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What is a Simple System?*
We discuss relations among properties of systems that consist of any amounts of constitu-
ents (including one particle), that have volume as the only parameter, and that are in
thermodynamic equilibrium or stable equilibrium states. For large amounts of constitu-
ents, we introduce the concept of a simple system, and derive additional relations among
properties. [DOI: 10.1115/1.4026383]

1 Introduction

Gibbs [1] devoted more than five pages of somewhat convo-
luted discussion to justify the validity of the Euler relation

U � TSþ pV �
Xr

i¼1

lini ¼ 0 (1)

All subsequent expositions of thermodynamics of which we are
aware have overlooked the serious concern addressed by Gibbs in
those pages.

An essential prerequisite of the derivation of Equation 1 is that
the stable-equilibrium-state energy relation U¼U(S, V, n) be a
homogeneous function of degree one of each of its variables,
entropy S, volume V, amounts of constituents n¼ {n1, n2, …, nr}.
This prerequisite is either postulated [2,3] or presented in a few
lines as an almost obvious consequence of the fact that each of the
quantities U, S, V, and ni is additive [4,5]. The former is not
always warranted, and the latter is faulty and. perhaps, the reason
for Gibbs’ five-page discussion.

The logic of the usual but faulty derivation is as follows.
Two different systems are considered. One is a system A with no
internal partitions and a stable-equilibrium-state energy relation
U¼UA (S, V, n). Of this system, two different states are consid-
ered. The first is a stable equilibrium state A1 with entropy S1, vol-
ume V1, and amount (ni)1 of constituent i, for i¼ 1, 2, …, r. By the
energy relation, state A1 has energy U1¼UA(S1, V1, (n)1). The
second is a stable equilibrium state Ak. with entropy Sk¼ kS1,
volume Vk¼ kV1, and amount (ni)k¼ k(n)1 for i¼ 1, 2, … r. By the
energy relation, state Ak has energy Uk¼UA(kS1, kV1, k(n)1).

The second system is a composite system K consisting of k
identical replicas of system A, each in a stable equilibrium state
identical to A1. By the additivity of energy, entropy, volume, and
amounts of constituents, system K has energy UK¼ kU1, entropy
SK¼ kS1, volume VK¼ kV1, and amount (ni)K¼ k(ni)1 for
i¼ 1,2, …, r.

Now, the fact that system K consists of k separate subsystems,
each with constituents confined in a partition of volume V1 of the
entire volume kV1, is overlooked. It is stated—and here is the
fault—that Uk¼UK. It then follows that UA(kS1, kV1,
k(n)1)¼Uk¼UK¼ kU1¼ kUA(S1, V1, (n)1), namely, that the func-
tion U¼UA(S, V, n) is a homogeneous function of degree one.
But the conclusion is based on the faulty assumption that the
stable-equilibrium-state energy relation U¼UK(S, V, n) of system
K (with internal partitions) is the same as that of system A
(without internal partitions), that is, UK(S, V, n)¼UA(S, V, n).

In this paper, we recognize and emphasize that in general UK(S,
V, n) 6¼UA(S, V, n) except under a condition specified by the defi-
nition of a simple system introduced in Ref. [6], (Chapter 17). The
condition turns out to be valid in the limit of relatively large val-

ues of the amounts of constituents, and is the reason why certain
results, including the Euler relation are valid only for macroscopic
systems. Though expressed in a different language, the condition
captures the essence of the concerns discussed by Gibbs [1].

2 Systems With Volume as the Only Parameter

2.1 Definition. In any physical study, we always focus atten-
tion on an identifiable collection of constituents that may be sub-
jected to a nest of forces. When the constituents and the nest of
forces are well-defined, we call such a collection a system. For
definiteness we briefly review the requirements for constituents
and nest of forces to be well-defined, that is, the requirements for
the definition of a system.

