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Validation of the ASVDADD
Constraint Selection Algorithm
for Effective RCCE Modeling of
Natural Gas Ignition in Air
The rate-controlled constrained-equilibrium (RCCE) model reduction scheme for chemi-
cal kinetics provides acceptable accuracies in predicting hydrocarbon ignition delays by
solving a smaller number of differential equations than the number of species in the
underlying detailed kinetic model (DKM). To yield good approximations, the method
requires accurate identification of the rate controlling constraints. Until recently, a draw-
back of the RCCE scheme has been the absence of a systematic procedure capable of
identifying optimal constraints for a given range of thermodynamic conditions and a
required level of approximation. A recent methodology has proposed for such identifica-
tion an algorithm based on a simple algebraic analysis of the results of a preliminary
simulation of the underlying DKM, focused on the degrees of disequilibrium (DoD) of the
individual chemical reactions. It is based on computing an approximate singular value
decomposition of the actual degrees of disequilibrium (ASVDADD) obtained from the
DKM simulation. The effectiveness and robustness of the method have been demonstrated
for methane/oxygen ignition by considering a C1/H/O (29 species/133 reactions) subme-
chanism of the GRI-Mech 3.0 scheme and comparing the results of a DKM simulation
with those of RCCE simulations based on increasing numbers of ASVDADD constraints.
Here, we demonstrate the new method for shock-tube ignition of a natural gas/air mix-
ture, with higher hydrocarbons approximately represented by propane according to the
full (53 species/325 reactions) GRI-Mech 3.0 scheme including NOx formation.
[DOI: 10.1115/1.4038376]

1 Introduction

In the framework of modeling the ignition of a homogeneous
methane/air mixture, the purpose of this paper is to present a vali-
dation of the recently proposed [1] approximate singular value
decomposition of the actual degrees of disequilibrium (ASV-
DADD) method for automatic constraint selection for use in the
rate-controlled constrained-equilibrium (RCCE) method of model
order reduction [2–14]. The ASVDADD method requires a pre-
liminary full detailed kinetic model (DKM) simulation aimed at
computing the time dependence of the degree of disequilibrium
(DoD) of every individual chemical reaction in the scheme. It
then extracts the selection of RCCE constraints from the singular
value decomposition (SVD) of a matrix that contains the informa-
tion about the DoD-time traces of all reactions.

In Sec. 2, we review the assumptions of a typical DKM for gas-
phase combustion. In Sec. 3, we recall the meaning of DoD-time
trace analysis. In Sec. 4, we review the RCCE fundamentals. In
Sec. 5, we outline the general logic of automatic constraint selec-
tion and in Sec. 6, we discuss the particular logic of the ASV-
DADD algorithm based on DoD analysis. In Sec. 7, we present
the results of the numerical validation and in Sec. 8 our
conclusions.

2 Standard Detailed Kinetic Model Formulation

A detailed kinetic model for gas-phase combustion is typically
defined by:

— A list of ns chemical species.

— A kinetic scheme with nr chemical reactions (we denote the
forward and reverse stoichiometric coefficients of the ‘th reaction
by �þj‘ and ��j‘ , respectively).
— The kinetic parameters that determine the forward reaction
rate constants

kþ‘ ðTÞ ¼ Aþ‘ Tbþ
‘ expð�Eþ‘ =RTÞ (1)

(typically in mol cm s K units with the forward activation energy
Eþ‘ in cal/mol).

— The principle of detailed balance to determine the backward
reaction rate constants according to

k�‘ ðTÞ ¼ kþ‘ Tð Þ=Kco
‘ ðTÞ (2)

where the equilibrium constant based on concentrations is

Kco
‘ Tð Þ ¼ po=RTð Þ�‘exp �Dgo

‘ ðTÞ=RT
� �

(3)

where �‘ ¼
P

jð��j‘ � �þj‘ Þ and Dgo
‘ Tð Þ ¼

Pns

j¼1 �j‘gjj T; poð Þ is the

Gibbs free energy of the ‘th reaction at standard pressure po and
temperature T. In the present paper, we use the notation of Ref.
[11], which differs only slightly from that of Ref. [15], whereby
gjj ¼ ljj (with the double subscript) refers to the Gibbs free energy

of pure substance j, whereas the symbol gj ¼ li (with a single
subscript), used below, represents instead the partial Gibbs free
energy, i.e., the chemical potential, of species j in the mixture.

