 1.

Using the definition of pressure, we find

dpð�Þ ¼ T
@dSð�Þ
@V

� �
dUð�Þ
¼ kTb�2d�

h
ln 1þ u�

b�3

� �
(23)

dpðkÞ ¼ T
@dSðkÞ
@V

� �
dUðkÞ
¼ kTb0dk

k4hc
ln 1þ k5uk

b0

� �
(24)

Moreover, defining p� ¼ dpð�Þ=d� and pk ¼ dpðkÞ=dk, we find

p� ¼
8pkT�2

c3
ln

1

1� expð�h�=kTÞ (25)

pk ¼
8pkT

k4
ln

1

1� expð�hc=kkTÞ (26)

Finally, another important property of the field is the number of
photons dNð�Þ—the quanta of the field—in the modes with fre-
quencies between � and � þ d�, or the number of photons dNðkÞ

Fig. 1 Graph of dimensionless spectral energy density

y ¼ um

8phm3=c3
¼ uk

8phc=k5

versus dimensionless spectral entropy density

x ¼ sm

8phm2=c3
¼ sk

8pk=k4

for the stable equilibrium states of radiation modes with fre-
quency m and wavelength k 5 c/m. The equation of the curve is

x ¼ y 1þ 1

y

� �
ln 1þ 1

y

� �
� 1

y
ln

1

y

� �
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with wavelengths between k and kþ dk. In a mode with fre-
quency �. each photon contributes an energy h� (or hc=k for
k ¼ c=�). Thus, dNð�Þ ¼ dUð�Þ=h�; dNðkÞ ¼ dUðkÞk=hc and,
defining n� ¼ dNð�Þ=Vd� and nk ¼ dNðkÞ=Vdk, we have

n� ¼
1

V

dNð�Þ
d�

¼ u�
h�
¼ 8p�2=c3

expðh�=kTÞ � 1
(27)

nk ¼
1

V

dNðkÞ
dk

¼ uk

hc=k
¼ 8p=k4

expðhc=kkTÞ � 1
(28)

The expression ð8p�2=c3Þd� is the number of modes with fre-
quencies between � and � þ d�, and the expression ð8p=k4Þdk the
number of modes with wavelengths between k and kþ dk.

It is noteworthy that the electromagnetic field in a cavity that
confines all modes may be regarded as a composite of noninter-
acting, uncorrelated systems, each consisting of one of the modes.
In other words, the field can be viewed as the superposition of the
various modes that are confined in the cavity, each being entirely
unaffected by the presence of other modes. This is a general fea-
ture of the electromagnetic field, valid for all states.

Here, we verify it for the stable equilibrium states by noting
that ð1

0

u�ð�; TÞd� ¼
ð1

0

ukðk; TÞdk ¼ u ¼ aT4 (29)

ð1
0

s�ð�; TÞd� ¼
ð1

0

skðk; TÞdk ¼ s ¼ 4

3
aT3 (30)

ð1
0

p�ð�; TÞd� ¼
ð1

0

pkðk;TÞdk ¼ p ¼ 1

3
aT4 (31)

ð1
0

n�ð�; TÞd� ¼
ð1

0

nkðk;TÞdk ¼ n ¼ 30fð3Þ
p4

a

k
T3 (32)

where u�ð�;TÞ; ukðk;TÞ; s�ð�;TÞ; skðk;TÞ;p�ð�;TÞ, and pkðk;TÞ
are given respectively by equations (14), (21), (15), (22), (25). and
(26). and f(3)¼1.2020569. the value of the Riemann zeta func-
tion, fðxÞ ¼

P1
q¼1 1=qx for x ¼ 3

Comparison of equations (29) and (6) [and (31) and (8)] shows
that the energy of the field with all the modes equals the sum of
the energies of the modes, each confined by itself, and each at the
same temperature as the field with all the modes. This additivity
of energy proves that the various modes are separable, that is.
noninteracting. Comparison of equation (30) with (7) shows that
the entropy of the field with all the modes equals the sum of the
entropies of the modes each confined by itself at the same temper-
ature T. This additivity of entropy proves that the various modes
are uncorrelated, that is, independent.

The fact that the various modes do not interact with each other
means that modes cannot exchange energy and entropy with one
another. Only interactions with matter, for example the atoms
and molecules of the walls of the confining cavity, can promote
indirectly exchanges between different modes. Another intriguing
aspect is that each mode in a stable equilibrium state has both
energy and entropy.