The forces required to define a system are of two kinds, internal
and external. Internal forces describe the influences that hold the
molecular structure of a constituent together, such as the forces
between the nuclei and the electrons of H2O, the influences
between constituents, such as the forces between H2O molecules,
and the forces that promote or inhibit reaction schemes by which
some constituents may combine or dissociate to give rise to other
constituents. All are part of the specification of the system, and
may differ from study to study of the same constituents. For exam-
ple, in some studies of H2 and O2, the forces involved in the forma-
tion of water out of hydrogen and oxygen, the chemical reaction
mechanism 2H2þO2¼ 2H2O, may be neglected as unimportant,
whereas in other studies, these forces may be included as important.
Each internal force on a given constituent depends on the coordi-
nates of that constituent and on the coordinates of one or more of
the other constituents of the system, but not on any coordinates of
constituents of bodies in the environment.

Each external force describes a well-defined influence on the
constituents by bodies not included in the collection under study,
such as the influence of applied gravity, electric charges, magnets,
and the solid walls of the container that confines the constituents
within a region of space. Each external force on a given constitu-
ent depends on the coordinates of that constituent and one or more
external parameters or. simply, parameters that describe the over-
all effect of the bodies in the environment, but not on the coordi-
nates of any other constituent, either of the system or of bodies in
the environment. For example, the effects of gravity on the water
molecules in a small container depend on the elevations of these
molecules above sea level, and on the intensity of gravity, but not
on the coordinates of the substances of the earth. The gravitational
potential c is the parameter associated with this external gravita-
tional force, where c¼ gz, g is the constant gravitational accelera-
tion, and z the elevation above sea level. Again, the effects of
the walls of an airtight container on an enclosed gas depend on the
positions of the gas molecules relative to the internal surface of
the container, but not on the coordinates of the molecules of the
materials of the walls. For a wide variety of applications, the
effects of the walls are completely described by the volume of the
container, i.e., volume is the only parameter needed to character-
ize such effects. For other applications, we may need a more
detailed geometrical description of the shape of the enclosure in
which the constituents are confined. For example, if the enclosure
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is a parallelepiped, the lengths L1, L2, and L3 of its sides may be
required as parameters to describe the confining external forces.

For certain systems, the characterization of the external forces
may require two or more parameters. For example, in a system
consisting of a fixed amount of hydrogen, half of which is con-
fined in a volume V0, and the other half in a volume V00, we need
the two parameters V0 and V00, and their respective ranges, for the
characterization of the effects of the confining walls.

Because external forces are independent of coordinates of con-
stituents in the environment, a system is also said to be separable
from the environment or, simply, separable. This distinction is not
trivial. If the forces exerted by a body not included in the object
of study depend explicitly on the coordinates of the constituents
of that body, then the object of study is not separable, and cannot
be a system. To proceed in this case, we must redefine the collec-
tion of constituents so as to include the body in question. Thus,
the troublesome forces become internal, and a system may be
defined. For example, this situation arises when we wish to study
the oxygen atom in a molecule of water. Such an atom cannot be
defined as a system because it experiences forces that depend ex-
plicitly on the coordinates of the two hydrogen atoms in the water
molecule. However, by including the two hydrogen atoms in the
object of study, these forces become internal, and the oxygen and
hydrogen atoms bound together in a water molecule can be well-
defined as a system.

We emphasize that whenever we use the term system, such as
in the statements of the laws of thermodynamics, we imply that
the system is well-defined according to all the specifications and
restrictions summarized in the present section, and discussed thor-
oughly in Ref. [6].

2.2 Stable Equilibrium States. We restrict our study to the
stable equilibrium states of a system that: (1) is confined in a
region of space of variable volume: and (2) has volume as the
only parameter. Such a system has no internal partitions and is not
influenced by external forces resulting from gravity, electricity,
magnetism, shear deformation, capillarity and other surface
effects, because each of these effects requires one or more param-
eters in addition to volume.

The fundamental stable-equilibrium-state relation of the system
is written as

S ¼ SðU;V; nÞ (2)

where the explicit form of the function S(U, V, n) is determined
by the structure of the system, the constituents, and the internal
and external forces. Moreover. Equation 2 can be solved for U to
obtain the energy relation

U ¼ UðS;V; nÞ (3)

where again the explicit form of the function U(S, V, n) depends
on the system.