— The relation

r6
‘ ¼ k6

‘ Tð Þ
Yns

j¼1

Nj½ ��
6
j‘ (4)
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was used to compute the forward and reverse reaction rates, rþ‘
and r�‘ , respectively, where Nj½ � is the concentration of species j.
From these we compute the chemical production density terms in
the species balance equations (consumption density if negative)

_xj ¼
Xnr

‘¼1

�j‘ðr
þ

‘
� r
�

‘
Þ (5)

and the chemical contribution to the entropy production density

rchem ¼ R
Xnr

‘¼1

ðrþ‘ � r�‘ Þln rþ‘ =r�‘
� �

(6)

— The local equilibrium assumption whereby the so-called
“surrogate system” [16,17] obtained by instantaneously “freezing”
all reactions can be assumed to have the properties of a stable
thermodynamic equilibrium at temperature T and pressure p of
the nonreacting mixture (hence the “off” subscript, below) with
mole fractions

Xj ¼ Nj½ �=½N�; where N½ � ¼
Xns

j¼1

Nj½ � (7)

For convenience, we introduce the vector of mole fractions

X ¼ ½X1…Xns
� (8)

— The assumption of ideal Gibbs–Dalton mixture of ideal gases
whereby p ¼ N½ �RT and the chemical potential of species j in the
surrogate system is given by

lj;off T; p;Xð Þ ¼ gjj T; poð Þ þ RT lnðp=poÞ þ RT lnðXjÞ (9)

For convenience, we introduce the entropic chemical potentials

kj ¼ kj;off T; p;Xð Þ ¼ �lj;off T; p;Xð Þ=RT (10)

and, for shorthand, the vectors

K ¼ ½k1…kns
� (11)

Kpure ¼ ½k11…knsns
� (12)

ln X ¼ ½ln X1…ln Xns
� (13)

so that Eq. (9) rewrites in either of the following forms:

K ¼ Kpure T; poð Þ � ln p=poð Þ � ln X (14)

K ¼ Kpure T; pð Þ � ln X (15)

3 Degrees of Disequilibrium

The DoD of reaction ‘ is defined as

/‘ ¼ lnðrþ‘ =r�‘ Þ (16)

For convenience of discussion, below we refer to the degree of
disequilibrium of reaction ‘ also by DoD‘. Under the set of
assumptions outlined in Sec. 2, it is easy to verify that DoD‘ is
related to T; p;X via the equation

/‘ ¼
Xns

j¼1

�j‘kj;off T; p;Xð Þ (17)

and to T; ½N� via the nonequilibrium law of mass actionYns

j¼1

Nj½ ��j‘ ¼ Kco
‘ Tð Þexp �/‘ð Þ (18)

In view of Eq. (4), some DoDs are 61 when some of the ½Nj�’s
are zero. We exclude such cases from our treatment, meaning that

for all practical purposes, when the concentration of a species j is
initially zero, we substitute the zero with a very small value, like
½Nj� ¼ 10�10½N�.

The mathematical interpretation of Eq. (17) is that the DoD of a
reaction is a linear combination of the rows of the stoichiometric
matrix, with the kj;off ’s as coefficients of the linear combination.
Thus, if some columns of the stoichiometric matrix are linearly
dependent, then so are the corresponding DoDs.

We also observe that Eq. (17) may be rewritten as the scalar
product of the vector K with the vector

m‘ ¼ ½�1‘…�nsp‘� (19)

whose entries correspond to the ‘th column of the matrix m ¼ ½�j‘�
of the stoichiometric coefficients, i.e., we may write

/‘ ¼
Xns

j¼1

kj�j‘ ¼ Kjm‘h i (20)

where xjyh i ¼
Pn

i¼1 xiyi denotes the scalar product of two vectors
x ¼ ½x1 … xns

� and y ¼ ½y1 … yns
� in the vector space Rns consist-

ing of all ordered ns-tuples of real numbers.
From Eq. (5) and defining the overall production density vector

