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a b s t r a c t 

The Rate-Controlled Constrained-Equilibrium (RCCE) model reduction scheme for chemical kinetics pro- 

vides acceptable accuracies with a number of differential equations much lower than the number of 

species in the underlying Detailed Kinetic Model (DKM). To yield good approximations, however, the 

method requires accurate identification of the rate controlling constraints. So far, a drawback of the RCCE 

scheme has been the absence of a fully automatable and systematic procedure that is capable of iden- 

tifying the best constraints for a given range of thermodynamic conditions and a required level of ap- 

proximation. In this paper, we propose a new methodology for such identification based on a simple 

algebraic analysis of the results of a preliminary simulation of the underlying DKM, which is focused 

on the behaviour of the degrees of disequilibrium (DoD) of the individual chemical reactions. The new 

methodology is based on computing an Approximate Reduced Row Echelon Form of the Actual Degrees 

of Disequilibrium (ARREFADD) with respect to a preset tolerance level. An alternative variant is to select 

an Approximate Singular Value Decomposition of the Actual Degrees of Disequilibrium (ASVDADD). Either 

procedure identifies a low dimensional subspace in the DoD space, from which the actual DoD traces do 

not depart beyond a fixed distance related to the preset tolerance (ARREFADD methodology) or to the 

first neglected singular value of the matrix of DoD traces (ASVDADD methodology). The effectiveness and 

robustness of the method is demonstrated for the case of a very rapid supersonic nozzle expansion of 

the products of hydrogen and methane oxycombustion and for the case of methane/oxygen ignition. The 

results are in excellent agreement with DKM predictions. For both variants of the method, we provide a 

simple Matlab code implementing the proposed constraint selection algorithm. 

© 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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1. Introduction 

According to the Rate-Controlled Constrained-Equilibrium

(RCCE) theory, the reactions in a Detailed Kinetic Model (DKM)

can be characterized in terms of the effectiveness with which they

contribute to the spontaneous tendency to relax the composition

towards chemical equilibrium. Loosely speaking, such effectiveness

depends on the number of “kinetic bottlenecks” that the reaction

needs to go through in order to advance and on how “narrow”
✩ The authors wish to dedicate this paper to the memory of the brilliant founder 

of the rate-controlled constrained-equilibrium theory and their mentor, teacher, 

and coauthor, the late professor James C. Keck of the Massachussetts Institute 

of Technology, whose biography and scientific production is available at www. 

JamesKeckCollectedWorks.org . 
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hese bottlenecks are. Each kinetic bottleneck is characterized by a

inear combination of the composition, called a “constraint”, which

an be varied only by reactions that go through that particular

ottleneck. Therefore, the “narrower” the bottleneck, the slower

he rate of change of the associated rate-limiting constraint. 

The general idea behind the RCCE method [1–14] is that for

ach particular problem, set of conditions, and acceptable degree

f approximation there is a threshold time scale which essentially

eparates the “relatively fast” equilibrating kinetic mechanisms

rom those that slow down and control the spontaneous relaxation

owards equilibrium. The “relatively slow” mechanisms control the

nteresting part of the non-equilibrium dynamics in that they ef-

ectively identify a low dimensional manifold in composition space,

here, for the chosen level of approximation, the dynamics can be

ssumed to take place. In general, the rate controlling mechanisms

re slow because they have to go through one or more bottle-

ecks. For example, the three-body reactions are slow because they
. 
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Nomenclature 

a = [ a i j ] = [ a i 1 , . . . , a i n sp 
] matrix of constraint coefficients 

A � = RT φ� = −∑ n sp 

j=1 
ν j� μ j de-Donder affinity of reaction � 

A 

+ 
� 

, b + 
� 

, E + 
� 

prefactor, temperature expo- 

nent, and activation energy of 

the forward rate constant of 

reaction � 

c i (N ) = 

∑ n sp 

j=1 
a i j N j i th constraint functional of the 

composition vector N 

coker (ν) left null space (co-kernel) of 

matrix ν, often called the inhert 

subspace 

Do D � = φ� = ln ( r + 
� 

/r −
� 
) Degree of Disequilibrium of re- 

action � , the same as φ� 

g j j ( T , p ) = μ j j ( T , p ) Gibbs free energy of pure sub- 

stance j at pressure p and tem- 

perature T (double subscript de- 

notes pure substance) 

�g o � (T ) = 

∑ n sp 

j=1 
ν j� g j j ( T , p o ) Gibbs free energy of reaction 

� at standard pressure p o and 

temperature T 

I sp nozzle thrust force per unit 

mass flow rate of the propellant 

k + 
� 
(T ) forward rate constant of reac- 

tion � at temperature T 

k −
� 
(T ) backward rate constant of reac- 

tion at temperature 

K 

co 
� (T ) equilibrium constant (based on 

concentration) of reaction � at 

temperature T 

[ N j ] concentration of species j

N = 

∑ n sp 

j=1 
N j total number of moles 

N = [ N 1 . . . N n sp ] vector of species mole numbers 

p, p o pressure, atmospheric pressure 

r + 
� 

forward rate of reaction � 

r −
� 

reverse rate of reaction � 

R universal gas constant 

span ({ ν� } ) column space of the stoichio- 

metric matrix ν i.e., linear span 

of the set of vectors defined by 

its columns, often called the re- 

active subspace 

T temperature 

X j = N j /N mole fraction of species j

X = [ X 1 . . . X n sp ] vector of species mole fractions 

ln (X ) = [ ln ( X 1 ) . . . ln ( X n sp )] vector of logarithms of the 

species mole fractions 

Greek symbols 

γi constraint potential, i.e., Lagrange 

multiplier associated with the i -th 

constraint 

λ j = −μ j /RT entropic chemical potential of 

species j

� = [ λ1 . . . λn sp ] vector of entropic chemical poten- 

tials 

�⊥ component of the row vector � or- 

thogonal to span ( { ν� } ) 
�DoD = � − �⊥ vector that we call Overall Degree 

of Disequilibrium 

�DoD ( z p ) = U �V 

T singular value decomposition of the 

n sp × P matrix �DoD (Z p ) 
t

μ j = μ j, off ( T , p, N ) chemical potential of species j in 

a non-reacting mixture of “frozen”

composition N (hence the “off” sub- 

script) in stable equilibrium at tem- 

perature T and pressure p

ν+ 
j� 

forward stoichiometric coefficient of 

species j in reaction � 

ν−
j� 

reverse stoichiometric coefficient of 

species j in reaction � 

ν j� = ν−
j� 

− ν+ 
j� 

net stoichiometric coefficient of 

species j in reaction � 

ν = [ ν j� ] matrix of stoichiometric coefficients 

ν� = [ ν1 � . . . νn sp � ] vector of the stoichiometric coeffi- 

cients of reaction � , defined by the 

� -th column of the matrix ν of stoi- 

chiometric coefficients 

φ� = ln ( r + 
� 

/r −
� 
) = 〈 �| ν� 〉 Degree of Disequilibrium of reac- 

tion � , same as DoD � 

χk = [ χ1 k . . . χn sp k ] a basis for ( { ν� } ) 
Acronyms 

ARREFADD Approximate Reduced Row Echelon Form of the 

Actual Degrees of Disequilibrium 

ASVDADD Approximate Singular Value Decomposition of 

the Actual Degrees of Disequilibrium 

DKM Detailed Kinetic Model 

DoD Degree of Disequilibrium 

RCCE Rate-Controlled Constrained-Equilibrium 

equire three-body collisions which occur much less frequently

han two-body collisions. As a result, the bottleneck mechanism

s that of three-body collisions and the associated rate-limiting

onstraint is the total number of moles, which would not change

f all three-body reactions were frozen. The “narrowness” of each

ottleneck can be measured by the characteristic time with which

he associated constraint would relax towards its equilibrium value

n the absence of interactions sustaining the non-equilibrium state.

As emphasized for example in Ref. [12] , the RCCE method en-

oys a very appealing built-in general feature of strong thermo-

ynamic consistency. However, the main difficulties in its practi-

al use have been: (a) identifying the kinetic bottlenecks and (b)

onstructing an efficient set of constraints implied by them. Sev-

ral effort s have addressed these problems with varying degrees

f success [15] . The Greedy algorithm [16] and its extension in-

luding local improvements [17] select, one at a time, the most ef-

ective single-species constraints by cyclic execution of the DKM.

his approach has shown to be efficient for turbulent flames in

onjunction with in situ adaptive tabulation. Level of Importance

LOI) [18] picks up single species as constraints from the top of

he list of species which are sorted based on their time scales. The

ethod has demonstrated acceptable agreements with DKM calcu-

ations. Nonetheless, as shown in [17] , time-scale based methods

or the selection of constraints do not necessarily identify the most

ffective set of constraints. The analysis of the DoD traces of all

he chemical reactions obtained from a full DKM calculation was

hown in Ref. [19] to provide important information for selecting

onstraints. However, it ultimately fell short to be fully rational-

zed and automated for a general case. It is the aim of this paper

o present a methodology to fully rationalize the idea presented

n [19] , regardless of the complexity of the mechanism, in a truly

lgorithmic manner. The proposed methodology, therefore, holds

he promise to resolve the difficulties involved with the lack of a

ystematic way to choose constraints, which has long represented

he main obstacle toward a widespread use of the RCCE method. 
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Fig. 1. Dimensionless cross sectional area A ( x ) of the diverging nozzle considered 

in [19] . The exit-to-throat area ratio is 50 and the nozzle length is 10 times the 

diameter of the throat section. At the throat, the inlet flow is sonic based on frozen 

Mach number, the temperature is 30 0 0 K, the pressure 25 atm, and the mixture is 

assumed at chemical equilibrium. The residence time is 3.7 ms. 
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Currently, several reduction techniques populate the current

state of the art about methods to simplify complex chemical ki-

netics modelling for a variety of applications. Quasi-Steady State

Approximation (QSSA) [20] is commonly applied to species which

react on a short time scale compared to other species and are,

therefore, expected to be in a steady state. Their corresponding

rate equations are then replaced with algebraic equations. Intrin-

sic Low-Dimensional Manifold (ILDM) [21] and Computational Sin-

gular Perturbation method (CSP) [22,23] use a dynamical systems

approach of time scale analysis to reduce the stiffness in the model

equations. ILDM tries to identify systematically the species for

which the QSSA holds and CSP tries to eliminate the contribution

of the so-called locally exhausted modes [23] to the evolution of

species. In a later extension of CSP [24] , a procedure was devel-

oped to discard elementary reactions and species that are deemed

unimportant to the fast and slow dynamics, thereby developing a

skeletal mechanism from the detailed model. In techniques based

on adaptive chemistry [25–27] , the low dimensional manifold is

tabulated in the form of an entire library of locally accurate, re-

duced kinetic models at different compositions and temperatures

that have been preliminarily proved to approximate the full chem-

istry reasonably well. A great deal of effort has thus been de-

voted to developing methods for reducing the size of the under-

lying DKM. In addition to those already mentioned, the followings

are most notable: Partial Equilibrium Approximation [28] , Directed

Relation Graph (DRG) [29] , ICE-PIC method [30] , Method of Invari-

ant Manifolds [31] , and skeletal scheme reduction based on level

of importance [32] or entropy production [33] . 

In this paper, the idea discussed in [19] is first pursued and ra-

tionalized to a level that results in a smaller, yet equally effective

set of constraints. Then, further inspection of that idea opens the

stage to define a fully systematic algorithm for constraint identifi-

cation. To fix ideas and demonstrate the higher efficiency of the

proposed methodology, the nozzle configuration of [19] is used

also here. We analyse the Degree of Disequilibrium (DoD) data

generated by a DKM simulation and show how they provide clear

indications on what constraints are associated with the physical

bottlenecks that are effectively in control of the kinetics. Then,

when the structure of the DoD traces is complex and the group-

ing of reactions cannot be obtained by simple inspection, we show

that the logic of our methodology can be still implemented by

computing the Approximate Reduced Row Echelon Form of the

Actual Degrees of Disequilibrium (ARREFADD) with respect to a

preset tolerance level. Geometrically, this procedure identifies the

lowest dimensional subspace in DoD space from which the actual

DoD traces do not depart beyond a fixed distance related to the

preset tolerance. This provides a systematic, fully automatable and

simple algorithm for constraint identification capable of generating

the optimal set of RCCE constraints for each preset level of approx-

imation. 