For any system, large or small, we can use the energy relation
to evaluate the temperature, pressure, and chemical potentials at
each stable equilibrium state by means of the relations

TðS;V; nÞ ¼ @U

@S

� �
V;n

(4)

pðS;V; nÞ ¼ � @U

@V

� �
S;n

(5)

liðS;V; nÞ ¼
@U

@V

� �
S;V;n

for i ¼ 1; 2;…; r (6)

In terms of these properties, we can express dU as a total differ-
ential of Equation 3, that is,

dU ¼ TdS� pdV þ l1dn1 þ l2dn2 þ � � � þ lrdnr (7)

where in writing this differential we use the definitions of T, p.
l1;l _2;…; lr (Equations 4 to 6). This differential is known as the
Gibbs relation.

We can also use Equations 3 to 6 to define other properties such
as the enthalpy H¼Uþ pV, the Helmholtz free energy
A¼U� TS, and the Gibbs free energy G¼U� TSþ pV. More-
over, from the independence of the order of differentiation of each
of the characteristic functions U¼U(S, V, n), H¼H(S, p, n),
A¼A(T, V, n), and G¼G(T, p, n) with respect to any two of its
variables, we obtain the Maxwell relations

@T

@V

� �
S;n

¼ � @p

@S

� �
V;n

(8)

@li

@S

� �
V;n

¼ @T

@ni

� �
S;V;n

for i ¼ 1; 2;…; r (9)

@li

@V

� �
S;n

¼ � @p

@ni

� �
S;V;n

for i ¼ 1; 2;…; r (10)

@T

@p

� �
S;n

¼ @V

@S

� �
p;n

(11)

@li

@S

� �
p;n

¼ � @T

@ni

� �
S;p;n

for i ¼ 1; 2;…; r (12)

@li

@p

� �
S;n

¼ @V

@ni

� �
S;p;n

for i ¼ 1; 2;…; r (13)

@S

@V

� �
T;n

¼ @p

@T

� �
V;n

(14)

@li

@T

� �
V;n

¼ � @S

@ni

� �
T;V;n

for i ¼ 1; 2;…; r (15)

@li

@V

� �
T;n

¼ � @p

@ni

� �
T;V;n

for i ¼ 1; 2;…; r (16)

@S

@p

� �
T;n

¼ � @V

@T

� �
p;n

(17)

@li

@T

� �
p;n

¼ � @S

@ni

� �
T;p;n

for i ¼ 1; 2;…; r (18)

@li

@p

� �
T;n

¼ � @V

@ni

� �
T;p;n

for i ¼ 1; 2;…; r (19)

We reiterate that all these results are valid for any amounts of
constituents, including a single particle with only one trans-
lational degree of freedom in any of its stable equilibrium states.
There are other results, however, which obtain only for systems
with large values of the amounts of constituents.

3 Simple Systems

3.1 Definition. We define a system as simple if it has volume
as the only parameter, and if it satisfies the following two addi-
tional requirements.

(a) If in any of its stable equilibrium states it is partitioned into
a set of contiguous subsystems in mutual stable equilib-
rium, the system is such that the effects of the partitions are
negligible.

(b) In any of its stable equilibrium states, the instantaneous
“switching on or off”’ of one or more internal reaction
mechanisms causes negligible instantaneous changes in the
values of the energy, entropy, volume, and amounts of
constituents.

In general, when Conditions (a) and (b) are satisfied, we find
that results obtained for stable equilibrium states of a simple
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system with one set of values of the amounts of constituents and
the volume can be readily extended to other sets of values, and
that certain properties and variables are explicitly interrelated.

In this paper, we explore the implications of the validity of
Condition (a). The discussion of the implications of both Condi-
tions (a) and (b) is given in Ref. [6], Chapter 30.

3.2 Implications of Partitioning. We consider systems A
and B shown schematically in Figures 1(a) and 1(b). System A is
in a stable equilibrium state with energy UA, volume VA, and
amounts of constituents nA

1 ; n
A
2 ;…; nA

r . System B consists of two
subsystems, each identical to system A but in a stable equilibrium
state with energy UA/2. volume VA/2, and amounts of constituents
nA

1=2; nA
2=2;…; nA

r =2. Being in identical stable equilibrium states,
the two subsystems have identical values of temperature T, pres-
sure p, and chemical potentials l1;l2;…; lr that is, they are in
mutual stable equilibrium and. therefore, system B is in a stable
equilibrium state. It is noteworthy that system B is not identical to
system A because it requires two parameters, that is, a volume for
each of the two subsystems, rather than just one volume.