X ¼ ½ _x1 … _xns
� (21)

the entropy production density may also be written as

rchem ¼ R
Xns

j¼1

kj

Xnr

‘¼1

�j‘ðrþ‘ � r�‘ Þ ¼ KjXh iR (22)

In general, the reactions in a given DKM are not all independent.
Element conservation requires the stoichiometric coefficients to
satisfy the following nel balance conditions:

Xns

j¼1

aEL
ij �j‘ ¼ 0; for i ¼ 1;…; nel and ‘ ¼ 1;…; nr (23)

where of course aEL
ij represents the number of atoms of type i in a

molecule of species j. These conditions guarantee that the chemi-
cal production/consumption terms in the species balances equa-
tions satisfy the element conservation constraints

Xns

j¼1

aEL
ij _xj ¼ 0 for i ¼ 1;…; nel (24)

Defining the nel linearly independent vectors

aEL
i ¼ ½aEL

i1 …aEL
i ns
� for i ¼ 1;…; nel (25)

the stoichiometric balance conditions (23) become orthogonality
conditions

aEL
i jm‘

� �
¼ 0 (26)

implying that the column space spanðfm‘gÞ of the stoichiometric
matrix m, i.e., the linear span of the set of stoichiometric vectors m‘
whose entries are given by its columns, often called the reactive
subspace, is orthogonal to the nel-dimensional linear span
cokerðmÞ of the elemental constraint vectors faEL

i g, often called
the inert subspace. This also implies that the matrix m of stoichio-
metric coefficients has rank r ¼ ns � nel. The reactive subspace
and the inert subspace are orthogonal complements in the ns-
dimensional real vector space Rns , i.e., we may write

Rns ¼ spanðfm‘gÞ � cokerðmÞ (27)

meaning that any vector x ¼ ½x1…xn� in Rns may be decomposed
as x ¼ xspanðfmlgÞ þ xcokerðmÞ with xspanðfmlgÞ in spanðfm‘gÞ, xcokerðmÞ
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in cokerðmÞ, and of course xspanðfmlgÞjxcokerðmÞi ¼ 0:
�

Therefore,
applying such decomposition to the vector K we may write

K ¼ KDoD þ K? (28)

where for shorthand we introduced the notation

KDoD ¼ KspanðfmlgÞ and K? ¼ KcokerðmÞ (29)

Clearly, Eqs. (14) and (15) rewrite as

KDoD ¼ Kpure T; poð Þ � K? � ln p=poð Þ � ln X (30)

KDoD ¼ Kpure T; pð Þ � K? � ln X (31)

We call KDoD the overall degree of disequilibrium vector
(ODoD). In general, we can write

K? ¼
Xnel

i¼1

cEL
i aEL

i (32)

where as shown, for example, in the appendix of Ref. [18], cEL
i ¼Pnel

k¼1 ðA�1Þik KjaEL
k

� �
with A�1 the inverse of the matrix with ele-

ments Aik ¼ aEL
i jaEL

k

� �
: Since K?jm‘h i ¼ 0, we can rewrite Eqs.

(20) and (22) as follows:

/‘ ¼
Xns

j¼1

kj�j‘ ¼ KDoDjm‘h i for ‘ ¼ 1;…; nr (33)

rchem ¼ KDoDjXh iR (34)

Moreover, importantly, we can construct a (nonorthogonal) basis
for the r-dimensional spanðfm‘gÞ by choosing a subset of r line-
arly independent columns of the stoichiometric matrix identified
by the column numbers ‘k, for k ¼ 1;…; r. With respect to this
basis, we can write

KDoD ¼
Xr

k¼1

akm‘k
(35)

It is also worth noting that the component K? lies in the nel-
dimensional linear span of the elemental constraints and is all that
remains of vector K at complete chemical equilibrium where all
the DoDs are zero and, therefore, KDoD ¼ 0.