It is interesting to evaluate the photon compressibility ratio for
the field with all modes, the field with only the modes between �
and � þ d�, and the field with only the modes between k and
kþ dk, that is. respectively,

p

nkT
¼ p4

90fð3Þ ¼ 0:90039 (33)

p�
n�kT

¼ ½expðh�=kTÞ � 1� ln 1

1� expð�h�=kTÞ (34)

pk

nkkT
¼ ½expðhc=kkTÞ � 1� ln 1

1� expð�hc=kkTÞ (35)

For the low frequency modes, i.e., as h�=kT ¼ hc=kkT ! 0 the
photon compressibility goes to zero, whereas for the high fre-
quency modes, i.e., as h�=kT ¼ hc=kkT !1. it goes to unity.

Graphs of the dimensionless spectral distributions of energy,
entropy, pressure and photon density are shown in Figures 2
and 3.

The Gibbs free energy per unit volume of each mode of the
field is zero, i.e.,

u� � Ts� þ p� ¼ 0

and so is the Gibbs free energy of the field. By simple differentia-
tion we can readily verify the interesting relations

du=dT

ds=dT
¼ @u�=@T

@s�=@T
¼ @uk=@T

@sk=@T
¼ T (37)

that we use in Section 5.

3 Energy and Entropy Flow Through Radiation

Among the properties of the electromagnetic field, velocity (i.e.
speed and direction) of propagation plays an important role. Inside
the cavity, that is, in the absence of interactions with matter, a
measurement of the speed of propagation of radiation in any state
always results in the value c, the speed of light in vacuum. In
addition, for the field in a stable equilibrium state in an isotropic
cavity, measurement results of velocity are uniformly distributed
over the entire solid angle 4p, that is, the fraction of measurement
results in directions that lie within a given solid angle dX is equal
to dX=4p. Thus, the value of the velocity of the field in a stable

Fig. 2 Graphs as functions of x ¼ hm=kT . Curve (e) is scaled
by a factor of 1/10. The area under each if the curves (a), (b), (c),
and (d) is unity. The maxima occur respectively at (a)
x 5 2.82144. (b) x 5 2.53823. (c) x 5 1.83030 and (d) x 5 1.59362.

kT

h

um

u
¼ 15

p4

x3

ex � 1
(a)

kT

h

sm

s
¼ 45

4p4
x2 x

ex � 1
þ ln

1

1� e�x

� �
(b)

kT

h

pm

p
¼ 45

p4
x2ln

1

1� e�x
(c)

kT

h

nm

n
¼ 1

2fð3Þ
x2

ex � 1
(d)

pm

nmkT
¼ ðex � 1Þln 1

1� e�x
(e)
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equilibrium state, i.e, the mean value of all measurement results,
is zero.

If it communicates with vacuum through a small aperture, the
cavity behaves as a black body. Radiation propagates through the
aperture out of the cavity with speed c and directions uniformly
distributed over the outward solid angle 2p. At the aperture the
radiation is no longer in a stable equilibrium state because it has a
nonzero (mean) value of velocity. It is a nonequilibrium state. For
a sufficiently short time interval, however, we assume that the
presence of the small aperture does not perturb significantly the
stable equilibrium state of the field inside the cavity, and that ve-
locity measurement results in the neighborhood of the aperture are
identical to the corresponding results inside the cavity for the out-
ward directions, but are nil for the inward directions.

Accordingly, the fraction of measurements that result in direc-
tions that lie within a given solid angle dX is equal to dX=4p for
the outward directions, and zero for the inward directions. To
find the mean value c? of the velocity component normal to the
aperture surface, we denote by h the angle between the velocity
direction and the outward normal to the aperture surface, and inte-
grate over all outward directions, so that

c? ¼
ð

c cos h
dX
4p

¼
ð2p

0

d/
ðp=2

0

c cos h sin h dh ¼ c

4
(38)

because dX ¼ sin hdhd/.
The volume of radiation which in a time interval dt flows

across the element of area da of the aperture surface is c? dt da,
that is, c? represents also the volume rate per unit area and unit
time or volume flux of radiation crossing the aperture surface
from inside to outside the cavity. Because inside the cavity each

unit volume contains radiation with energy u, entropy s and
photon number n, with the volume flux are associated also an
energy flux uc?, an entropy flux sc?, and a photon flux nc?, so
that

J!u ¼
c

4
u ¼ rT4 (39)

J!s ¼
c

4
s ¼ 4

3
rT3 (40)

J!n ¼
c

4
n ¼ 30fð3Þ

p4k
rT3 (41)

where we use equations (6) to (8), the Stephan-Boltzmann con-
stant r ¼ ca=4 ¼ 2p5k4=15h3c2 ¼ 5:67083� 10�8 W/m2K4, and
30fð3Þr=p4k ¼ 1:52057� 1015 l/m2sK3.