By virtue of the fundamental relation for systems with volume
as the only parameter (Equation 2). and the additivity of entropy,
systems A and B have entropies

SA ¼ SAðUA;VA � nAÞ (20)

and

SB ¼ 2SAðUA=2;VA=2; nA=2Þ (21)

In general, SA is not equal to SB because of the presence of the par-
tition that separates the two subsystems of system B. For example,
if each of the two subsystems of B contains only one particle, then
it can be shown with the tools of quantum theory that the particle
is not uniformly distributed in the available space, it is more rare-
fied near the confining walls and, therefore, the wall partitioning
system B into the two subsystems imposes a significant difference
between the properties of systems A and B.

However, it can also be shown with the tools of quantum
theory that such differences become less and less important, and

negligible for all practical purposes, as the values of the amounts
of constituents in each subsystem increase beyond a relatively
small number [7,8]. Hence, if the amounts of constituents are
large, we can neglect the effects of the partition, write SB¼ SA

without appreciable error, neglect the differences between systems
A and B, and conclude that the stable equilibrium state of A is the
same as the state of B, and that the temperature, pressure, and
chemical potentials of A have the same values as the respective
properties of each subsystem of B.

We can repeat the preceding reasoning for the systems A and K
shown in Figures 1(a) and 1(c). System K consists of a large num-
ber k of subsystems, each in a stable equilibrium state with energy
UA/k, volume VA/k, and amounts of constituents nA

1=k; nA
2=k;…;

nA
r =k. For large amounts of constituents, we conclude again that

the effects of the partitions can be neglected, and that

SK ¼ kSAðUA=k;VA=k; nA
1=k; nA

2=k;…; nA
r =kÞ � SA (22)

Of course, we reiterate that the influence of partitions is not
negligible if the number of particles in any of the subsystems is
very small. Hence, the results just cited cannot hold for arbitrarily
large values of k. However, because we are usually concerned
with amounts of constituents that correspond to very large num-
bers of particles, the effect of partitions is negligible up to a very
large number of subdivisions, so that each subsystem resulting
from such a subdivision can be considered for all practical pur-
poses infinitesimal as compared to the overall system.

Subject to the restriction just cited, we can write the relation
between the entropies of A and each subsystem of K in Figure 1 in
the form

SðU;V; nÞ ¼ kSðU=k;V=k; n=kÞ (23)

where we drop the superscript “A” for simplicity.
Using Equation 3, we write UA¼UA(SA, VA, nA). Because each

of the subsystems of K is in a stable equilibrium state with entropy
SA/k, volume VA/k, and amounts of constituents nA/k, its energy
must be UA(SA/k, VA/k, nA/k). Because the effects of the partitions
are negligible and energy is additive, UA¼UK and, therefore.

UðS;V; nÞ ¼ kUðS=k;V=k; n=kÞ (24)

where again we drop the superscript “A” for simplicity.
From Equations 23 and 24, we conclude that each of the func-

tions S¼ S(U, V, n) and U¼U(S, V, n) is homogeneous of degree
one with respect to each of its variables. Moreover, if the homoge-
neity holds for any integer number k, it holds also for any real
number k because such k can always be approximated by a
sequence of ratios of integers k1/k2 that tend to k.

The homogeneities of degree one of the fundamental relation
S¼ S(U, V, n) and the energy relation U¼U(S, V, n) are the main
consequences of Condition (a) in the definition of a simple sys-
tem. From these consequences follow many results that simplify
the study of the stable equilibrium states of any substance. For
example, experimental values of properties of a simple system
corresponding to given values U, V, n can be readily extended to
any other larger or smaller values of these variables. We discuss
this result in more detail in Sections 3.5 and 3.6.