We now substitute Eq. (35) into Eq. (33) for ‘ ¼ ‘k0 to obtain

/k0 ¼
Xr

k¼1

ak m‘k
jm‘k0

� �
(36)

which can be viewed as a linear system of equations that we can
solve for the ak’s because the r � r matrix Mkk0 ¼ m‘k

jm‘k0

� �
is

nonsingular by virtue of the linear independence of the basis vec-
tors m‘k

. Hence, denoting its inverse by W ¼ M�1, we can write
the solution of the system as

ak ¼
Xr

k0¼1

/k0Wk0k (37)

Substituting into Eq. (35), we obtain KDoD ¼
Pr

k¼1

Pr
k0¼1

/k0Wk0km‘k
¼
Pr

k¼1 /k

Pr
k0¼1 Wkk0m‘k0 which shows that we can

transform to a more convenient (still nonorthogonal) basis for
spanfm‘g, defined by the transformation

vk ¼
Xr

k0¼1

Wkk0m‘k0 (38)

with respect to which the coordinates of KDoD are the DoD’s of the
chosen r linearly independent reactions ‘k, for k ¼ 1;…; r, i.e.,

KDoD ¼
Xr

k¼1

/kvk (39)

It is important to note that the basis vectors vk can be computed
once and for all, for the given DKM, by simple algebraic operations
based exclusively on the matrix m of stoichiometric coefficients.
Note also that the same procedure may yield different linearly inde-
pendent sets of reactions and basis vectors vk if the columns of the
stoichiometric matrix are sorted in a different order.

Relation (39) is very important for the ASVDADD algorithm of
automatic selection of RCCE constraints. It is also important in
general for the analysis of results obtained from a DKM simulation
because it allows to construct the ODoD vector KDoD from the val-
ues /k of the DoDs of only a subset of r independent reactions.

In this paper, we consider the unsteady problem of predicting
the ignition delay time of a homogeneous gas mixture. Therefore,
the results of a DKM simulation will be functions of time t only,
i.e., Eq. (39) is rewritten as

KDKM
DoD ðtÞ ¼

Xr

k¼1

/DKM
k tð Þvk (40)

4 Rate-Controlled Constrained-Equilibrium

Approximation

The main assumption of the RCCE modeling approximation is
that the gas mixture evolves along a low-dimensional manifold in
composition space where the associated local equilibrium states
of the surrogate system, i.e., the stable equilibrium state obtained
by instantaneously freezing all reactions, have the constrained-
equilibrium composition XCE that minimizes the Gibbs free
energy for the instantaneous local values of the temperature T, the

pressure p, the element concentrations NEL
i

� �
, and a set of ncð< rÞ

rate-controlling constraint densities ci ½N�ð Þ, defined as linear com-
binations of the local species concentration via the relations

Xns

j¼1

aEL
ij Nj½ � ¼ NEL

i

� �
for i ¼ 1;…; nel (41)

Xns

j¼1

aCE
ij Nj½ � ¼ ci ½N�ð Þ for i ¼ 1;…; nc (42)

where the constraint matrix aCE ¼ ½aCE
ij � plays a crucial role and

must be chosen so that Eq. (42) possibly represent the slowest
varying linear combinations of the local concentrations, in princi-
ple associated with the main rate-controlling bottlenecks of the

underlying DKM at the local conditions. The composition XCE

defined by such constrained minimization is

ln XCE
j ¼ kjj T; pð Þ �

Xnel

i¼1

cEL;CE
i aEL

ij �
Xnc

i¼1

cCE
i aCE

ij (43)

Introducing as in Sec. 3 the following notation:

KCE
? ¼

Xnel

i¼1

cEL;CE
i aEL

i (44)

KCE
DoD ¼

Xnc

i¼1

cCE
i aCE

i (45)

aCE
i ¼ ½aCE

i1 … aCE
ins
� for i ¼ 1;…; nc (46)

ln XCE ¼ ln XCE
1 … ln XCE

ns

h i
(47)

we may rewrite Eq. (43) in the following form:

KCE
DoD ¼ Kpure T; pð Þ � KCE

? � ln XCE (48)
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suitable for comparison with the ODoD vector resulting from a
full DKM simulation, which according to Eq. (31) is

KDKM
DoD ¼ Kpure T; pð Þ � KDKM

? � lnXDKM (49)

Subtracting these two equations, if the composition XCE is a good
approximation of XDKM, we may write the following formal
expression for the vector of relative errors:

XCE � XDKM

XDKM
� ln

XCE

XDKM

� 	
¼ KDKM

DoD � KCE
DoD

þ
Xnel

i¼1

cEL;DKM
i � cEL;CE

i


 �
aEL

i

(50)

where of course we introduced the shorthand notation

ln X=XCE
� �

¼ ln XCE
1 =XDKM

1

� �
… ln XCE

ns
=XDKM

ns


 �h i
(51)

XCE � XDKM

XDKM
¼ XCE

1 � XDKM
1

XDKM
1

…
XCE

ns
� XDKM

ns

XDKM
ns

" #
(52)

Also, for the entropy production density the error is

rCE
chem � rDKM

chem ¼ KDKM
DoD � KCE

DoDjX
� �

R (53)

5 Selection of Rate-Controlled Constrained-

Equilibrium Constraints

The general idea behind the RCCE method [1–14] is that for
each set of conditions and a given degree of acceptable approxi-
mation there is a threshold time scale which essentially separates
the “relatively fast” equilibrating mechanisms from those that
slow down and control the spontaneous relaxation toward stable
chemical equilibrium. The “relatively slow” mechanisms control
the interesting part of the nonequilibrium dynamics in that they
effectively identify a low-dimensional manifold in composition
space, where, for the chosen level of approximation, the dynamics
can be assumed to take place. In general, as shown in Ref. [19],
time-scale-based methods for the selection of constraints do not
necessarily identify the most effective set of constraints, whereas
it was shown in Ref. [12] that the analysis of DoD traces provides
important information. Reference [1] developed the idea into a
truly algorithmic method for automatic RCCE-constraint selection
based on choosing, for a preset value of nc, the nc constraint vec-

tors aCE
i that minimize a suitably weighted average of the relative

error between the ODoD vector time-traces K
CE ncð Þ
DoD ðtÞ and

KDKM
DoD ðtÞ obtained, respectively, from the RCCE simulation and

the DKM simulation, starting from the same initial conditions.
A weighted average of the relative error may be defined as

� ncð Þ ¼

ðtfinal

tinitial

���KDKM
DoD tð Þ � K

CE ncð Þ
DoD tð Þ

���2w2 tð Þdtðtfinal

tinitial

���KDKM
DoD tð Þ

���2w2 tð Þdt

(54)

where jKj2 ¼
Pns

j¼1 Kj

� �2
and the weight function w2 tð Þ is to be

chosen so as to emphasize the important features of the time
traces, in particular, where the solution varies rapidly.

A DKM or RCCE simulation requires the numerical integration

of a set of (stiff) differential equations for T; p;X or T; N½ � or
T; p;K. Typically, we use a differential equation solver which
chooses variable integration time steps so as to meet efficiently the
prescribed error tolerances. For the homogeneous ignition problem
at hand, the resulting time-discretization grid is typically a nonuni-
form time sequence, t0 … tp … tP where the index p labels the P

points and P is usually a large integer. The ODoD vector that
results from such a DKM simulation is an ns � P matrix

KDKM
DoD tpð Þ ¼ KDKM

DoD;jp

h i
(55)

that using Eq. (39) we can write as

KDKM
DoD ðtpÞ ¼

Xr

k¼1

/DKM
k tpð Þvk (56)

Therefore, this ns � P matrix has rank r ¼ ns � nel.
The RCCE method seeks to approximate this matrix with one

of smaller rank nc < r

K
CE ncð Þ
DoD tpð Þ ¼

Xnc

i¼1

cCE
i tpð ÞaCE

i (57)

where the constraint vectors aCE
i are chosen so as to minimize an

error measure such as that defined in Eq. (54).

6 Approximate Singular Value Decomposition of the

Actual Degrees of Disequilibrium Algorithm Based on

Degrees of Disequilibrium Analysis of a Detailed

Kinetic Model Simulation

The ASVDADD algorithm bases the selection of constraints on
the [20,21] SVD of the ns � P matrix KDKM

DoD ðtpÞ obtained from a
preliminary DKM simulation for the problem at hand. The canoni-
cal form of the SVD is

KDKM
DoD ðtpÞ ¼ URVT (58)

The r ¼ ns � nel nonzero singular values rj are in decreasing
order in the ns � P diagonal matrix R followed by the zero ones.
The first r columns of the ns � ns orthogonal matrix U identify an

orthonormal basis for the r-dimensional cokernel of KDKM
DoD tpð Þ.