The effectiveness of the proposed algorithm, as well as of its

variant based on computing the Approximate Singular Value De-

composition of the Actual Degrees of Disequilibrium (ASVDADD),

is demonstrated here for a few case studies of increasing complex-

ity. A full validation study as well as a study of the relations be-

tween the present method and the state of the art reduction meth-

ods that populate the literature [19–23] are beyond our scope here

and will be presented elsewhere. 

To help develop appreciation for the rationale of the new

method, the first part of the article ( Sections 2 –5 ) – which an

expert in model order reduction could skip or glance through –

starts from the analysis of a simple particular case. This enables

building up useful heuristics that allow grasping the more abstract

linear algebra and basic observations from which we derive the

new method in the second part that deals with the general case.

Therefore, the article is organized as follows. Section 2 discusses
he supersonic diverging nozzle set-up, the assumed hydrogen oxy-

ombustion DKM, and the findings of [19] which constitute the

reliminary background for our additional observations, presented

n Sections 3 and 4 . Section 5 outlines the new constraint selec-

ion methodology for a case in which the reaction grouping can

e done by simple inspection of the DoD traces, and demonstrates

ts efficiency and remarkable predictive ability by means of com-

arisons against a full DKM simulation and the methodology of

19] . Section 6 introduces additional fundamental observations and

otation that constitute the geometrical basis for the ARREFADD

ethod, finally presented in Section 7 . Section 8 introduces the

owerful ASVDADD variant of the method. Section 9 demonstrates

he validity of the new methodology for other examples of noz-

le and channel flows of increasing complexity. Section 10 con-

ludes that the new method resolves the difficulties that pre-

ented so far the RCCE method from widespread use. Appendices

 and B provide a simple MatLab implementation of the proposed

RREFADD and ASVDADD algorithms, respectively. Appendix C

ummarizes the vector space notation used in the paper. 

. Physical model and problem formulation 

The set-up of interest is one that was also considered in [19] .

t involves supersonic relaxation of combustion products within a

iverging nozzle with an area profile as shown in Fig. 1 . The noz-

le has an exit-to-throat area ratio of 50 and a length 10 times

he diameter of the throat section. The dimensionless coordinate x

enotes the ratio of the centerline downstream distance from the

hroat to the throat diameter. The dimensionless area A (x ) denotes

he ratio of nozzle cross sectional area to throat area. At the throat

he inlet flow conditions are just above sonic based on frozen Mach

umber. Temperature and pressure at the throat are 30 0 0 K and

5 atm, respectively, and the mixture is assumed to be at chemical

quilibrium. The residence time within the nozzle is 3.7 ms. 

Table 1 shows the 24 reactions of the Hydrogen/Oxygen DKM

ssumed here and in [19] . It also shows the parameters that deter-

ine the forward reaction rate constants 

 

+ 
� ( T ) = A 

+ 
� T 

b + � exp ( −E + � /RT ) (1)

n mol-cm-s-K units with the forward activation energy E + 
� 

in

al/mol. The backward reaction rate constants are determined from

he principle of detailed balance, 

 

−
� ( T ) = k + � ( T ) /K 

co 
� ( T ) (2)
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Table 1 

The 24 reactions of the hydrogen/oxygen Detailed Kinetic Model (DKM) considered in [19] and in the present study, together with the parameters that determine the 

forward reaction rate constants via equation k + � (T ) = A + � T 
b + � exp ( −E + � /RT ) and the transpose of the matrix ν = [ ν j� ] of stoichiometric coefficients. 

Species: j = 1 2 3 4 5 6 7 8 

O O 2 H H 2 OH H 2 O HO 2 H 2 O 2 
� Reaction � A + � b + � E + � ν1 � ν2 � ν3 � ν4 � ν5 � ν6 � ν7 � ν8 � 

1 O + O + M = O 2 +M 1.20E + 17 −1 0 ν1 = [ –2 1 0 0 0 0 0 0] 

2 O + H + M = OH + M 5.00E + 17 −1 0 ν2 = [ –1 0 −1 0 1 0 0 0] 

3 H + H + M = H 2 +M 1.00E + 18 −1 0 ν3 = [ 0 0 −2 1 0 0 0 0] 

4 H + H + H 2 = H 2 + H 2 9.00E + 16 −0 .6 0 ν4 = [ 0 0 −2 1 0 0 0 0] 

5 H + H + H 2 O = H 2 +H 2 O 6.00E + 19 −1 .3 0 ν5 = [ 0 0 −2 1 0 0 0 0] 

6 H + OH + M = H 2 O + M 2.20E + 22 −2 0 ν6 = [ 0 0 −1 0 −1 1 0 0] 

7 H + O 2 + M = HO 2 +M 2.80E + 18 −0 .9 0 ν7 = [ 0 −1 −1 0 0 0 1 0] 

8 H + O 2 + O 2 = HO 2 + O 2 2.08E + 19 −1 .2 0 ν8 = [ 0 −1 −1 0 0 0 1 0] 

9 H + O 2 + H 2 O = HO 2 +H 2 O 1.13E + 19 −0 .8 0 ν9 = [ 0 −1 −1 0 0 0 1 0] 

10 OH + OH + M = H 2 O 2 +M 7.40E + 13 −0 .4 0 ν10 = [ 0 0 0 0 −2 0 0 1] 

11 O + H 2 = H + OH 3.87E + 04 2 .7 6260 ν11 = [ –1 0 1 −1 1 0 0 0] 

12 O + HO 2 = OH + O 2 2.00E + 13 0 0 ν12 = [ –1 1 0 0 1 0 −1 0] 

13 O + H 2 O 2 = OH + HO 2 9.63E + 06 2 40 0 0 ν13 = [ –1 0 0 0 1 0 1 −1] 

14 H + O 2 = O + OH 2.65E + 16 −0 .7 17,041 ν14 = [ 1 −1 −1 0 1 0 0 0] 

15 H + HO 2 = O + H 2 O 3.97E + 12 0 671 ν15 = [ 1 0 −1 0 0 1 −1 0] 

16 H + HO 2 = O 2 + H 2 4.48E + 13 0 1068 ν16 = [ 0 1 −1 1 0 0 −1 0] 

17 H + HO 2 = OH + OH 8.40E + 13 0 635 ν17 = [ 0 0 −1 0 2 0 −1 0] 

18 H + H 2 O 2 = HO 2 + H 2 1.21E + 07 2 5200 ν18 = [ 0 0 −1 1 0 0 1 −1] 

19 H + H 2 O 2 = OH + H 2 O 1.00E + 13 0 3600 ν19 = [ 0 0 −1 0 1 1 0 −1] 

20 OH + H 2 = H + H 2 O 2.16E + 08 1 .5 3430 ν20 = [ 0 0 1 −1 −1 1 0 0] 

21 OH + OH = O + H 2 O 3.57E + 04 2 .4 −2110 ν21 = [ 1 0 0 0 −2 1 0 0] 

22 OH + HO 2 = O2 + H 2 O 1.45E + 13 0 −500 ν22 = [ 0 1 0 0 −1 1 −1 0] 

23 OH + H 2 O 2 = HO 2 + H 2 O 2.00E + 12 0 427 ν23 = [ 0 0 0 0 −1 1 1 −1] 

24 HO 2 +HO 2 = O 2 +H 2 O 2 1.30E + 11 0 −1630 ν24 = [ 0 1 0 0 0 0 −2 1] 
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Fig. 2. Degrees of disequilibrium, φ� = ln ( r + � /r −� ) , of the 24 reactions of Table 1 

plotted versus the dimensionless downstream coordinate x along the nozzle axis, 

obtained (as in [19] ) from a DKM simulation for the conditions detailed in Fig. 1 . 

Reactions 11 and 14 exhibit (very small) negative DoDs. 
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here 

 

co 
� ( T ) = 

(
p o 

RT 

)ν� 

exp 

(
−�g o � ( T ) 

RT 

)
(3) 

s the reaction equilibrium constant (based on concentration). Also,

� = 

∑ 

j ν j� , ν j� = ν−
j� 

− ν+ 
j� 

, where ν+ 
j� 

and ν−
j� 

are the forward and

everse stoichiometric coefficients of the � th reaction, respectively,

nd �g o � (T ) = 

∑ n sp 

j=1 
ν j� g j j ( T , p o ) is the Gibbs free energy of the � th

eaction at standard pressure p o and temperature T , where g j j =
j j (with the double subscript) refers to the Gibbs free energy of

ure substance j. In the present paper, we use the notation of [4] ,

hich differs only slightly from that of [19] . The symbol g j = μi 

with a single subscript), used below, represents instead the partial

ibbs free energy, i.e., the chemical potential, of species j in the

ixture. 

The Degree of Disequilibrium of reaction � , φ� , is defined as

ollows: 

� = ln 

(
r + � /r −� 

)
(4) 

here r + 
� 

and r −
� 

are the forward and reverse reaction rates, re-

pectively, defined as 

 

+ 
� = k + � ( T ) 

n sp ∏ 

j=1 

[
N j 

]ν+ 
j � and r −� = k −� ( T ) 

n sp ∏ 

j=1 

[
N j 

]ν−
j � (5)

here n sp is the number of species in the kinetic model. For con-

enience of the discussion below, we denote the Degree of Disequi-

ibrium of a reaction also by Do D � or simply DoD. Figure 2 shows

or all 24 reactions how the respective DoDs evolve along the axis

f the diverging nozzle as the temperature drops rapidly due to the

upersonic expansion. Clearly, the DoDs are not sign definite and

y reversing a reaction in the DKM the corresponding DoD changes

ign. For example, in Fig. 2 reactions 11 and 14 exhibit (very small)

egative DoDs. 
It is worth noticing that the DoD of reaction � is related to its

e-Donder affinity, A � = −∑ n sp 

j=1 
ν j� μ j , as follows: 

� = 

A � 

RT 
= − 1 

RT 

n sp ∑ 

j=1 

ν j� μ j (6) 

here μ j = μ j, off ( T , p, N ) is the chemical potential of species j in

he so-called “surrogate system” [34,35] , namely, the non-reacting

ixture (hence the “off” subscript) at stable thermodynamic equi-

ibrium with the same temperature T , pressure p, and composition

 as the actual non-equilibrium state of the reacting mixture. 

The mathematical interpretation of Eq. (6) is that the DoD of a

eaction is a linear combination of the rows of the stoichiometric

atrix, with −μ j /RT as the coefficients of the linear combination.

his means that if some columns of the stoichiometric matrix are

inearly dependent, then so are the corresponding DoDs. In other

ords, one could mathematically prove that, if there exists a set
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of coefficients α� such that 
∑ n r 

� =1 
ν j� α� = 0 for every j, then, by

Eq. (6) , we also have 
∑ n r 

� =1 
φ� α� = 0 . 

Finally, the non-equilibrium law of mass action for reaction �

can be shown to relate to its DoD as follows (combine Eqs. (110)

and (112) of [4] ) 

n sp ∏ 

j=1 

[
N j 

]νj � = K 

co 
� ( T ) exp ( − φ� ) (7)

At the throat, all reactions are at equilibrium, i.e., φ� = 0 for

every � . Downstream, the quick change in nozzle area causes a de-

crease in temperature, rapid enough to prevent the slow reactions

from remaining near equilibrium and, hence, their DoDs build up

as the fluid elements move downstream. 

In the physical problem which we examine for illustrative pur-

poses, it is assumed that full chemical equilibrium holds at the

entrance (throat) of the nozzle. Such a condition is not encoun-

tered frequently in reacting flow configurations, but it turns out to

serve well our purpose in the first part of the paper to explain the

rather compelling numerical evidence about the underlying physics

that emerges from the DoD analysis of the simple nozzle example.