From Equation 24 we see that the stable equilibrium properties
of a simple system with entropy S, volume V, and amounts of con-
stituents n are identical to those of a composite of k subsystems
each of which is identical to the overall system but in a stable
equilibrium state with entropy, volume, and amounts of constitu-
ents k times smaller. Being identical and in identical states, all
such subsystems have the same temperature, pressure, and chemi-
cal potentials, and these are also the temperature, pressure and
chemical potentials of the overall system. Because the number k
can be chosen very large, a simple system in a stable equilibrium
state can always be viewed as a composite of a contiguousFig. 1
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collection of infinitesimal simple subsystems, all in mutual stable
equilibrium.

3.3 Euler and Gibbs-Duhem Relations. We consider a sim-
ple system (Figure 2a) in a stable equilibrium state having entropy
S, volume V, amounts of constituents n, energy U(S, V, n), temper-
ature T, pressure p, and chemical potentials l1;l2;…; lr We sub-
divide this system into a contiguous collection of infinitesimal
subsystems, each having the same temperature T, pressure p, and
chemical potentials l1;l2;…;lr as the system itself, and entropy
dS, volume dV, amounts of constituents dn1, dn2, …, dnr, and
energy dU.

Alternatively, the differential dU may be regarded as the differ-
ence in energy between two neighboring stable equilibrium states
(Figures 2b and 2c) differing in entropy by dS, in volume by dV,
and in amounts of constituents by dn1, dn2, … dnr. As such, it is
given by Equation 7, the Gibbs relation. This relation imposes a
restriction on the differences dU, dS, dV, and dni for i¼ 1, 2, … , r
between two neighboring stable equilibrium states and the values
of T, p, and li for i¼ 1, 2, … , r of one of these states.

The additive properties energy U and entropy S, the additive
volume V, and the additive amounts n1, n2, …, nr of the simple
system can each be viewed as the sum or integral of the energies,
entropies, volumes, and amounts, respectively, of all the infinitesi-
mal subsystems in a given partition of the spatial extension of the
simple system.

Thus, for given values of T, p, l1;l2;…;lr, we can think of the
simple system in Figure 2(a) as resulting from successive addi-
tions of infinitesimal parts which build up the value of each of U,
S, V, n1, n2, … , nr from zero to the value of the simple system,
while maintaining each of the properties T, p, l1; l2;…;lr

unchanged throughout all the additions. At each step (Figures 2(b)
and 2(c)) the increments dU, dS, dV, dn1, dn2, … , dnr are related
by the Gibbs relation. Hence, upon integration of Equation 7 at
constant T, p, l1;l2;…;lr , we find the Euler relation, that is

U ¼ TS� pV þ l1n1 þ l2n2 þ � � � þ lrnr (25)

Clearly, Equation 25 is valid for any set of values T, p,
l1; l2;…; lr consistent with the values of S, V, n1, n2, … , nr and,
therefore, it is valid for all such values.

The Euler relation can be derived also by a different procedure,
based directly on the homogeneity of degree one of the energy
relation. Indeed, we define the variables S0 ¼ S/k, V0 ¼V/k, and
n0 ¼ n/k, so that Equation 24 becomes U(S, V, n)¼ kU(S0, V0, n0).
Differentiating this equation with respect to k at constant S0, V0, n0,
we find

@U

@S

� �
V;n

S0 þ @U

@V

� �
S;n

V0 þ
X

i

@U

@ni

� �
S;V;n

n0i ¼ UðS0;V0; n0Þ

(26)

This equation holds for all values of k, including k¼ 1. But then
S0 ¼ S, V0 ¼V, n0 ¼ n and, recalling the definitions of T, p, and li

for i¼ 1, 2, … , r, we obtain Equation 25.
Upon writing the differential of Equation 25 in the form

dU ¼ TdSþ SdT � pdV � Vdpþ l1dn1 þ n1dl1 þ l2dn2

þ n2dl2 þ � � � þ lrdnr þ nrdlr (27)

and substituting dU from Equation 7. we find another important
and useful result, the Gibbs-Duhem relation

SdT � Vdpþ l1dn1 þ l2dn2 þ � � � þ nrdlr ¼ 0 (28)

This relation imposes a restriction on the differences dT, dp, and
dli for i¼ 1, 2, … , r between two neighboring stable equilibrium
states, and the values of S, V, and ni for i¼ 1, 2, … , r of one of
these states.