For a chosen number nc < r of constraints, let us define the

ns � P diagonal matrix RCE ncð Þ obtained from R by setting to zero
its diagonal elements with index j > nc. By the Eckart–Young the-
orem of linear algebra, the ns � P matrix

K
CE ncð Þ
DoD tpð Þ ¼ URCE ncð ÞVT (59)

represents the “best approximation” to K tpð Þ that can be achieved
by a matrix of rank nc, in the sense of minimizing the Frobenius
measure dFro of the approximation defined by

d2
Fro ncð Þ ¼

KDKM
DoD tpð Þ � K

CE ncð Þ
DoD tpð Þ




 


2

Fro

KDKM
DoD tpð Þ




 


2

Fro

¼

Xns

j¼1

XP

p¼1

KDKM
DoDj tpð Þ � K

CE ncð Þ
DoDj tpð Þ

h i2

Xns

j¼1

XP

p¼1

KDoDj tpð Þ
� �2 (60)

which turns out to be equal to the ratio

dFro ncð Þ ¼

Xr

i¼ncþ1

ri

Xr

i¼1

ri

(61)

where rncþ1 is the first neglected singular value.
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The ASVDADD algorithm adopts

�ASVDADD ncð Þ ¼ d2
Fro ncð Þ (62)

This error measure corresponds to accepting in Eq. (54) the
weight function w2 tð Þ that has been implicitly chosen by the dif-
ferential equation solver we used for the DKM simulation so as to

adapt and refine the time discretization grid where the solution
changes rapidly.

By construction, the first nc columns of the ns � ns orthogonal
matrix U identify an orthonormal basis for the nc-dimensional

cokernel of K
CE ncð Þ
DoD tpð Þ. This means that, if we denote these col-

umns by aCE
i , we can write

Fig. 1 Constant-ðE ;V Þ ignition of a homogeneous mixture of methane and air. Initially, the mixture is at 1500 K and 1 atm,
with 1 mol of CH4, stoichiometric amounts of O2, N2, and Ar (respectively, 2 mol, 7.52 mol, and 0.08 mol), and very small
amounts (between 10212/10210 mol) for each of the other 49 species. The plots compare temperature, pressure, and mole-
fraction time traces obtained from the DKM simulation with those obtained from the RCCE(C) simulations based on
C 5 nc1nel constraints, with C 5 10 and 13, of which nel 5 5 are the element conservation ones (C, H, O, N, Ar) and the
remaining nc 5 C2nel are those obtained from the ASVDADD algorithm based on the DoD traces produced by the DKM
simulation. To check the robustness of the ASVDADD algorithm, the plots for temperature shows RCCE results also for C 5
7 and 16.
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K
CE ncð Þ
DoD tpð Þ ¼

Xnc

i¼1

cCE
i tpð ÞaCE

i (63)

thus achieving the objective of the RCCE modeling approxima-
tion, because the first nc columns of the matrix U can be taken as

the desired nc “best” RCCE constraints aCE
i (in addition to the nel

elemental ones).
The great advantage of the ASVDADD procedure is that—at

the expense of a specific but very natural choice for the measure
of “approximation” and hence of “optimality” of the choice of

Fig. 2 Constant-ðE ;V Þ ignition of a homogeneous mixture of methane and air. Initially, the mixture is at 900 K and 10 atm, with
1 mol of CH4, stoichiometric amounts of O2, N2, and Ar (respectively, 2 mol, 7.52 mol, and 0.08 mol), and very small amounts

(between 10212/10210 mol) for each of the other 49 species. The plots compare temperature, pressure and mole-fraction time
traces obtained from the DKM simulation with those obtained from the RCCE(C) simulations based on C 5 nc1nel constraints,
with C 5 11 and 14, of which nel 5 5 are the element conservation ones (C, H, O, N, Ar) and the remaining nc 5 C2nel are those
obtained from the ASVDADD algorithm based on the DoD traces produced by the DKM simulation. To check the robustness of
the ASVDADD algorithm, the plots for temperature shows RCCE results also for C 5 8 and 17.