This example provides strong heuristic motivation for the proposed

general algorithm. 

In the second part of the paper, the application of the proposed

methodology is demonstrated for the more challenging problem

of homogeneous ignition of a stoichiometric mixture of methane

and oxygen in a constant-area plug-flow reactor. The flow veloc-

ity is small enough (Ma = 0.0 0 01) that the flow remains subsonic

throughout the channel and reaches complete chemical equilib-

rium before exiting. 

3. Preliminary observations about DoDs in the underlying DKM

The main observation in [19] is that the plots in Fig. 2 show

clearly that for the given nozzle geometry and flow conditions ev-

ery reaction in the group 11-13-14-18-20-21-23, that we refer to

as “Group 0”, maintains an approximately vanishing DoD through-

out the nozzle. This means that these reactions are able to equi-

librate quickly, in the sense that their DoDs remain very close to

zero all along the nozzle. Therefore, on the time scale of interest

for the given nozzle geometry and flow conditions, these reactions

are not slowed down by any of the kinetic bottlenecks which con-

trol the spontaneous relaxation towards chemical equilibrium. In

other words, the constraints associated with the controlling bottle-

necks are not directly affected by the advancement of any of these

reactions. 

We denote constraint functionals of the composition vector N

as follows: 

c i ( N ) = 

n sp ∑ 

j=1 

a i j N j (8)

where the constraint matrix a = [ a i j ] plays a crucial role in the

RCCE method. Recalling that ˙ N j = 

∑ n r 
� =1 

ν j� ( r 
+ 
� 

− r −
� 
) , the rates of

change of the constraint functionals under the DKM are given by

˙ c i = 

n sp ∑ 

j=1 

a i j 

n r ∑ 

� =1 

ν j� 

(
r + � − r −� 

)
= 

n r ∑ 

� =1 

b i� 
(
r + � − r −� 

)
(9)

where n r is the number of reactions in the DKM and 

b i� = 

n sp ∑ 

j=1 

a i j ν j� (10)

represents the contribution of the net rate of reaction � to the rate

of change of constraint functional c (N ) . 
i 
In order for constraint functional c i to be unaffected directly by

he net rate of reaction � it is necessary and sufficient that b i� be

ero, or at least very small. Geometrically, this means that the i -th

ow of the constraint matrix a i j is orthogonal to the � th column of

he stoichiometric matrix ν j� . This orthogonality condition is auto-

atically satisfied for the two rows a H j and a O j of the constraint

atrix a i j that represent the number of atomic nuclei of hydrogen

nd oxygen, respectively. This is because b H � and b O � are zero for

very reaction � in the DKM, as required by the physical constraint

f conservation of atomic nuclei in chemical reactions. Similarly,

he fact that reactions in “Group 0” have vanishing DoDs requires

hat the rows of the constraint matrix a = [ a i j ] corresponding to

very constraint (bottleneck) which effectively controls the dynam-

cs, must be orthogonal to the columns 11-13-14-18-20-21-23 of

he stoichiometric matrix ν = [ ν j� ] . 

The above observation is shown in [19] to provide an important

lue for the selection of constraints. There, according to the tradi-

ional RCCE approach [1–8] , constraints are assumed to be linear

ombinations of a set of known physically meaningful constraints,

isted in Table 2 , namely, EH (total number of hydrogen nuclei),

O (total number of oxygen nuclei), M (total number of moles), FV

free valence), FO (free oxygen), and a few others. The fact that a

onstraint must not be affected by the (two-body) reactions 11-13-

4-18-20-21-23 provides a strong condition that when integrated

ith well-educated chemical kinetic reasoning and analysis of the

KM, can be exploited, as in [19] , to come up with a good semi-

mpirical choice of a set of governing RCCE constraints. Indeed,

ery good approximation of the full H/O DKM results have been

btained in [19] using RCCE with a set of only three constraints (M,

O, FV) in addition to the two required by conservation of atomic

lements (EH, EO). 

Despite its remarkable performance, however, the analysis pre-

ented in [19] to construct constraints cannot be claimed to be

systematic”, as the authors made note of some contradictory in-

ormation implied by one or few reactions in formulating the con-

traints. It is the aim of the next section to devise a mathemati-

al approach that fully rationalizes the constraint selection for this

roblem. 

. Additional observations about DoDs in the underlying DKM 

The main observation that we put forward in this section and

n which we elaborate in the rest of the paper, is that, in addi-

ion to the “equilibrated reactions” (those with approximately zero

oDs, i.e., zero affinity), the non-zero DoDs in Fig. 2 also carry ad-

itional information that is equally important for constraint selec-

ion. Obviously, they partition the reactions with non-zero DoDs

nto three other groups of reactions that to a high degree of ap-

roximation share at every downstream position x the same value

f DoD. Indeed, as already shown in [19] and discussed in the

revious section, important indications can be extracted from the

oD = 0 group (the group of equilibrated reactions). However,

he fact that when pulled out of equilibrium at a particular rate the

eactions turn out to bin themselves into one of a small number of

roups characterized by levels of DoD shared exactly or approx-

mately by all reactions in the group, provides additional indica-

ions that allow to fully pin down the governing constraints. 

While the DoD = 0 “Group 0” identifies several possible con-

traints, each of the other groups, which appears to be charac-

erized by a common relaxation time, furnishes (by analogous in-

pection) tighter indications useful to identify the rate-controlling

ottlenecks of the overall kinetic mechanism that are effective at

uch time scale. To be more specific, the fact that Fig. 2 shows for

ach downstream position x three clearly grouped non-zero lev-

ls of DoD is an indication that there are only two bottlenecks,

.e., the controlling constraints are only two: one responsible for a
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Table 2 

The matrix a = [ a i j ] representing the main rate-controlling constraints as identified in [19] . 

O O 2 H H 2 OH H 2 O HO 2 H 2 O 2 
i Physical meaning of the constraint a i 1 a i 2 a i 3 a i 4 a i 5 a i 6 a i 7 a i 8 

EH Total number of hydrogen nuclei a EH = [ 0 0 1 2 1 2 1 2] 

EO Total number of oxygen nuclei a EO = [ 1 2 0 0 1 1 2 2] 

M Total number of moles a M = [ 1 1 1 1 1 1 1 1] 

FV Total free valence a FV = [ 2 0 1 0 1 0 1 0] 

FO Total free oxygen a FO = [ 1 0 0 0 1 1 0 0] 

H + H 2 Used in Fig. 3 a H+H 2 = [ 0 0 1 1 0 0 0 0] 

O + OH + H 2 O Used in Fig. 3 a O+OH+H 2 O = [ 1 0 0 0 1 1 0 0] 
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rofile of DoD along the nozzle that is common to all reactions in

Group A”: 7-8-9-10 and we may denote by Do D A (x ) (this turns

ut to be the M constraint), the other responsible for a DoD pro-

le that is common to all reactions in “Group B”: 12-15-16-17-

9-22-24 and we denote by Do D B (x ) (this turns out to be iden-

ifiable with the FO − FV constraint). Reactions 1-2-3-4-5-6 in-

tead form a third group that we call “group A + B” because it

xhibits a DoD profile that is the sum of the preceding two, i.e.,

o D A + B (x ) = Do D A (x ) + Do D B (x ) . This clearly means that reactions

n group A + B are effectively slowed down by both bottlenecks A

nd B. 

The above observation is enough to identify the two corre-

ponding constraints A and B. Indeed, 

(1) reactions in Group 0 have no direct effect on either of the

rates ˙ c A and ˙ c B ; 

(2) reactions in Group A have no direct effect on the rate ˙ c B ; 

(3) reactions in Group B have no direct effect on the rate ˙ c A . 

. Basic logic of the new constraint identification methodology 

From the observations in the previous section, the constraint

atrix has four rows, with entries that we denote by a A j , a B j ,

 EH j , a EO j , the last two representing the elemental constraints (see

able 2 ). We can conclude that: 

(1) the A row a A j of the constraint matrix a i j is orthogonal to

the fourteen columns of the stoichiometric matrix ν j� with

� = 11-13-14-18-20-21-23 and 12-15-16-17-19-22-24, i.e., for

all the reactions in Groups 0 and B, 

n sp ∑ 

j=1 

a A j ν
A 
j� = 0 (11) 

(2) the B row a B j of the constraint matrix a i j is orthogonal to

the eleven columns of the stoichiometric matrix ν j� with

� = 11-13-14-18-20-21-23 and 7-8-9-10, i.e., for all the reac-

tions in Groups 0 and A, 

n sp ∑ 

j=1 

a B j ν
B 
j� = 0 (12) 

(3) It is useful to remind that the EH row a EH j and the EO row

a EO j of the constraint matrix a = [ a i j ] are orthogonal to all

the columns of the stoichiometric matrix ν = [ ν j� ] for � from

1 to n r , i.e., for all the reactions in the DKM, 

n sp ∑ 

j=1 

a EH j ν j� = 0 and 

n sp ∑ 

j=1 

a EO j ν j� = 0 (13) 

As a consequence of Eqs. (13) , once we have found vec-

tors a A = [ a A 1 . . . a A n sp 
] and a B = [ a B 1 . . . a B n sp 

] that satisfy

Eqs. (11) and ( 12 ), respectively, then we can substitute the

linearly independent set of constraints a EH , a EO , a A , a B with

any other linearly independent set of vectors in their linear

span. 
a  
From linear algebra, Eq. (11) means that vector a A is in the

eft null space (co-kernel) of the 8 × 14 matrix νA = [ ν j� | � ∈
roups 0 and B ] and vector a B in the left null space (co-kernel) of 

he 8 × 11 matrix νB = [ ν j� | � ∈ Groups 0 and A ] . If we compute

oker ( νA ) = ker ( νT 
A 
) we find that it is three-dimensional (to com-

ute the kernel, we use the MatLab function kA = null(A,‘r’) which

pplies the Gauss elimination algorithm to compute the basis of

he kernel of matrix A, returned as the columns of matrix kA). In

act, coker ( νA ) is the linear span of the three linearly independent

onstraints a EH , a EO , and a A . However, we can easily identify di-

ectly the component of vector a A that is orthogonal to the two-

imensional linear span of vectors a EH and a EO , by computing in-

tead the left null space of the 8 × 16 matrix 

 A = 

[
νA a 

T 
EH a 

T 
EO 

]
(14) 

hown in Table 3 obtained by appending to matrix νA the column

ectors representing the elemental constraints. Table 3 shows the

omponents of the single vector k A which constitutes the basis of

he one-dimensional coker ( S A ) . As noted in the table, k A is a linear

ombination of the vectors a EH , a EO , and a M 

, therefore, the non-

lemental constraint identified by coker ( S A ) is essentially the ‘total

umber of moles’ constraint a M 

. 

Similarly, coker ( νB ) is the three-dimensional linear span

f constraints a EH , a EO , and a B . So, to identify the component of

ector a B that is orthogonal to the two-dimensional linear span of

onstraints a EH and a EO , we compute the left null space of the ma-

rix 

 B = 

[
νB a 

T 
EH a 

T 
EO 

]
(15) 

hown in Table 3 obtained by appending to matrix νB the column

ectors representing the elemental constraints. Table 3 shows also

he components of the single vector k B which constitutes the basis

f the one-dimensional coker ( S B ) . As noted in the table, k B is a lin-

ar combination of the vectors a EH , a EO , and a FO − a FV , therefore,

he non-elemental constraint identified by coker ( S B ) is essentially

he ‘difference between total free oxygen and total free valence’

onstraint a FO − a FV . 

Finally, therefore, the main result of the new algorithm is that

t identifies automatically the set of four constraints (EH, EO, M,

O − FV) as the one effectively governing the dynamics under the

iven geometry and boundary conditions. Importantly, it does so

ith no need for any additional physical insight, other than the

nspection of the grouping of reactions that in Fig. 2 is quite evi-

ent. 