3.4 Extensive and Intensive Properties. For a simple system
in a stable equilibrium state, and for any number k, the tempera-
ture T(S, V, n)¼ (@U/@S)V,n, pressure p(S, V, n)¼� (@U/@V)S,n,
and chemical potentials li(S, V, n)¼ (@U/@ni)S,V,n, for
i¼ 1, 2, …, r, satisfy the relations

TðS;V; nÞ ¼ TðS=k;V=k; n=kÞ (29)

pðS;V; nÞ ¼ pðS=k;V=k; n=kÞ (30)

liðS;V; nÞ ¼ liðS=k;V=k; n=kÞ for i ¼ 1; 2;…; r (31)

namely, if each of the values of the additive variables S, V, n1,
n2, … , nr is altered by a factor k, the values of the temperature T,
the pressure p, and the chemical potentials l1, l2, … , lr remain
unaltered.

To provide a proof, we define the variables S0 ¼ S/k, V0 ¼V/k and
n0¼ n/k so that Equation 24 becomes U(S, V, n)¼ kU(S0, V0, n0).
Differentiating this equation with respect to S at constant V, n and k,
we find

TðS;V; nÞ ¼ @U

@S

� �
V;n

¼ k
@U

@S0

� �
V0;n0

1

k
¼ TðS0;V0; n0Þ (32)

that is, Equation 29. Similarly, by differentiating U(S, V, n) with
respect to V at constant S, n and k, we obtain Equation 30 and by
differentiating U(S, V, n) with respect to ni at constant S, V, k and
the remaining n0s, we obtain Equation 31.

In contrast to T, p, and li, other properties of a stable equilib-
rium state change by a factor of k if each of the additive variables
S, V, n changes by the same factor. For example, energy behaves
in this manner (Equation 24). Again, the enthalpy H(S, p, n), the
Helmholtz free energy A(T, V, n), and the Gibbs free energy G(T,
p, n) exhibit the same behavior because they satisfy the relationsFig. 2
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HðS; p; nÞ ¼ kHðS=k; p; n=kÞ (33)

AðT;V; nÞ ¼ kAðT;V=k; n=kÞ (34)

GðT; p; nÞ ¼ kGðT; p; n=kÞ (35)

Indeed, consider the simple system as a composite of k identical
simple subsystems all in mutual stable equilibrium with tempera-
ture T, pressure p, chemical potentials li, for i¼ 1, 2, … , r,
entropy S/k, volume V/k, and amounts ni/k for i¼ 1, 2, … , r. By
Equations (23) and (29) to (31), the overall simple system with
entropy S, volume V, and amounts ni, for i¼ 1, 2, … , r has energy
U(S, V, n), temperature T, pressure p, and chemical potentials li,
for i¼ 1, 2, … , r. Therefore, the enthalpy of the overall system is
given by H(S, p, n)¼U(S, V, n)þ pV¼ k[U(S/k, V/k, n/k)þ pV/
k]¼ kH(S/k, p, n/k) (Equation 33). Similar proofs yield Equations
(34) and (35) for the Helmholtz free energy and the Gibbs free
energy, respectively.

It is noteworthy that the enthalpy, the Helmholtz free energy,
and the Gibbs free energy are defined only for stable equilibrium
states. For example, if a system is composed of two subsystems
each in a stable equilibrium state but not in mutual stable equilib-
rium, then the enthalpy, the Helmholtz free energy, and the Gibbs
free energy are defined for each subsystem but not for the overall
system.

We call extensive any property of a stable equilibrium state
which remains unchanged if each of the additive variables S, V,
and n changes by a factor k. For example, the energy and the en-
thalpy of a simple system are extensive properties because of
Equations 24 and 33, respectively.

We suggest that the concept of extensiveness should be used
exclusively for stable equilibrium states of simple systems and not
synonymously with the concept of additivity.