052201-6 / Vol. 140, MAY 2018 Transactions of the ASME



constraints—the SVD of KDKM
DoD tpð Þ provides at once the entire

spectrum of optimal constraints (the first r columns of U) in
decreasing order of importance. The optimal set of nc constraint

vectors aCE
i are just the first nc columns of U.

7 Validation of the Approximate Singular Value

Decomposition of the Actual Degrees of Disequilibrium

Method for an Ignition Problem

The present validation study focuses on the ignition of a homo-
geneous stoichiometric mixture of methane and air in a constant
volume and constant energy setup, for two initial conditions, 900
K and 10 atm, and 1500 K and 1 atm. In Ref. [1], a demonstration
of the efficiency and robustness of the ASVDADD algorithm was
done for a 29 species/133 reactions C1/H/O submechanism [10]
of the GRI-Mech 3.0 scheme [22]. Here, instead, to probe the new
algorithm in a more complex situation, we retain the full GRI-
Mech 3.0 scheme, which considers nr ¼ 325 reactions between
ns ¼ 53 species with nel ¼ 5 elements (C, H, O, N, Ar) that
includes NOx formation.

From the numerical point of view, considering our limited com-
putational needs, especially the choice of the homogeneous igni-
tion problem which requires no integration with computational
fluid dynamics, we opted for the flexibility we could gain by
rewriting the entire set of DKM, ASVDADD, and RCCE codes in

MATLAB so as to use the built-in differential equations solvers. In
particular, we used the ode15s solver for the integration of the stiff
DKM and RCCE system of species balance and energy balance
equations.

To avoid infinite values of the DoD’s, we set an initial composi-
tion Njð0Þ that is not exactly stoichiometric. We assume 1 mol of
CH4, stoichiometric amounts of O2, N2, and Ar (respectively,
2 mol, 7.52 mol, and 0.08 mol), and 10�10 mol for each of the
other 49 species.

We proceed as follows: We first run a full DKM simulation

with these initial amounts and the initial temperature T 0ð Þ and
pressure pð0Þ of interest (in this study, either 1500 K and 1 atm or

900 K and 10 atm). Clearly, the volume is fixed by V ¼
Nð0ÞRT 0ð Þ=pð0Þ and so is the energy via the specific heats
dependence on temperature. We use the results of the DKM simu-

lation to compute the ns � P matrix KDKM
DoD ðtpÞ where the nonuni-

form sequence of P time steps has been chosen by the ode15 s
solver. We then compute the SVD of this matrix using the svd
MATLAB function which returns the ns � ns orthogonal matrix U
whose columns essentially identify all the ASVDADD con-
straints to be added to the elemental constraints. Thus, for a cho-
sen value of nc we take the first nc columns of the matrix U as

the nonelemental constraints, aCE
i , additional to the nel elemental

ones, aEL
i . Next, we run the RCCE(C) simulation based on these

C ¼ nc þ nel constraints. Since, as explained, for example, in

Fig. 3 Constant-ðE ;V Þ ignition of a homogeneous mixture of methane and air. Initially, the mixture is at 1500 K and 1 atm, with
1 mol of CH4, stoichiometric amounts of O2, N2, and Ar (respectively, 2 mol, 7.52 mol, and 0.08 mol), and very small amounts

(between 10212/10210 mol) for each of the other 49 species. Same simulations as in Fig. 1. The plots compare, for a small sam-
ple of reactions, the DoD time traces obtained from the DKM simulation with those obtained from the RCCE(C) simulations
based on C 5 nc1nel constraints, with C 5 10 and 13, of which nel 5 5 are the element conservation ones.
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Refs. [10–13], it is computationally convenient to solve the rate

equations for the C constraint potentials cEL;CE
i ðtÞ and cCE

i ðtÞ
(rather than for the species concentrations), we need to start the

computation by establishing initial values cEL;CE
i ð0Þ and cCE

i ð0Þ
of the constraint potentials that through Eq. (43) approximate
well the given initial composition. We do so by imposing Eq.