To validate the method so far, Fig. 3 shows the results of an

CCE simulation using the 4-constraints set (EH, EO, M, FO − FV)

ompared with the results of the DKM simulation as well as the

CCE simulations based on the sets of constraints obtained in

19] , namely, the 5-constraints set (EH, EO, M, FO, FV) and the

-constraints set (EH, EO, H + H 2 , O + OH + H 2 O). The specific im-

ulse I sp is defined as the thrust force per unit mass flow rate of

he propellant. Under the assumed isentropic expansion to back

ressure throughout the nozzle, I sp is equal to the flow velocity

t the nozzle exit plane, u . In rocketry it is common to divide
exit 
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Table 3 

The matrices S A and S B whose co-kernels uniquely identify the two constraints effectively controlling the kinetics under the nozzle geometry and boundary 

conditions that generate the full DKM profiles of DoD shown in Fig. 2 . 

Matrix S A coker ( S A ) ( a M ) j = 

11 13 14 18 20 21 23 12 15 16 17 19 22 24 EH EO ( k A ) j (− 1 
2 

k A + 

3 
8 

a EH + 

3 
8 

a EO ) j 

−1 −1 1 0 0 1 0 −1 1 0 0 0 0 0 1 0 −5/4 1 

0 0 −1 0 0 0 0 1 0 1 0 0 1 1 2 0 −1/2 1 

1 0 −1 −1 1 0 0 0 −1 −1 −1 −1 0 0 0 1 −5/4 1 

−1 0 0 1 −1 0 0 0 0 1 0 0 0 0 0 2 −1/2 1 

1 1 1 0 −1 −2 −1 1 0 0 2 1 −1 0 1 1 −1/2 1 

0 0 0 0 1 1 1 0 1 0 0 1 1 0 1 2 1/4 1 

0 1 0 1 0 0 1 −1 −1 −1 −1 0 −1 −2 2 1 1/4 1 

0 −1 0 −1 0 0 −1 0 0 0 0 −1 0 1 2 2 1 1 

Matrix S B coker ( S B ) ( a FO − a FV ) j = 

11 13 14 18 20 21 23 7 8 9 10 EH EO ( k B ) j (− 1 
6 

k B − 5 
24 

a EH + 

1 
8 

a EO ) j 

−1 −1 1 0 0 1 0 0 0 0 0 1 0 −19/4 −1 

0 0 −1 0 0 0 0 −1 −1 −1 0 2 0 5/2 0 

1 0 −1 −1 1 0 0 −1 −1 −1 0 0 1 −27/4 −1 

−1 0 0 1 −1 0 0 0 0 0 0 0 2 −3/2 0 

1 1 1 0 −1 −2 −1 0 0 0 −2 1 1 1/2 0 

0 0 0 0 1 1 1 0 0 0 0 1 2 23/4 1 

0 1 0 1 0 0 1 1 1 1 0 2 1 −17/4 −1 

0 −1 0 −1 0 0 −1 0 0 0 1 2 2 1 0 

Fig. 3. Plots of temperature T , specific impulse I sp , and mole fractions X j of all species versus dimensionless downstream axial distance x resulting from RCCE simulations 

compared with the corresponding data from the underlying DKM simulation, for the same nozzle dimensionless area A (x ) and sonic throat inlet conditions as in [19] . The 

constraints used in the different RCCE simulations are: the two sets of constraints obtained in [19] , namely, the 5-constraints set RCCE(5) = ( a EH , a EO , a M , a FO , a FV ) and the 

4-constraints set RCCE(4) = ( a EH , a EO , a H+H 2 , a O+OH+H 2 O ); and the 4-constraints set resulting from the DoD analysis described in the present section, namely, RCCE(4) = ( a EH , 

a EO , a M , a FO − a FV ). 
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he specific impulse by the gravitational acceleration, g 0 , to make

t independent of the system of units. Therefore, here I sp stands for

 exit / g 0 , which has units of time. 

In the following sections we provide an automatic algorithm

lso for grouping the reactions based on the analysis of DoD re-

ults from the DKM simulation. Indeed, it is possible to further

ystematize our new methodology for RCCE constraint selection for

ull automation also of the reaction grouping step, which so far

e have achieved easily by inspection of Fig. 2 , but in more gen-

ral cases can be much less immediate, especially when more than

 bottlenecks are in effect. Indeed, with two bottlenecks we have

een that the reactions essentially assemble into 4 basic groups (0,

, B, A + B) but in principle also other possible combinations like

 + 2B and so on are possible. With three bottlenecks, reactions

an form at least 8 basic groups (0, A, B, C, A + B, A + C, B + C,

 + B + C) but again also higher integer and even fractional linear

ombinations are in principle possible. With four bottlenecks, the

asic groups are 16 (0, A, B, C, D, A + B, A + C, A + D, B + C, B + D,

 + D, A + B + C, A + B + D, A + C + D, B + C + D, A + B + C + D) plus

ther combinations. It is clear that the identification by simple in-

pection becomes very difficult, if not impossible, as the number of

ottlenecks increases beyond three. However, we show below that

his apparent complexity can be mathematically rationalized to ob-

ain a fully automatable procedure for constraint selection given an

cceptable value of a suitably defined degree of approximation. 

. General relations between DoDs and stoichiometric 

oefficients. Definition of the Overall DoD vector 

In this section we discuss a number of preliminary observations

nd introduce the notation that in the next section is used to pro-

ose our new procedure for systematic constraint selection. The

onsiderations in the present section are completely general, in the

ense of independent of the assumptions of the RCCE method or

f any other model reduction scheme; indeed, they are also inde-

endent of the assumption of ideal Gibbs-Dalton mixture of ideal

ases that is typically adopted for the simple treatment of reacting

as mixtures. 

We have already recalled in the previous section that the en-

ropic chemical potentials λ j = −μ j /RT are functions of tempera-

ure T , pressure p, and composition vector N = [ N 1 . . . N n sp ] , i.e.,

j = λ j, off ( T , p, N ) = −μ j, off ( T , p, N ) 

RT 
(16) 

Based on this relation, our first step is to transform the state

epresentation from composition space ( T , p, N ) t o entr opic chem-

cal potentials space ( T , p, �) 

( T , p, N ) ↔ ( T , p, �) (17) 

here we introduce the vector 

= 

[
λ1 . . . λn sp 

]
(18) 

This alternative state representation is almost everywhere

quivalent because the transformation ( 16 ) from N to � is almost

verywhere invertible. Indeed, as shown for example in [34] , the

oncavity of the fundamental relation S off ( U, V, N ) of the surrogate

ystem implies the convexity of the Gibbs free energy G off ( T , p, N )

ith respect to all the amounts N j of constituents, therefore,

( ∂ λ j /∂ N k ) T,p, N ′ = ( ∂ 2 G off ( T , p, N ) /∂ N j ∂ N k ) T,p, N ′ > 0 and the Jaco-

ian determinant | ∂ ( λ1 , . . . , λn sp ) /∂ ( N 1 , . . . , N n sp ) | is strictly posi-

ive. The transformation is not invertible when some of the chem-

cal potentials are infinite, like when, for ideal gas mixtures, some

f the N j ’s are zero, a case that we exclude from our treatment,

eaning that for all practical purposes, when an N j is initially zero,

e substitute the zero with a very small value, like 10 −30 mol . 
Now, we observe that Eq. (6) , 

� = 

n sp ∑ 

j=1 

λ j ν j� = 〈 �| ν� 〉 (19)

eans that the DoD of any reaction � is obtained by taking the

calar product of the vector � with the vector ν� = [ ν1 � . . . νn sp � ]

hose entries correspond to the � -th column of the matrix ν of

toichiometric coefficients. 

In general the reactions in a given DKM are not all independent.

n our example, the matrix ν of stoichiometric coefficients is 8 ×24

nd by virtue of the two elemental constraints (Relations ( 13 )) its

ank is r = n sp − n el = 6 . A set of r independent reactions can be

asily found by computing the reduced row echelon form of matrix

, that we denote by rref (ν) . The � ’s of the leading columns of

ref (ν) point to a set of independent reactions. For our example,

omputing rref (ν) for the matrix ν defined in Table 1 , we find that

eactions 1-2-3-6-7-10 form a linearly independent set. Note that

he same procedure may yield a different linearly independent set

f the reactions in the DKM are sorted in a different order. 

Let us denote by span ({ ν� } ) the r-dimensional column space of

he stoichiometric matrix ν, i.e., the linear span of the set of sto-

chiometric vectors ν� = [ ν1 � . . . νn sp � ] whose entries ar e giv en b y

ts columns, and by coker (ν) the n el -dimensional left null space

f ν spanned by the elemental constraint vectors { a E L i 
} for i =

 , . . . , n el . These two spaces, often called the reactive subspace and

he inhert subspace , respectively, are orthogonal complements in

he n sp -dimensional real vector space R 

n , i.e., we may write 

 

n = span ({ ν� } ) ⊕ coker ( ν) (20) 

eaning that any vector x = [ x 1 . . . x n ] in R 

n may be decomposed

s x = x span ({ ν� } ) + x coker (ν) with x span ({ ν� } ) in span ({ ν� } ) , x coker (ν) in

pan ({ ν� } ) , and of course 〈 x span ({ ν� } ) | x coker (ν) 〉 = 0 . Therefore, ap-

lying such decomposition to the vector � we may write 

= �DoD + �⊥ (21) 

here for shorthand we introduced the notation 

DoD = �span ({ ν� } ) and �⊥ = �coker ( ν) (22) 

We call �DoD the Overall Degree of Disequilibrium vector

ODoD). Clearly, we can rewrite Eq. (19) as follows: 

� = 

n sp ∑ 

j=1 

λ j ν j� = 〈 �DoD | ν� 〉 (23)

nd, importantly, we can write 

DoD = 

r ∑ 

k =1 

αk ν� k (24) 

here the vectors { ν� k 
} form a (non orthogonal) r-dimensional ba-

is for span ({ ν� } ) constructed by choosing a subset of r linearly in-

ependent columns of the stoichiometric matrix identified by the

olumn numbers � k , for k = 1 , . . . , r (in our example above, the six

olumns 1, 2, 3, 6, 7, 10 form such an independent set). It is also

orth noting that the component �⊥ lies in the n el -dimensional

inear span of the elemental constraints (in our example, n el = 2

nd �⊥ = γEH a EH + γEO a EO ) and it is all that remains of vector �
hen complete chemical equilibrium is reached, because then (and
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Table 4 

Vectors ν� k and the corresponding vectors χk together with matrices M and W obtained with the procedure outlined in the text 

starting from the matrix ν of stoichiometric coefficients given in Table 1 . 

k = 1 2 3 4 5 6 k = 1 2 3 4 5 6 

� k = 1 2 3 6 7 10 

j ν j � 1 ν j � 2 ν j � 3 ν j � 4 ν j � 5 ν j � 6 Species 144 χ j1 144 χ j2 144 χ j3 144 χ j4 144 χ j5 144 χ j6 

1 −2 −1 0 0 0 0 O −51 −27 18 3 −21 −12 

2 1 0 0 0 −1 0 O 2 42 −54 36 6 −42 −24 

3 0 −1 −2 −1 −1 0 H 21 −51 −30 −21 3 −12 

4 0 0 1 0 0 0 H 2 42 −102 84 −42 6 −24 

5 0 1 0 −1 0 −2 OH −30 66 −12 −18 −18 −24 

6 0 0 0 1 0 0 H 2 O −9 15 −42 105 −15 −36 

7 0 0 0 0 1 0 HO 2 63 −105 6 −15 105 −36 

8 0 0 0 0 0 1 H 2 O 2 −60 132 −24 −36 −36 96 

M = 5 2 0 0 −1 0 144 W = 105 −159 42 −9 63 −60 

2 3 2 0 1 −2 −159 345 −102 15 −105 132 

0 2 5 2 2 0 42 −102 84 −42 6 −24 

0 0 2 3 1 2 −9 15 −42 105 −15 −36 

−1 1 2 1 3 0 63 −105 6 −15 105 −36 

0 −2 0 2 0 5 −60 132 −24 −36 −36 96 
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only then) we have �DoD = 0 , i.e., in general we can write 