Similarly, with the volume flux are also associated the energy
spectral flux density per unit frequency range J!uv ¼ u�c=4 or per
unit wavelength range J!uk ¼ ukc=4, the entropy spectral flux den-
sity per unit frequency range J!s� ¼ s�c=4 or per unit wavelength
range J!sk ¼ skc=4, and the photon spectral flux density per unit
frequency range J!n� ¼ n�c=4 or per unit wavelength range
J!n� ¼ nkc=4.

More generally, for an aperture that allows only outward direc-
tions within a cone of apex angle d centered around the normal to
the aperture surface, we find

c?ðdÞ ¼
ð

c cos h
dX
4p

¼
ðd

0

c cos h
2p sin hdh

4p
¼ c

4
sin2 d (42)

For such an aperture we have

J!u ðdÞ ¼
c

4
u sin2 d ¼ rT4 sin2 d (43)

J!s ðdÞ ¼
c

4
s sin2 d ¼ 4

3
rT3 sin2 d (44)

J!n ðdÞ ¼
c

4
n sin2 d ¼ 30fð3Þ

p4k
rT3 sin2 d (45)

and similar relations for the spectral flux densities. Clearly, equa-
tions (38) and (41) concide with (42) to (45), respectively, for
d ¼ p=2.

4 Energy and Entropy Exchanges Through Radiation

Now we study the interaction between the electromagnetic
fields in two cavities A and B that communicate with each other
through a small aperture. We model the flow of radiation through
the aperture by assuming that the field within each cavity is ini-
tially in a stable equilibrium state at temperatures TA and TB,
respectively, and that for a sufficiently short time interval the pres-
ence of the small aperture does not perturb significantly either of
the two stable equilibrium states. Of course, the state of the field
in the vicinity of the aperture cannot be stable equilibrium, unless
the fields in both cavities are at the same temperature. We assume
that measurement results in directions that are outward for cavity
A are identical to those that would obtain if cavity A communi-
cates with vacuum, and measurement results in directions that are
outward for cavity B are identical to those that would obtain if
cavity B communicates with vacuum.

As a result of these assumptions, the fluxes at the aperture
between the two cavities are nonzero, that is

JA!B
/ ¼ JA!

/ � JB!
/ ¼ c

4
ð/A � /BÞ (46)

Fig. 3 Graphs as functions of y ¼ kkT=hc. The area under
each of the curves (a), (b), (c), and (d) is unity. The maxima
occur respectively at (a) y 5 0.201405, (b) y 5 0.208713. (c)
y 5 0.252417, and (d) y 5 0.255057.

hc

kT

uk

u
¼ 15

p4

1=y5

e1=y � 1
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kT

sk

s
¼ 45

4p4

1

y4

1=y

e1=y � 1
þ ln

1

1� e�1=y

� �
(b)

hc

kT

pk

p
¼ 45

p4

1

y4
ln

1

1� e�1=y
(c)

hc

kT

nk

n
¼ 1

2fð3Þ
1=y4

e1=y � 1
(d)

pk

nkkT
¼ ðe1=y � 1Þln 1

1� e�1=y
(e)
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where / denotes any one of the volume densities u, s, n or spectral
densities u�; s�; n�; uk; sk; nk; J

A! is the flux (flux density per unit
frequency range or wavelength range), out of an aperture between
A and vacuum, and similarly JB! is the flux from B to vacuum.

Specifically, for the energy, entropy, and photon fluxes in the
direction from A to B normal to the aperture surface, we find

JA!B
u ¼ rðT4

A � T4
BÞ (47)

JA!B
s ¼ 4

3
rðT3

A � T3
BÞ (48)

JA!B
n ¼ 30fð3Þ

p4k
rðT3

A � T3
AÞ ¼

1

0:27766 k
JA!B

S (49)

Moreover, for the energy, entropy, and photon flux densities
either per unit frequency range, or per unit wavelength range in
the direction from A to B normal to the aperture surface, we find

JA!B
u�
¼ 2ph�3

c2

1

expðh�=kTAÞ � 1
� 1

expðh�=kTBÞ � 1

� �
(50)

JA!B
s�
¼ 2pk�2

c2

h�=kTA

expðh�=kTAÞ � 1
� h�=kTB

expðh�=kTBÞ � 1

�

þ ln
1� expð�h�=kTBÞ
1� expð�h�=kTAÞ

�
(51)

JA!B
n�
¼ 2p�2

c2

1

expðh�=kTAÞ � 1
� 1

expðh�=kTBÞ � 1

� �

¼
JA!B

u�

h�
(52)