Every additive property is also extensive, but an extensive
property is additive only if restricted to systems in mutual equilib-
rium and not for all systems in all states. For example, energy is
both extensive and additive, but enthalpy is only extensive and
not additive because, in general, the sum of the enthalpies of two
systems in stable equilibrium states does not represent an enthalpy
of the composite of the two systems unless they are in mutual
stable equilibrium.

We call intensive any property of a stable equilibrium state
of a simple system which remains unchanged if each of the
additive variables S, V, and n changes by a factor k. Mathemati-
cally, a function of many variables which remains unchanged if
some of the variables change by a factor k is called homogene-
ous of degree zero with respect to these variables. For example,
temperature, pressure, and chemical potentials are all intensive
properties of stable equilibrium states of any simple system
because of Equations (29) to (31). Again, any partial derivative
of an extensive property with respect to another extensive prop-
erty is intensive according to our definition because both the
numerator and the denominator of the partial derivative change
by the same factor as the common factor that denotes the
change in S, V, and n.

Other properties of stable equilibrium states of simple systems
that are intensive are all the ratios of any two extensive quantities
such as U, S, V, n1, n2, … , nr, H, A, G or ratios of any linear com-
bination of these quantities such as U and either the total amount
of constituents n¼ n1þ n2þ � � � þ nr or the mass m. Indeed, if
each of S, V, n changes by a factor k, each extensive quantity
changes by the same factor and, therefore, the ratio of any two
extensive quantities remains unchanged. A ratio of two extensive
quantities or properties is also called a specific property.

Extensive and intensive properties are not all inclusive. Some
properties fail to conform to either definition. For example, the
square of the energy is a property that is neither extensive nor
intensive. No special name is provided for such properties because
they are not encountered very often in practice.

3.5 Dependences of Intensive Properties. In general, a prop-
erty of a stable equilibrium state of a simple system with r constit-
uents depends on rþ 2 independent variables such as S, V, n1,
n2, … , nr. In contrast, each intensive property depends at most on
rþ 1 independent variables because each such property is inde-
pendent of the total amount of constituents.

We can verify the last assertion by considering any intensive
property. For example, if in Equation 29 for temperature we
assume that k¼ n, where n is the total amount of constituents,
n¼ n1þ n2þ � � � þ nr, then we find

TðS;V; n1; n2;…; nrÞ ¼ Tðs; v; y1; y2;…; yrÞ (36)

where s¼ S/n, v¼V/n, y1¼ n1/n, y2¼ n2/n, … , yr¼ nr/n. The
function T(s, v, y1, y2, … ,yr) depends at most on rþ 1 independent
intensive variables because we can use the relation y1þ y2þ � � �
þ yr¼ 1 to ehminate one of the fractions yi. The same conclusion
can be reached for the pressure and the chemical potentials, by
examining Equations (30) and (31).

A consequence of these results is that the rþ 2 intensive prop-
erties T, p, l1, l2, … , lr cannot all be varied independently
because they depend at most on rþ 1 independent variables. We
reach the same conclusion by recognizing that the Gibbs-Duhem
relation (Equation (28)) imposes a general restriction on the possi-
ble changes in these properties.

Another illustration of the reduced number of independent vari-
ables necessary to describe intensive properties is provided by the
dependences of ratios of extensive properties. Using the Gibbs-
Duhem relation, and evaluating it for different combinations of
differentials, we find

S

V
¼ @U

@S

� �
l

S

ni
¼ � @li

@T

� �
p;l

V

ni
¼ @li

@p

� �
T;l

(37)

where subscript “l” stands for all the lj’s being kept fixed except
for the one that appears in the partial derivative. We see that each
of the ratios of the extensive quantities S, V, n1, n2, … , nr is deter-
mined by a partial derivative, and that each function that is being
differentiated depends at most on rþ 1 independent variables. For
example, S/V depends on T, l1; l2;…;lr .