�⊥ = 

n el ∑ 

i =1 

γ EL , DKM 

i 
a E L i (25)

Substituting Eq. (24) into Eq. (23) for � = � k ′ we obtain 

φk ′ = 

r ∑ 

k =1 

αk 〈 ν� k | ν� k ′ 〉 (26)

which can be viewed as a linear system of equations that we can

solve for the αk ’s because the r × r matrix M k k ′ = 〈 ν� k 
| ν� 

k ′ 〉 is non-

singular by virtue of the linear independence of the basis vectors

ν� k 
. Hence, denoting its inverse by W = M 

−1 , we can write the so-

lution of the system as 

αk = 

r ∑ 

k ′ =1 

φk ′ W k ′ k (27)

Substituting into Eq. (24) , we obtain �DoD =∑ r 
k =1 

∑ r 
k ′ =1 φk ′ W k ′ k ν� k 

= 

∑ r 
k =1 φk 

∑ r 
k ′ =1 W kk ′ ν� 

k ′ which shows

that we can transform to a more convenient (still non orthogonal)

basis for span ( { ν� } ) , defined by the transformation 

χk = 

r ∑ 

k ′ =1 

W k k ′ ν� k ′ (28)

with respect to which the coordinates of �DoD are the DoDs of the

chosen r linearly independent reactions � k , for k = 1 , . . . , r, i.e., 

�DoD = 

r ∑ 

k =1 

φk χk (29)

It is important to note that the basis vectors χk can be com-

puted once and for all for the given DKM by simple algebraic op-

erations based exclusively on the matrix ν of stoichiometric coef-

ficients. Note again that the same procedure may yield different

linearly independent sets of reactions and basis vectors χk if the

columns of the stoichiometric matrix are sorted in a different or-

der. Table 4 shows for our example the vectors ν� k 
and the corre-

sponding vectors χk together with matrices M and W . 

Relation ( 29 ) is very important for the algorithm of automatic

selection of RCCE constraints we introduce in the next section. It is

also important in general for the analysis of results obtained from

a DKM simulation because it allows to construct the ODoD vec-

tor �DoD from the values φk of the DoDs of a subset of only r

independent reactions. In a general unsteady and inhomogeneous
et-up, the results of a DKM simulation will be functions of both

osition x and time t , therefore, Eq. (29) rewrites as 

DoD ( x , t ) = 

r ∑ 

k =1 

φk ( x , t ) χk (30)

In a homogeneous unsteady problem, such as the one typically

onsidered for the prediction of ignition delay time of a gas mix-

ure, this relation would reduce to 

DoD ( t ) = 

r ∑ 

k =1 

φk ( t ) χk (31)

In our steady-state quasi-one-dimensional nozzle example, it

educes to 

DoD ( x ) = 

r ∑ 

k =1 

φk ( x ) χk (32)

. RCCE constraints are basis vectors for the approximate linear

pan of the ODoD vectors 

As seen in the previous section, the number of vectors χk in

q. (30) is equal to the rank r of the matrix of stoichiometric coef-

cients of the DKM. Therefore, as the spatial and time coordinates

( x , t ) span their respective ranges for the results of a given full

KM simulation, in general the ODoD vector �DoD ( x , t ) , defines

n ( x , t ) family of vectors in the r-dimensional subspace spanned

y the vectors χk . In a homogeneous unsteady problem and in

 steady-state one-dimensional problem this is a one-parameter

amily. 

As we recalled in the Introduction, the general physical idea be-

ind the RCCE method is that in most particular problems and set

f conditions, the non-equilibrium chemical dynamics is controlled

y a number of bottleneck mechanisms that is generally smaller

often much smaller) than r. The bottlenecks are responsible for

eeping the state far from equilibrium. This qualitative concept can

ow be quantified thanks to Eq. (30) . 

Before proceeding, it is worth noting that within the do-

ain of validity of the ideal Gibbs-Dalton mixture model: (i) the

hemical potentials may be written as μ j, off ( T , p, N ) = μ j j ( T , p ) +
T ln ( X j ) (recall that per our notation, the double subscript

efers to the pure substance properties), where X j = N j /N are

he mole fractions and N = 

∑ 

j N j ; (ii) the entropic chemical po-

entials (defined by λ j = −μ j /RT ) are λ j, off ( T , p, N ) = λ j j ( T , p ) −
n ( X j ) ; and (iii) we may write � = �pure ( T , p ) − ln (X ) where, of

ourse, ln (X ) is shorthand notation for the vector with entries
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 ln ( X 1 ) . . . ln ( X n sp ) ] and �pure ( T , p ) = [ λ11 ( T , p ) . . . λn sp n sp ( T , p ) ] .

herefore, using Eq. (21) , i.e., the orthogonal decomposition � =
DoD + �⊥ , we may write 

DoD = �pure ( T , p ) − �⊥ − ln ( X ) (33) 

rom which it follows that for given T , p and �⊥ , the ODoD vector

DoD is directly related to the logarithms of the mole fractions. 

We also recall (e.g., from Ref. [12] ) that in a RCCE state, the

pecies mole fractions are given by 

N j 

N 

= exp 

( 

λ j j ( T , p ) −
n el ∑ 

i =1 

γ EL , RCCE 
i 

a E L i j −
n c <r ∑ 

i =1 

γ RCCE 
i a i j 

) 

(34) 

r, equivalently, 

RCCE 
DoD = �pure ( T , p ) − �RCCE 

⊥ − ln 

(
X 

RCCE 
)

(35) 

here, as noted before, the decomposition ( 21 ) allows us to iden-

ify 

RCCE 
⊥ = 

n el ∑ 

i =1 

γ EL , RCCE 
i 

a E L i (36) 

nd 

RCCE 
DoD = 

n c <r ∑ 

i =1 

γ RCCE 
i a i (37) 

Combining the above relations we may also write 

RCCE 
DoD − �DoD = ln 

(
X / X 

RCCE 
)

+ 

n el ∑ 

i =1 

(
γ EL , DKM 

i 
− γ EL , RCCE 

i 

)
a E L i (38) 

here of course ln ( X / X 

RCCE ) is shorthand for the vector

 ln ( X 1 /X RCCE 
1 

) . . . ln ( X n sp /X RCCE 
n sp 

) ] . 

The following subsection can be skipped by the reader who also

kipped Sections 3 –5 . 

.1. Continuation of the example of Sections 3 –5 

Let us first consider our example and the results obtained in

ections 3 –5 . There, we found two constraints, the vectors k A and

 B , that allow very effectively to reproduce the DoD results shown

n Fig. 2 . Indeed, using the notation just introduced, let us write 

DoD ( x ) ≈ γA ( x ) k A + γB ( x ) k B (39) 

nd substitute this relation in Eq. (23) to obtain 

� ( x ) ≈ γA ( x ) 〈 k A | ν� 〉 + γB ( x ) 〈 k B | ν� 〉 (40)

Now recall from ( 11 ) that vector k A is orthogonal to the el-

mental constraints and to all the reactions in groups 0 and B,

nd from ( 12 ) that vector k B is orthogonal to the elemental con-

traints and to all the reactions in groups 0 and A. We can also eas-

ly verify that 〈 k A | ν� 〉 = 2 for all reactions in groups A (7-8-9-10)

nd A + B (1-2-3-4-5-6) and 〈 k B | ν� 〉 = 12 for all reactions in groups

 (12-15-16-17-19-22-24) and A + B (1-2-3-4-5-6). As a result,

q. (40) yields 

φ� ∈ group 0 ( x ) ≈ 0 

φ� ∈ group A ( x ) ≈ 2 γA ( x ) 

φ� ∈ group B ( x ) ≈ 12 γB ( x ) 

� ∈ group A +B ( x ) ≈ 2 γA ( x ) + 12 γB ( x ) (41) 

nd, therefore, if we take the function 2 γA (x ) to coincide with the

verage of the curves in Fig. 2 labelled 7-8-9-10 (group A) and the

unction 12 γB (x ) to coincide with the average of the curves la-

eled 12-15-16-17-19-22-24 (group B) we closely reproduce all the

oD results, including those for groups 0 and A + B. Eq. (39) shows

hat as the spatial coordinate x spans the length of the nozzle, the
DoD vector �DoD (x ) remains approximately confined “within a

mall distance” from the 2 -dimensional subspace spanned by the

wo constraint vectors k A and k B . 

We can actually rewrite Eq. (39) as follows: 

DoD ( x ) = γA ( x ) k A + γB ( x ) k B − ε( x ) (42) 

hich defines the “distance” vector ε(x ) . With γA (x ) and γB (x )

etermined from the curves in Fig. 2 as just specified, we can

stimate vector ε(x ) . We find that 〈 ε(x ) | k A 〉 = −1 . 14 × 10 −6 and

 ε(x ) | k B 〉 = −2 . 15 × 10 −6 , thus showing that ε(x ) remains indeed

pproximately orthogonal to span ( k A , k B ) , the linear span of the

onstraints, and is therefore a good measure of the distance of

DoD (x ) from it. Moreover, we find that max x | ε| / max x | �DoD | =
 . 011 , confirming and quantifying the assertion that the distance

etween �DoD (x ) and span ( k A , k B ) remains relatively small for

ll x ’s. Clearly, the norm of vector ε(x ) also represents a mea-

ure of the “error” or “level of approximation” in a model or-

er reduction scheme such as RCCE where for every x the vector

A (x ) k A + γB (x ) k B is taken as the approximate representation of 

he vector �DoD (x ) . 

A further observation is noteworthy at this point on the re-

ults shown in Fig. 3 . There, we see that for all relevant variables

he curves labelled RCCE(5): M, FO, FV and RCCE(4): M, FO − FV

re almost identical. In terms of the foregoing discussion, the 5-

onstraints results of Ref. [19] mean that the ODoD vector �DoD (x )

emains for all x ’s very close to span ( k M 

, k F O , k F V ) , while the

resent 4-constraints results mean that it also remains for all x ’s

ery close to span ( k M 

, k F O −F V ) , which is a two-dimensional sub-

pace of the three-dimensional span ( k M 

, k F O , k F V ) . In other words,

he actual number of bottlenecks effectively controlling the non-

quilibrium kinetics is not three but only two. 

Actually, more accurate 4-constraints results and even reason-

bly accurate 3-constraints results can be obtained using the sys-

ematic constraint-selection method that we outline in the re-

ainder of the present section. This is apparent in Fig. 4 which

hows, for the same DKM simulation as in Fig. 3 , the curves

CCE(4):PresentMethod obtained with the four constraints (EH, EO,

 

ε=1 . 205 
1 

, a ε=1 . 205 
2 

) and RCCE(3):PresentMethod obtained with the

hree constraints (EH, EO, a 

ε=6 . 6 
1 

) where the constraint vectors

 

ε=6 . 6 
1 

, a 

ε=1 . 205 
1 

, a 

ε=1 . 205 
2 

are given explicitly in Appendix A where

ur new method is implemented in a simple MatLab code. It is

lear from Fig. 4 that assuming a single bottleneck for the given

ozzle geometry and boundary conditions pushes the model order

eduction a bit too far, in that it produces relatively poor approx-

mations of the concentrations of HO 2 and H 2 O 2 , indicating that

he ODoD vectors �DoD (x ) effectively unfold in two directions, not

ust one. 

.2. General case 

We are finally ready to conclude this section by introducing our

ew systematic method to identify a set of n c constraints a i such

hat a given ODoD vector �DoD (x ) remains for all x ’s relatively

lose to their linear span ( { a i } ) in the sense that for a sufficiently

mall ε(x ) we can write 

DoD ( x ) = 

n c <r ∑ 

i =1 

γ RCCE 
i ( x ) a i − ε( x ) (43) 

here the number n c of constraints is smaller (preferably, much

maller) than the rank r of the matrix of stoichiometric coeffi-

ients. 