JA!B
uk
¼ 2phc2

k5

1

expðhc=kkTAÞ � 1
� 1

expðhc=kkTBÞ � 1

� �
(53)

JA!B
sk
¼ 2pkc

k2

hc=kkTA

expðhc=kkTAÞ � 1
� hc=kkTB

expðhc=kkTBÞ � 1

�

þ ln
1� expð�hc=kkTBÞ
1� expð�hc=kkTAÞ

�
(54)

JA!B
nk
¼ 2pc

k4

1

expðhc=kkTAÞ � 1
� 1

expðhc=kkTBÞ � 1

� �

¼
JA!B

uk

hc=k
(55)

Equations (50) to (55) can be used to evaluate the net exchange
rates between two cavities that confine only modes within a given
frequency or wavelength range, or between cavities confining all
modes but communicating through a filtering aperture that is per-
meable only to modes within a given frequency or wavelength
range.

5 Nonwork and Heat Interactions Through Radiation

We see clearly from equations (47) to (55) that the interaction
between the fields in the two cavities A and B (through an all-
passing or a filtering aperture) is an example of a non-work
interaction. It is not a work interaction because it entails an
exchange of entropy. In general, it is not a heat interaction
because the temperature difference between the two interacting
radiation fields is finite and not infinitesimal as required for a
heat interaction [7,8], In particular, we note that the ratio of
energy exchanged and entropy exchanged between the two cav-
ities is well defined but different from the temperature of the
radiation in either cavity, i.e,

JA!B
u

JA!B
s

¼ uðTAÞ � uðTBÞ
sðTAÞ � sðTBÞ

¼ 3

4

T4
A � T4

B

T3
A � T3

B

(56)

JA!B
u�

JA!B
s�

¼ u�ðTAÞ � u�ðTBÞ
s�ðTAÞ � s�ðTBÞ

(57)

JA!B
uk

JA!B
sk

¼ ukðTAÞ � ukðTBÞ
skðTAÞ � skðTBÞ

(58)

However, in the limit of an infinitesimal temperature difference
between the fields in the two cavities, the interaction is heat,
whether the aperture is all-passing or filtering, provided that both
cavities confine either all modes or the same range of frequencies
(wavelengths). We emphasize this limiting case because it consti-
tutes an important experimentally verified proof of existence of
heat interactions as defined in [7,8].

Indeed, for TA ¼ T þ dT;TB ¼ T, and dT ! 0, we find

JA!B
u

JA!B
s

¼ uðT þ dTÞ � uðTÞ
sðT þ dTÞ � sðTÞ ¼

du=dT

ds=dT
¼ T (59)

JA!B
u�

JA!B
s�

¼ u�ðT þ dTÞ � u�ðTÞ
s�ðT þ dTÞ � s�ðTÞ

¼ @u�=@T

@s�=@T
¼ T (60)

JA!B
uk

JA!B
sk

¼ ukðT þ dTÞ � ukðTÞ
skðT þ dTÞ � skðTÞ

¼ @uk=@T

@sk=@T
¼ T (61)

where in writing the last of each of equations (59) to (61) we use
equations (37). We see that, in the limit of TA ! TB ¼ T, each of
the ratios of energy and entropy flows equals T as it should for a
heat interaction.

Finally, we note that some authors [2,3] have defined a
“temperature” even for states of radiation that are not stable equi-
librium by the following procedure. The spectral energy density
u�ð�;XÞ is measured, where X denotes direction. This density is
used in equation (11), and a function Tð�;XÞ is determined. In our
view, calling Tð�;XÞ a temperature is wrong and misleading.
Temperature cannot be defined for states, such as nonequilibrium
states, for which energy and entropy are not interdependent.
Moreover, the function Tð�;XÞ cannot be measured by a
thermometer.

6 Conclusions

From a review of the properties of the stable equilibrium states
of the electromagnetic field, we find that the interaction between
two black bodies at different temperatures involves both energy
and entropy flows. In general, this interaction is not heat because
the ratio of the energy and entropy exchanged is not equal to the
temperature of either black body. It is heat only in the limit of
infinitesimal difference between the temperature of the two black
bodies. This limit is an important experimental proof of existence
of heat interactions as defined in Refs. 7 and 8.

It is noteworthy that the interaction between two black bodies A
and B at different temperatures involves irreversibilities in both
black bodies. The reason is that JA!B

u =JA!B
s 6¼ ð@U=@SÞVA ¼ TA

and JB!A
u =JB!A

s 6¼ ð@U=@SÞVB ¼ TB. In the limit of TA ! TB,
however, both irreversibilities disappear as they should for heat
interaction.
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