(43) only for a set of C “major species,” i.e., by solving the sys-
tem of C equations

Xnel

i¼1

cEL;CE
i ð0ÞaEL

ij þ
Xnc

i¼1

cCE
i ð0ÞaCE

ij

¼ kjj Tð0Þ; pð0Þð Þ � lnXCE
j 0ð Þ j ¼ 1;…;C (64)

Fig. 4 Constant-ðE ;V Þ ignition of a homogeneous mixture of methane and air. Initially, the mixture is at 900 K and 10 atm, with
1 mol of CH4, stoichiometric amounts of O2, N2, and Ar (respectively, 2 mol, 7.52 mol, and 0.08 mol), and very small amounts

(between 10212/10210 mol) for each of the other 49 species. Same simulations as in Fig. 2. The plots compare, for a small sam-
ple of reactions, the DoD time traces obtained from the DKM simulation with those obtained from the RCCE(C) simulations
based on C 5 nc1nel constraints, with C 5 11 and 14, of which nel 5 5 are the element conservation ones.
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for the C unknown values cEL;CE
i ð0Þ and cCE

i ð0Þ, where we empiri-
cally selected as major species the first C in a list where they are
ranked in decreasing order by their values of the sum

Xnel

i¼1

aEL
ij þ

Xnc

i¼1

aCE
ij

 !
kjj T 0ð Þ; p 0ð Þ
� �

Njð0Þ (65)

The values cEL;CE
i ð0Þ and cCE

i ð0Þ are also used, again in Eq. (43),

to compute the corrected initial mole fractions XCE
j of all the other

species and, using N ¼ p 0ð ÞV=RT 0ð Þ, the corrected initial
amounts N0jð0Þ. Finally, we use these corrected initial amounts to

run a corrected DKM simulation that we use to compare results
with the RCCE(C) simulations.

The plots in Fig. 1 compare temperature, pressure, and mole-
fraction time-traces obtained from the DKM simulation with those
obtained, for T 0ð Þ ¼ 1500 K and p 0ð Þ ¼ 1 atm, from the
RCCE(C) simulations based on C ¼ nc þ nel constraints. It is
noted that with a relatively small number (5 and 8) of nonelemen-
tal constraints, the RCCE results are in very good agreement with
the DKM results, even in capturing fine details such as the over-
shoot/undershoot in the OH concentration at ignition time shown
in one of the insets. To check the robustness of the ASVDADD
algorithm, the plots for temperature show RCCE results also for
C ¼ 7 and 16, showing that to capture well also the temperature
overshoot we need 11 nonelemental constraints.

Figure 2 shows similar comparisons for T 0ð Þ ¼ 900 K and
p 0ð Þ ¼ 10 atm.

For a small sample of reactions, Figs. 3 and 4 compare, for the
same simulations as in Figs. 1 and 2, respectively, the DoD and
entropy production time traces obtained from the DKM simulation
with those obtained from the RCCE(C) simulations.

8 Conclusions

The ASVDADD algorithm for systematic RCCE constraint
identification is based on analyzing how the DoD of the chemical
reactions behave in a full DKM test simulation. Geometrically,
the procedure identifies a low-dimensional subspace in DoD space
from which the actual DoD traces do not depart beyond a fixed
distance related to a preset tolerance level.

The effectiveness and robustness of the methodology have
already been demonstrated in Ref. [1] for several test cases of
increasing complexity in the framework of oxycombustion of
hydrogen (eight species, 24 reactions) and methane (29 species,
133 reactions). In the present paper, we provide a demonstration
for the even more complex full GRI-Mech 3.0 kinetic scheme (53
species, 325 reactions) for methane/air combustion including
nitrogen oxidation.

The excellent performance of the ASVDADD constraints con-
firm that conclusion in Ref. [1] that the new algorithm essentially
resolves the difficulties [23,24] that have prevented the RCCE
method from a more widespread use in model order reduction of
detailed combustion kinetic models of hydrocarbon fuels.

In future work, we will show that the same model order reduc-
tion logic can find natural extensions also in the more general field
of nonequilibrium thermodynamics, in particular in the general
frameworks discussed in Refs. [25] and [26].
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