In practical computations, the ODoD vector is usually in dis-

retized form, �DoD ( z p ) , where z stands for either x or t or ( x , t ) ,

epending on the problem, and the index p labels the P points of

he discretization grid, where P is usually a large integer. The ODoD

ector is thus represented by the n sp × P matrix �DoD , jp . 
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Fig. 4. Plots of temperature T , specific impulse I sp , and mole fractions X j of all species versus dimensionless downstream axial distance x resulting from RCCE simulations 

compared with the corresponding data from the underlying DKM simulation, for the conditions detailed in Fig. 1 . Here we compare the results of RCCE simulations based 

on two sets of constraints selected using the ARREFADD method described in Section 7.2 : the 4-constraints set RCCE(4): PresentMethod = ( a EH , a EO , a 
ε=1 . 205 
1 

, a ε=1 . 205 
2 

); and 

the 3-constraints set RCCE(3): PresentMethod = ( a EH , a EO , a ε=6 . 6 
1 

) where a ε=6 . 6 
1 

, a ε=1 . 205 
1 

, a ε=1 . 205 
2 

are given explicitly in Appendix A together with the MatLab code used to 

compute them from the full DKM simulation. 
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We already know from Eq. (29) that this matrix has rank r =
n sp − n el . However, we search for an approximate �RCCE 

DoD , jp 
of rank

n c < r. From Eq. (43) it is clear that if all ε( z p ) are negligible, then

we can assume 

�DoD ( z p ) ≈ �RCCE 
DoD ( z p ) = 

n c <r ∑ 

i =1 

γ RCCE 
i ( z p ) a i (44)

so that the range of matrix �RCCE 
DoD , jp 

is in the linear span of the

n c column vectors a j1 , . . . , a j n c . If the constraint vectors a i form an

orthonormal set, 〈 a i | a k 〉 = δik , then 

γ RCCE 
i ( z p ) ≈ 〈 a i | �DoD ( z p ) 〉 (45)

or, equivalently, 

�RCCE 
DoD ( z p ) ≈

n c <r ∑ 

i =1 

〈 a i | �DoD ( z p ) 〉 a i (46)

A set of constraint vectors a i can be found by performing a

Gauss-Jordan elimination procedure on the matrix �DoD , jp with a

tolerance test that sets to zero the matrix elements that are below
 prescribed threshold value ε. This standard linear-algebra proce-

ure produces an approximate reduced row echelon form (RREF)

f the matrix in which only the first n c rows are non-zero, with

 c the smaller the higher we set the threshold value for the tol-

rance test, while n c = r if the tolerance threshold is set to zero.

ach tolerance threshold value ε determines a unique RREF ma-

rix that we may denote as �RREF (ε) 
DoD , jp 

. The positions of the pivots in

he RREF matrix �RREF (ε) 
DoD , jp 

, i.e., their column labels p 1 , . . . , p n c , iden-

ify the n c columns �RREF (ε) 
DoD , p 1 

, . . . , �RREF (ε) 
DoD , p n c 

of the original matrix

DoD , jp that form a basis for its approximate range with respect to

olerance ε. Therefore, any orthonormal basis for the linear span

f these column vectors, is the set of n c RCCE constraint vectors

 

ε 
i 

that we are looking for, to be used in Eq. (46) and in our RCCE

imulation together with the elemental constraints. This concludes

he heart of our algorithm. 

What remains to be chosen is the value of ε. The optimal choice

f the largest acceptable value for ε for a given problem depends

n the level of desired accuracy, and its discussion goes beyond the

cope of the present paper, because in general it requires to anal-

se also the governing differential equations for the other variables
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Fig. 5. Number of constraints n c (ε) (stepwise function, left axis) and the corre- 

sponding mean error δ(ε) (right axis), for various values of the tolerance threshold 

ε, obtained by applying the new systematic constraint selection procedure to the 

DoD data shown in Fig. 2 , obtained from the full DKM simulation for the nozzle 

geometry shown in Fig. 1 . 
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f the problem, such as velocity, temperature, pressure and other

elds. 

Here, instead, we simply note that we may repeat the above

rocedure for different values of the tolerance threshold ε, varying

ver some relevant range of values. As a result we find that n c (ε)

s a stepwise decreasing function of ε, going from n c = r for suf-

ciently small ε (in which limit the RCCE model coincides with

he full DKM), to n c = 0 for sufficiently large ε (in which limit

he RCCE model coincides with assuming complete chemical equi-

ibrium). Figure 5 shows such stepwise behaviour for the sample

KM considered above and in Ref. [19] , for values of ε in the range

rom 0.01 to 20, that result in n c (ε) from 4 to 0. 

Figure 5 shows also the corresponding estimates of the mean

rror in terms of DoDs, defined as follows: 

( ε ) = 

mea n z p | εε ( z p ) | 2 
mea n z p | �DoD ( z p ) | 2 

= 

1 
P 

∑ P 
p=1 

(∑ n sp 

j=1 

[
�DoD j ( z p ) − �

RCCE ( ε ) 
DoD j ( z p ) 

]2 
)1 / 2 

1 
P 

∑ P 
p=1 

(∑ n sp 

j=1 

[
�DoD j ( z p ) 

]2 
)1 / 2 

(47) 

here mea n z p represents the average value over the P grid points

 p (in our case, along the nozzle), 

RCCE ( ε ) 
DoD ( z p ) ≈

n c ( ε ) <r ∑ 

i =1 

〈 a 

ε 
i | �DoD ( z p ) 〉 a 

ε 
i (48) 

nd, consistently with the definitions given above, 

ε ( z p ) = �RCCE ( ε ) 
DoD ( z p ) − �DoD ( z p ) (49) 

Notice that the vector norm | �DoD ( z p ) | 2 represents an overall

easure of Degree of Disequilibrium at grid point z p , i.e, the dis-

ance of the actual DKM state at grid point z p from complete equi-

ibrium. For the data in Fig. 2 , the average value along the nozzle

ownstream coordinate is mea n z p | �DoD ( z p ) | 2 = 1.568, whereas

he maximum value is at the nozzle exit, | �DoD ( z p ) | 2 = 13.41. In-

tead, | εε ( z p ) | 2 represents an overall measure of distance of the

ctual DKM state at grid point z p from the n c (ε) -dimensional

onstrained-equilibrium state manifold assumed as the state space

n the RCCE reduced description. 

From Fig. 5 , we see that for values of ε such that n c (ε) = 0 ,
RCCE (ε) 
DoD 

( z p ) = 0 for all z p ’s and, therefore, δ(ε) = 1 , i.e., the mean
rror is 100%, mea n z p | εε ( z p ) | 2 = mea n z p | �DoD ( z p ) | 2 = 1.568, cor-

esponding to the most drastic level of approximation (assumption

f local complete chemical equilibrium) whereby the degrees of

isequilibrium shown in Fig. 2 are essentially considered negligi-

le. 

With n c (ε) = 1 , i.e., a single constraint in addition to the el-

mental ones, Fig. 5 shows that the lowest mean error is 4.06%

nd obtains for a value of ε = 6 . 499 . With n c (ε) = 2 , i.e., two con-

traints in addition to the elemental ones, the lowest mean er-

or is 0.25% and obtains for ε = 1 . 064 . With n c (ε) = 3 , the lowest

ean error is 0.032% and obtains for ε = 0 . 2107 . With n c (ε) = 4 ,

he lowest mean error is 0.006% and obtains for ε = 0 . 0505 . 

. ASVDADD variant of the ARREFADD algorithm 

The Eckart–Young theorem of linear algebra (see, e.g., Ref. [35]

nd references therein) provides a powerful tool to select optimal

CCE constraints, according to the ARREFADD method, if we ac-

ept a measure of the mean error δ to be minimized based on the

robenius norm of the difference between the two n sp × P matrices

DoD ( z p ) and �RCCE ( n c ) 
DoD 

( z p ) , 

2 
Fro ( n c ) = 

‖ �DoD ( z p ) − �RCCE ( n c ) 
DoD ( z p ) ‖ 

2 
Fro 

‖ �DoD ( z p ) ‖ 

2 
Fro 

= 

∑ n sp 

j=1 

∑ P 
p=1 

[
�DoD j ( z p ) − �

RCCE ( n c ) 
DoD j ( z p ) 

]2 

∑ n sp 

j=1 

∑ P 
p=1 

[
�DoD j ( z p ) 

]2 
(50) 

Consider the singular value decomposition (SVD) [36] of the

iven n sp × P matrix �DoD ( z p ) 

DoD ( z p ) = U �V 

T (51) 

The r = n sp − n el nonzero singular values σ j are in decreas-

ng order in the n sp × P diagonal matrix � followed by the zero

nes. The first r columns of the n sp × n sp orthogonal matrix U 

dentify an orthonormal basis for the r-dimensional co-kernel of

DoD ( z p ) . For a chosen number n c < r of constraints, let us define

he n sp × P diagonal matrix �RCCE ( n c ) obtained from � by setting to

ero its diagonal elements with index j > n c . By the Eckart–Young

heorem, the n sp × P matrix 

RCCE ( n c ) 
DoD ( z p ) = U �RCCE ( n c ) V 

T (52) 

epresents the ‘best approximation’ to �DoD ( z p ) that can be

chieved by a matrix of rank n c , in the sense of minimizing the

robenius measure δFro of the approximation defined by Eq. (50) ,

hich turns out to be equal to the ratio 

Fro ( n c ) = 

∑ r 
i = n c +1 σi ∑ r 

i =1 σi 

(53) 

here σn c +1 is the first neglected singular value. It follows that the

rst n c columns of the matrix U identify an orthonormal basis for

he n c -dimensional co-kernel of �RCCE ( n c ) 
DoD 

( z p ) and can be taken as

he desired n c ’best’ RCCE constraints (in addition to the n el ele-

ental ones). 

Considering that the first singular value, σ1 , is equal to

he matrix norm ‖ �DoD ( z p ) ‖ 2 , and similarly σn c +1 = ‖ �DoD ( z p ) −
RCCE ( n c ) 
DoD 

( z p ) ‖ 2 , we may immediately compute also the error with

espect to this norm, δ2 ( n c ) = σn c +1 / σ1 . 

We call this variant of the ARREFADD algorithm ASVDADD, be-

ause it substitutes the RREF procedure with the SVD. This vari-

nt reduces the problem of minimizing the Frobenius or the ma-

rix norm of ε( x p ) for P samples x p , to a standard problem in

rincipal Component Analysis (PCA) [37] . The great advantage of

he ASVDADD procedure is that – at the expense of a specific but

ery natural choice for the measure of ’approximation’ and hence
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Fig. 6. Plots of temperature T , specific impulse I sp , and mole fractions X j of the main species versus dimensionless downstream axial distance x resulting from RCCE simula- 

tions compared with the corresponding data from the underlying DKM simulation, for the conditions detailed in Fig. 1 . Here the comparisons are for the expansion/relaxation 

of the products of methane oxycombustion, between the results of a 29 species/133 reactions DKM simulation and two RCCE simulations with 4 and 5 total constraints. 

Constraints additional to the three elemental ones are obtained from the ARREFADD algorithm. 
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Fig. 7. Degrees of disequilibrium, φ� = ln ( r + � /r −� ) , of the 24 reactions of the DKM in 

Table 1 plotted versus the dimensionless downstream coordinate x along the nozzle 

axis. The conditions are those detailed in Fig. 1 except for the nozzle length which 

here is 100 times shorter, resulting in DKM-DoD plots that exhibit more complexity 

than those in Fig. 2 . 

Fig. 8. Number of constraints n c (ε) (stepwise function, left axis) and the corre- 

sponding mean error δ(ε) (right axis), for various values of the tolerance threshold 

ε, obtained by applying the new systematic constraint selection procedure to the 

DoD data shown in Fig. 7 , obtained from the full DKM simulation. 
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f ’optimality’ of the choice of constraints – the SVD of �DoD ( z p )

rovides at once the entire spectrum of optimal constraints (the

rst r columns of U ) in decreasing order of importance and the

orresponding Frobenius measure of the approximation involved

n adopting a reduced RCCE description that considers only the

rst n c columns of U as constraints. The optimal constraint vectors

 i are just the first n c left-singular vectors of the n sp ×P matrix

ormed from the P samples of �DoD . 