3.6 Dependences of Extensive Properties. For simple sys-
tems, another important aspect of the reduced dependences of
intensive and specific properties is that they are independent of
the amount n. To verify this assertion, we consider the specific
internal energy u defined by the relation

u ¼ UðS;V;n1;n2;…; nrÞ=n

¼ Uðns; nv; ny1; ny2;:::; nyrÞ=n
(38)

Upon differentiating this relation, we find

du ¼ 1

n
dU � U

n2
dn

¼ 1

n

�
@U

@S

� �
V;n

ðndsþ sdnÞ þ @U

@V

� �
S;n

ðndvþ vdnÞ

þ
Xr

i¼1

@U

@ni

� �
S;V;n

ndyi þ yidnð Þ
�
� U

n2
dn

¼ Tds� pdvþ
Xr

i¼1

lidyi

� 1

n2
U � TSþ pV �

Xr

i¼1

lini

 !
dn

(39)

Each of the coefficients of the rþ 3 differentials in the right-hand
side of the third of Equations (39) represents a partial derivative
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with respect to the variable in the corresponding differential. In
particular, the coefficient of dn equals (@u/@n)s,v,y, where the sub-
script “y” denotes that all mole fractions are kept fixed. But
U� TSþ pV�

Pr
i¼1 lini¼ 0 because of the Euler relation (Equa-

tion (25)), and therefore (@u/@n)s,v,y¼ 0

du ¼ Tds� pdvþ
Xr

i¼1

lidyi (40)

and

u ¼ uðs; v; y1; y2;…; yrÞ (41)

subject to the relation y1þ y2þ � � � þ yr¼ 1.
A similar procedure can be used to show that the specific Gibbs

free energy g¼G/n is a function of T, p, and y only, i.e., g¼ g(T,
p, y1, y2, …, yr). Indeed, upon differentiating the relation g¼G(T,
p, n)/n we find

dg ¼ �sdT þ vdpþ
Xr

i¼1

lidyi �
1

n2
G�

Xr

i¼1

lini

 !
dn

¼ �sdT þ vdpþ
Xr

i¼1

lidyi

� 1

n2
U � TSþ pV �

Xr

i¼1

lini

 !
dn

¼ �sdT þ vdpþ
Xr

i¼1

lidyi

(42)

where the second of Equations (42) results from the relation
G¼U� TSþ pV, and the third from the Euler relation. Thus, we
verify that g is a function of T, p, and y only, independent of n.

In particular, for a single-constituent simple system it also fol-
lows that G¼ln and, therefore,

l¼G

n
¼ gðT; pÞ ¼ uþ pv� Ts ¼ h� Ts (43)

i.e., the chemical potential is equal to the specific Gibbs free
energy, and can be expressed in terms of the specific enthalpy h
and the specific entropy s. Moreover, because for such a system
y¼ 1 and dy¼ 0, Equations (40) and (42) become

du ¼ Tds� pdv (44)

dl ¼ �sdT þ vdp (45)

where in writing Equation (46) we use the result l¼ g (Equation
(43)). The last equation is the Gibbs-Duhem relation of the single-
constituent simple system in terms of its specific entropy and
specific volume.

Equations (38) and (41) imply that in order to evaluate the
energy relation U¼U(S, V, n1, n2, … , nr) for a simple system it
suffices to determine the relation u¼ u(s, v, y1, y2, … , yr) and then
multiply by the total amount n, i.e.,

UðS;V; nÞ ¼ nuðs; v; yÞ (46)

and therefore the number of independent variables is reduced by
one. In practice this result allows to obtain the values of properties
of an arbitrary amount of a pure substance (r¼ 1) or a mixture
with given proportions (r> 1) from data on the properties of a
unit amount, say, one mole. This result is so useful and so power-
ful that it is often given for granted in most expositions of thermo-
dynamics. In this paper we emphasize that it follows from the
Euler relation, and therefore from the homogeneity of degree one
of the fundamental relation which in turn is valid only when Con-
dition (a) in our definition of a simple system is satisfied.

4 Conclusions

If a phenomenon can be modeled as occurring in a simple sys-
tem in stable equilibrium states, a host of practical and powerful
results obtain. A prerequisite for such modeling is that the system
consist of relatively large amounts of constituents.

However, not all consequences of thermodynamics are subject
to the restriction of large magnitudes of the amounts of constitu-
ents. For example, all the results summarized in Section 2 are
valid regardless of the magnitudes of the amounts of constituents,
including microsystems.
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