. Validation for more complex cases 

In this section we apply the proposed methodology to the fol-

owing problems in the order of increasing complexity: 

(1) the supersonic nozzle expansion/relaxation of the products

of methane oxycombustion, with the same inlet conditions

and nozzle geometry of the example considered so far; 

(2) the supersonic nozzle expansion/relaxation of the products

of hydrogen oxycombustion, with the same inlet conditions

but a much shorter nozzle geometry producing a much more

rapid expansion; 

(3) the supersonic nozzle expansion/relaxation of the products

of methane oxycombustion, with the same inlet conditions

and much shorter nozzle geometry as in the previous case; 

(4) ignition in a constant area plug flow reactor of a

methane/oxygen mixture. 

The results demonstrate the versatility, effectiveness, and ro-

ustness of the proposed method. 

Figure 6 demonstrates the validity of the ARREFADD algorithm

or the case of supersonic relaxation in a nozzle of identical ge-

metry and with the same inlet conditions as for the results of

ig. 4 , but for the combustion products of a methane/oxygen mix-

ure modelled via a C1/H/O sub-mechanism of the GRI3 scheme

11] . The mechanism involves 29 species and 133 reactions. For

his case, Fig. 6 shows a remarkable agreement between the DKM

imulation and the RCCE simulation based only on a single kinetic

onstraint, in additional to the three obvious elemental constraints.

ssentially, the complexity of this case turns out to be only mild,

s the nonequilibrium dynamics is rate-controlled by a single bot-

leneck mechanism. 

Next, we return to the hydrogen oxycombustion example stud-

ed in the previous sections and in Ref. [19] , but with a nozzle

ength 100 times shorter. Figure 7 shows the DoD plots of the 24

eactions in the DKM obtained from a fully detailed DKM simula-

ion. It is clear that the more rapid expansion results in the build-

ng up of a sizable Degree of Disequilibrium for almost all the re-

ctions. Grouping the reactions by inspection like we have done

n Sections 4 and 5 for the much simpler DoD plots in Fig. 2 is

ery difficult for the plots in Fig. 7 and would require a long set

f trials and errors. Instead, the systematic method introduced in

ections 6 and 7 yields an automatic selection with identical ease

f analysis. In this case, mea n z p | �DoD ( z p ) | = 6.638, 

Figure 8 shows the stepwise function n c (ε) and the correspond-

ng mean errors δ(ε) . With n c (ε) = 1 , 2 , 3 , 4 , respectively, i.e.,

ne, two, three, four constraints in addition to the elemental ones,

he lowest mean errors are 3.98%, 0.807%, 0.106%, 0.0338% and ob-

ain for ε = 9.989, 2.142, 0.7003, 0.2289. 

Figure 9 shows the results of RCCE simulations compared with

he underlying full DKM results. Clearly, the accuracy that is

eached in this case assuming only one or two rate-controlling

onstraints (in addition to the elemental ones) is less than for the

ase shown in Fig. 4 . However, the results are very reasonable con-

idering the higher complexity of the nonequilibrium kinetics due

o the much faster expansion, witnessed by the complex DoD plots

n Fig. 7 . A much higher accuracy would be clearly obtained by

sing the optimal (mean error 0.106%) 5-constraints set given in
ppendix B (plots not shown in Fig. 9 in the interest of readabil-

ty). 

When for the same rapid-expansion nozzle geometry of Fig. 9

e consider the combustion products of a methane/oxygen mix-

ure, again modelled via the 29 species/133 reactions DKM scheme

eveloped in [11] we obtain the results shown in Fig. 10 which

hows that the RCCE(6) results approximate quite accurately the

KM results, meaning that under such conditions the nonequilib-

ium kinetics is essentially rate-controlled by only three bottleneck

echanisms. 

Finally, Figs. 11 and 12 present the results for an ignition-

elay type calculation, in which an additional level of complex-

ty is introduced by the highly nonequilibrium inlet composition.

e consider a constant-area plug-flow reactor with an unburnt
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Fig. 9. Plots of temperature T , specific impulse I sp , and mole fractions X j of all species versus dimensionless downstream axial distance x resulting from RCCE simulations 

compared with the corresponding data from the underlying DKM simulation, for the conditions detailed in Fig. 1 except for the nozzle length which here is 100 times shorter. 

We compare the results of RCCE simulations based on two sets of constraints selected using our new systematic method: the 4-constraints set RCCE(4): PresentMethod = ( a EH , 

a EO , a 
2 
1 , a 

2 
2 ); and the 3-constraints set RCCE(3): PresentMethod = ( a EH , a EO , a 

1 
1 ) where a 1 1 , a 

2 
1 , a 

2 
2 are given explicitly in Appendix A together with the MatLab code used to 

compute them from the results of a full DKM simulation. 
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methane/oxygen stoichiometric mixture at inlet with flow veloc-

ity small enough (Ma = 0.0 0 01) that the flow remains subsonic in

the entire channel from which it exits in complete chemical equi-

librium. We consider two sets of inlet conditions: p 0 = 10 bar and

T 0 = 900 K in Fig. 11 ; and p 0 = 1 bar and T 0 = 1500 K in Fig. 12 . In

Figs. 11 and 12 the constraints have been obtained for simplicity

using the ASVDADD method. The higher complexity of the kinet-

ics in these cases emerges from the difficulty to obtain a good

approximation of the entire ignition delay process with a single

set of constraints. In these two examples it is achieved with a

relatively large number of ASVDADD constraints additional to the

three elemental ones: thirteen for the conditions of Fig. 11 and ten

for those of Fig. 12 . Nevertheless, the plots show the robustness

of the constraint selection methodology in the sense that as the

number of constraints is increased the approximation essentially

keeps improving, except for some fine oscillations in approaching

the DKM ignition delay. We anticipate that the required number

of constraints could be reduced by an in-situ adaptive tabulation

strategy or by repeated use of our algorithm on a more local basis.

Finally, in Fig. 13 we show the different results that we may ob-

tain with various variants of the proposed methodology, by choos-

ing to minimize different measures of the distance between the ac-
ual �DoD ( z p ) obtained with the DKM simulation and its RCCE ap-

roximation �RCCE 
DoD 

( z p ) . Figure 13 compares the DKM results with

he different RCCE simulations for the same number of constraints

 n c = 6 in addition to n el = 3) obtained for the 900 K/10 bar igni-

ion case with the different sets of constraints provided by four

ariants of the proposed algorithm – ASVDADD, ARREFADD(Mean),

RREFADD(Max), ARREFADD(sorted Max) – based on minimizing,

espectively, δFro given by Eq. (50) , δ given by Eq. (47) , δmax given

y the relation 

max ( ε ) = 

ma x z p | εε ( z p ) | 2 
ma x z p | �DoD ( z p ) | 2 

= 

1 
P 

∑ P 
p=1 

(∑ n sp 

j=1 

[
�DoD j ( z p ) − �

RCCE ( ε ) 
DoD j ( z p ) 

]2 
)1 / 2 

1 
P 

∑ P 
p=1 

(∑ n sp 

j=1 

[
�DoD j ( z p ) 

]2 
)1 / 2 

(54)

nd again δmax given by Eq. (54) but done after sorting the P sam-

les of � in ascending order of | � | . 
DoD DoD 
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Fig. 10. Plots of temperature T , specific impulse I sp , and mole fractions X j of the main species versus dimensionless downstream axial distance x resulting from RCCE 

simulations compared with the corresponding data from the underlying DKM simulation, for the conditions detailed in Fig. 1 except for the nozzle length which here is 

100 times shorter. Here the comparisons are for the products of methane oxycombustion, between the results of a 29 species/133 reactions DKM simulation and three RCCE 

simulations with 4, 5, and 6 total constraints. Constraints additional to the three elemental ones are obtained from the ARREFADD algorithm in this case. 
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Fig. 11. Ignition of a stoichiometric mixture of methane and oxygen at 900 K and 10 bar in a subsonic constant area plug flow reactor. Comparison between the results of 

a 29 species/133 reactions DKM simulation and several RCCE simulations. Constraints additional to the three elemental ones are obtained from the ASVDADD algorithm in 

this case. 
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Fig. 12. Ignition of a stoichiometric mixture of methane and oxygen at 1500 K and 1 bar in a subsonic constant area plug flow reactor. Comparison between the results of 

a 29 species/133 reactions DKM simulation and several RCCE simulations. Constraints additional to the three elemental ones are obtained from the ASVDADD algorithm in 

this case. 
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Fig. 13. Ignition of a stoichiometric mixture of methane and oxygen at 900 K and 10 bar in a subsonic constant area plug flow reactor. Comparison between the results of 

a 29 species/133 reactions DKM simulation and several RCCE simulations, all with sets of 9 constraints ( n c = 6 in addition to n el = 3), but obtained by four variants of the 

proposed algorithm (see text). 
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0. Conclusions 

The Rate-Controlled Constrained-Equilibrium (RCCE) method 

rovides a strongly thermodynamically consistent, general model

rder reduction framework to model, with good degrees of ap-

roximation, complex chemical kinetics in applications involving

hifting equilibrium, frozen equilibrium, as well as highly non-

quilibrium kinetic problems. The method in general requires a sig-

ificantly smaller number of differential equations than required

y a full Detailed Kinetic Model (DKM). To provide accurate ap-

roximations, the method requires accurate identification of the

ottleneck kinetic mechanisms responsible for slowing down the

elaxation of the state of the system towards local chemical equi-

ibrium. More precisely, the method requires that such bottleneck

echanisms be characterized by means of a set of representative

onstraints. So far, a weakness of the RCCE method has been the

bsence of a fully automatable, systematic algorithm capable to

dentify the best constraints for a given range of conditions and

 required level of approximation. 

In this paper we propose a new methodology for systematic

CCE constraint identification. The algorithm is based on analysing

ow the degrees of disequilibrium (DoD) of the chemical reactions

ehave in a full DKM test simulation. We call it ARREFADD because

t is based on computing the Approximate Reduced Row Echelon

orm of the Actual Degrees of Disequilibrium (ARREFADD) with re-

pect to a preset tolerance level. Indeed, for each given range of

onditions, any given DKM is characterized by a number of rate-

imiting kinetic bottlenecks that is generally much smaller than

he number of species in the model. As a result, the DoDs of all

he chemical reactions effectively assemble into a small number

f groups that bear the information of the rate-controlling con-

traints because the DoDs of all the reactions in each group exhibit

lmost identical behaviour (time evolution, spatial dependence).

hen the identification of these groups can be done by simple in-

pection, the RCCE constraints are obtained by means of a simple

ernel analysis of a matrix constructed from the stoichiometric co-

fficients of subsets of reactions. When, as in most practical cases,

he structure of the DoD traces is too complex to allow the group-

ng of reactions by simple inspection, the methodology can be still

mplemented by computing the approximate reduced row echelon

orm of the DoD traces, where the degree of approximation may be

uned by setting the tolerance level. Geometrically, the procedure

dentifies a low dimensional subspace in DoD space from which

he actual DoD traces do not depart beyond a fixed distance re-

ated to the preset tolerance level. 

The effectiveness of the methodology is demonstrated in several

est cases of increasing complexity. For a one-dimensional study

f expansion in a supersonic nozzle of the products of the oxy-

ombustion of hydrogen, the simple chemical kinetics (8 species,

4 reactions), the mild expansion rate, and the assumption of

hemical equilibrium inlet conditions allow grouping by inspec-

ion: the analysis predicts and RCCE simulations confirm that, un-

er the geometrical and boundary conditions considered, the un-

erlying DKM is accurately represented by only two mathemati-

ally derived constraints, instead of the three constraints identified

or the same problem in a recently published work also based on

oD analysis. When the expansion rate is much higher or the ki-

etic scheme is more complex (we consider methane/oxygen, 29

pecies, 133 reactions) the same supersonic nozzle expansion setup

oes not allow grouping by simple inspection of the DoD traces.

evertheless, the ARREFADD algorithm easily identifies sets of con-

traints that make the RCCE simulations very accurate for very

mall numbers of constraints. The effectiveness of the method is

lso demonstrated for a more complex test case involving ignition

f a homogeneous mixture of methane and oxygen. 
D

In the spirit of typical multi-scale modelling approaches, as well

s the Greedy and LOI algorithms, it is foreseen that the present

onstraint selection methodology can be used systematically to

ap (for example by in situ adaptive tabulation as already sug-

ested in Ref. [38] ) the range of conditions of interest in a given

roblem with a set of short DKM simulations to provide the DoD

ata needed by the ARREFADD constraint identification algorithm. 

We conclude that the new constraint selection algorithm essen-

ially resolves the difficulties that have prevented the RCCE method

1–14,39] from a more widespread use in reduced order modelling

f detailed combustion kinetic models of hydrocarbon fuels. In ad-

ition, the ARREFADD model order reduction method can find nat-

ral extensions also in the more general field of nonequilibrium

hermodynamics, for example in the general frameworks discussed

n Ref. [40] . 
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ppendix A. Simple implementation of the ARREFADD 

lgorithm 

The following very simple MatLab code implements the con-

traint selection methodology outlined in Section 7 . It elaborates

KM data on DoDs that must be stored in a file named DoDs-

romDKM.dat to generate a set of constraints for a prescribed tol-

rance threshold value ε to be assigned to the variable TOL. The

toichiometric matrix must be stored in a file named nu.dat. For

he set tolerance threshold, the program returns the set of or-

honormal vectors a i that can be used as constraints according to

q. (44) . 

lear all 
lose all 
 

 read DoD data from DKM simulation 
 from .dat file with one row for each 
 = 1,...,P 
 and on each row: x_p DoD(x_1) ... DoD(x_n_r) 
 

oDdata = load(‘DoDsFromDKM.dat’); % P X 1 + n_r 
p = DoDdata(:,1); % P X 1 
oDall = DoDdata(:,2:end); % P X n_r 
 

 read matrix of stoichiometric coefficients 
 from .dat file with one row for each reaction 
 and on each row: nu_{1 \ ell} ... nu_{n_sp \ ell} 
 

u = load(‘nu.dat’); % n_r X n_sp 
ut = nu’; % n_sp X n_r 
 

 find a basis for the lin span of the 
 columns of matrix nut 
 using standard MatLab function rref 
 

RREFnu,ibasisnut] = rref(nut); 
 find rref of nut 
 = length(ibasisnut); % rank of nu 
 

 set of basis reactions and their DoDs 
 

uindep = nut(:,ibasisnut); % n_sp X r 
oDindep = DoDall(:,ibasisnut); % P X r 
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% 
% compute the basis \ theta_k with respect 
% to which \ Lambda_ODoD = sum_k \ phi_k \ theta_k 
% 
M = nuindep’ ∗nuindep; % r X r 
W = inv(M); % r X r 
Theta = nuindep ∗W; % n_sp X r each column is a 
\ theta_k 
% 
% now we can compute \ Lambda_ODoD 
% 
LambdaODoD = Theta ∗DoDindep’; % n_sp X P 
% 
% set a tolerance threshold level 
% 
TOL = 1.205 
% 
% find constraints 
% 
[LambdaRREF,ibasisLambda] = rref(LambdaODoD,TOL); 
nc = length(ibasisLambda)% rank of LambdaRREF 
% 
% basis for the approximate range of LambdaODoD 
% 
a = LambdaODoD(:,ibasisLambda); % n_sp x nc 
% 
% orthnormal basis 
% 
aorthonormal = orth(a) % n_sp x nc the columns 
are our CONSTRAINTS 
% 
% compute the \ gamma_i such that % 
LambdaRCCE = \ sum_i ̂  nc \ gamma_i a_i 
% 
gamma = LambdaODoD’ ∗aorthonormal; 
LambdaRCCE = aorthonormal ∗gamma’; 
% 
% compute the corresponding approximate DoDs 
% 
DoDRCCE = nuindep’ ∗LambdaRCCE; 
% 
% estimate of relative distance of Lambda from 
span(a_i) % 
Epsilon = LambdaODoD’-LambdaRCCE’; % M x 8 
P = size(LambdaODoD,2); 
normEpsilon = zeros(P,1); 
normLambdaODoD = zeros(P,1); 
for s = 1:P normEpsilon(s) = norm(Epsilon(s,:)); 
normLambdaODoD(s) = norm(LambdaODoD(:,s)); 
end 
delta = mean(normEpsilon)/mean(normLambdaODoD) 

For example, the RCCE simulations shown in Fig. 4 are obtained

by assuming the constraints determined by running the above

MatLab code on the DKM-DoD data plotted in Fig. 2 . Setting

ε = TOL = 1.205, the code yields the following orthonormal basis

(aorthonormal) for the approximate range of �DoD , jp : 

a 1 
ε= 1.205 a 2 

ε= 1.205 

-0.5334 -0.2156 
0.0352 -0.4827 
-0.6463 -0.0159 
-0.1921 -0.1038 
-0.0789 -0.3066 
0.3759 -0.3944 
-0.1917 0.5632 
0.2747 0.3778 
nd the resulting mean error δ = 0.312%. These are the two con-

traints (in addition to the two elemental ones) used to obtain the

CCE(4):PresentMethod plots shown in Fig. 4 . As seen in the dis-

ussion of Fig. 5 , without changing the number of constraints, we

ould further minimize the mean error to δ = 0.25% by setting

 = TOL = 1.064. 

Again, setting ε = TOL = 6.6 for the DKM-DoD data of Fig. 2 ,

he orthonormal basis (aorthonormal) for the approximate range

f �DoD , jp that obtains is 

 1 
ε= 6.6 

0.5298 
0.0468 
0.6460 
0.1887 
0.0727 
0.3853 
0.2020 
0.2638 

nd the resulting mean error is δ = 4.06%. These is the single con-

traint (in addition to the two elemental ones) used to obtain the

CCE(3):PresentMethod plots shown in Fig. 4. 

Again, the RCCE simulations shown in Fig. 9 are obtained by

ssuming the constraints determined by running the above MatLab

ode on the DKM-DoD data plotted in Fig. 7 . Setting ε = TOL = 2.06,

he code yields the following orthonormal basis (aorthonormal) for

he approximate range of �DoD , jp 

 1 
ε= 2.06 a 2 

ε= 2.06 

0.5506 -0.2605 
0.0433 -0.4499 
0.6500 -0.0380 
0.1816 -0.0649 
0.0846 -0.3027 
0.3996 -0.2416 
0.1496 0.7508 
0.2241 0.1015 

nd the resulting mean error δ = 0.814%. These are the two con-

traints (in addition to the two elemental ones) used to obtain the

CCE(4):PresentMethod results shown in Fig. 4 . As seen in the dis-

ussion of Fig. 5 , without changing the number of constraints, we

ould further minimize the mean error to δ = 0.807% by setting

 = TOL = 2.142. 

Again, setting ε = TOL = 9.2772 for the DKM-DoD data of Fig. 7 ,

he orthonormal basis (aorthonormal) for the approximate range of

DoD , jp that obtains is 

 1 
ε= 9.2772 

0.5491 
0.0442 
0.6500 
0.1814 
0.0837 
0.3970 
0.1551 
0.2289 

nd the resulting mean error is δ = 4.025%. These is the single

onstraint (in addition to the two elemental ones) used to obtain

he RCCE(3):PresentMethod results shown in Fig. 9. 

Setting ε = TOL = 0.7003, the orthonormal basis (aorthonormal)

or the approximate range of �DoD , jp that obtains is 

 1 
ε= 0.7003 a 2 

ε= 0.7003 a 3 
ε= 0.7003 

0.5522 0.2587 0.0713 
0.0412 0.4094 0.1690 
0.6500 0.0323 -0.0104 
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0.1823 0.0589 0.0032 
0.0855 0.2722 0.1838 
0.4009 0.1106 0.5802 
0.1439 -0.8168 0.1670 
0.2211 0.0866 -0.7536 

ppendix B. Simple implementation of the ASVDADD variant 

The following MatLab code implements the even simpler con-

traint selection methodology outlined in Section 8 . We removed

omments from the first part of the code that is identical to that

iven in Appendix A . 

lear all 
lose all 
oDdata = load(’DoDsFromDKM.dat’); % P X 1 + n_r 
p = DoDdata(:,1); % P X 1 
oDall = DoDdata(:,2:end); % P X n_r 
u = load(’nu.dat’); % n_r X n_sp 
ut = nu’; % n_sp X n_r 
RREFnu,ibasisnut] = rref(nut); % find rref of 
ut 
 = length(ibasisnut); % rank of nu 
uindep = nut(:,ibasisnut); % n_sp X r 
oDindep = DoDall(:,ibasisnut); % P X r 
 = nuindep’ ∗nuindep; % r X r 
 = inv(M); % r X r 
heta = nuindep ∗W; % n_sp X r each column is a 
 theta_k 
ambdaODoD = Theta ∗DoDindep’; % n_sp X P 
 

 find the SVD % using standard MatLab function 
vd 
 

U,S,V] = svd(LambdaODoD); 
 

 = rank(S); 
igma = diag(S); 
 

 compute errors 
 

or n = 1:r 
eltaFro(n) = norm(sigma(n:end))/norm(sigma); 
nd 
elta2 = diag(S)/S(1,1); 
 

 show results 
 

est_candidates_for_RCCE_constraints = U(:,1:r) 
orresponding_errors_neglecting_contraints_ 
eyond_nc = (1:r) 
elta2 = [delta2(2:r);0]’ 
eltaFro = [deltaFro(2:r)’;0]’ 

he result of running this code for the DKM-DoD data of Fig. 2 is

he following: 

Best_candidates_for_RCCE_constraints = 

0.5497 -0.2645 0.0078 0.1956 0.5558 -0.4200 
0.0443 -0.4277 0.1733 -0.5222 -0.1480 0.2716 
0.6499 -0.0397 0.0131 -0.1796 -0.6336 -0.1950 
0.1817 -0.0646 0.0063 -0.3382 0.4758 0.4531 
0.0833 -0.2810 0.1446 0.7353 -0.1857 0.4845 
0.4002 -0.1519 0.5607 0.0194 -0.0168 -0.4805 
0.1520 0.7992 0.2321 0.0122 0.0413 0.1074 

0.2242 -0.0228 -0.7619 0.0349 -0.0699 -0.1711 
orresponding_errors_neglecting_contraints_ 
eyond_nc 

It is noteworthy that these results are close, but not identical

o those obtained in Appendix A , due to the different measures

f approximation minimized by the ARREFADD and the ASVDADD

ariants of the method. 

ppendix C. Vector notation 

The use of vector space formulations and notions in chemi-

al kinetics and model reduction has proved to be expedient not

nly for compacting the notation but also for exploiting many

elevant theorems from linear algebra. However, various authors

se different notations and levels of abstraction. In this paper, for

implicity, we adopt a low level of abstraction because to un-

erstand the proposed ARREFADD algorithm it suffices to con-

ider a generic n -dimensional real vector space R 

n consisting of

ll ordered n -tuples of real numbers, such as x = [ x 1 . . . x n ] and

 = [ y 1 . . . y n ] , equipped with the scalar product 〈 x | y〉 = 

∑ n 
i =1 x i y i .

n particular, the vectors N = [ N 1 . . . N n sp ] , � = [ λ1 . . . λn sp ] , ν� =
 ν1 � . . . νn sp � ] for each fixed � , a i = [ a i 1 . . . a i n sp 

] for each fixed i ,

k = [ χ1 k . . . χn sp k ] for each fixed k , �DoD ( z p ) for each fixed z p ,

an all be viewed as elements of R 

n sp . 

We also consider several n × m matrices: the n sp × n r matrix

of stoichiometric coefficients, the n c × n sp matrix a of constraint

oefficients, the n sp × r matrix χ, the r × r matrix M and its inverse

 , the n sp × P matrix �DoD ( z p ) . 
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