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Abstract: We show that to prove the Onsager relations using the microscopic time reversibility one neces-
sarily has to make an ergodic hypothesis, or a hypothesis closely linked to that. This is true in all the proofs
of the Onsager relations in the literature: from the original proof by Onsager, to more advanced proofs in the
context of linear response theory and the theory of Markov processes, to the proof in the context of the kinetic
theory of gases. The only three proofs that do not require any kind of ergodic hypothesis are based on addi-
tional hypotheses on the macroscopic evolution: Ziegler’s maximum entropy production principle (MEPP),
the principle of time reversal invariance of the entropy production, or the steepest entropy ascent principle
(SEAP).
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1 Introduction

The Onsager reciprocal relations were first described and derived by Lars Onsager himself in 1931 [1, 2], and
they are now universally considered a milestone of non-equilibrium thermodynamics. This paper does not
discuss the importance or the historical development of the Onsager relations, but instead it focuses on their
proofs. In fact, the validity of the Onsager relations is the thesis of theorems, and the relations are not simply
phenomenological, despite historically they were inspired by phenomenological works such as the thermo-
electric effects studied earlier by Thompson and Kelvin. Since 1931, many have written papers proving the
Onsager relations in their favorite framework, and some review papers have been written comparing some
of the proofs [3, 4] and addressing the very interesting topic of time reversal invariance of the underlying
microscopic equations [5]. In this paper we highlight the fact that in every possible proof of the Onsager rela-
tions based on the principle of time reversal invariance of themicroscopic equations there is actually another
strong and important hypothesis, namely an ergodic hypothesis, or a hypothesis closely linked to that. The
reader who strongly believes in the validity and the effectiveness of the ergodic hypothesis can be content
with the fact that it is central to a very vast and important field like non-equilibrium thermodynamics, while
the reader who is skeptical of its validity can take solace in the fact that there are actually three proofs of the
Onsager relations that do not require any sort of ergodic hypothesis, because they are based on amacroscopic
principle. These three proofs, however, require separate, additional, and unproven hypotheses, or “princi-
ples,” on the time evolution of the entropy. The firstmacroscopic proofwaswritten byMeixner [6] and later by
Liu [7] and is based onThomson’s idea that the entropyproduction rate is unchangedunder time reversal. The
second macroscopic proof was written by Ziegler [8, 9, 10] and is a consequence of his proposed maximum
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entropy production principle (MEPP). This proof is very simple and elegant, being based on a principle with
a clear physical interpretation. However, the principle itself is not universally considered valid, and in fact
some express doubts about its validity far from equilibrium [11]. Furthermore, this proof does not explain the
Casimir extension of the Onsager relations. The third proof is based on the Steepest Entropy Ascent concept
developed by one of us.

The paper is structured as follows. In Section 2 the prescriptions and the statement of the Onsager the-
orem are given. This is important since there is still confusion about the need to correctly identify the forces
and the fluxes used in the reciprocal relations, and this often leads to mistakes. In Section 3 the microscopic
proofs of Onsager relations are analyzed, and the ergodic hypothesis is highlighted in each of them. We do
not rewrite these proofs, but the interested reader can read them in the references. The microscopic proofs
are classified into four groups. The proofs are based on: 1) fluctuation theory (this is the classical proof by
Onsager), 2) linear response theory and the Green–Kubo formulas, 3) stochastic dynamics and the theory of
Markov processes, and 4) kinetic theory of gases. In Section 4 the macroscopic proofs of Onsager relations
are discussed.

2 Onsager–Casimir relations: Prescriptions and statement

The reciprocal relations are the consequence of a theorem, not just phenomenological relations. Whenever
in the literature the Onsager relations do not hold for a particular case, it is because the hypotheses are not
taken strictly. First, the theorem requires linearity of the force–flux relations, so it only holds near equilib-
rium. Furthermore, a common source of confusion is Onsager’s notation of forces and fluxes. Coleman and
Truesdell [12] remark that thermodynamic forces and fluxes cannot be chosen indiscriminately on the basis of
physical intuition, inferred from the formula for the entropy production and the linear force–flux constitutive
relations. Instead, they need to be chosen following strict criteria, the important point being that forces must
be the derivatives of the entropy with respect to some thermodynamic variables and fluxes must be the time
derivatives of those same thermodynamic variables. Thus, in general it is logical to pick the thermodynamic
variables and later define forces andfluxes.Wenow review theprescriptions of the theorem. For simplicity,we
will not consider external magnetic fields, Coriolis forces, or the Casimir extension of the Onsager relations.

Consider an isolated system (a system enclosed by rigid immovable walls through which neither mat-
ter nor energy can be exchanged) characterized by a number of independent, time-dependent macroscopic
variables that describe the non-equilibrium states of the system at the chosen level of description. These
variables can have deviations from their equilibrium values Aeqi = A

eq
i (E,V ,n), i. e., the values that make the

non-equilibrium1 entropy S=S(A) of the system maximum

àS
àAi

!!!!!!!!Aeq
i

= 0 (1)

for fixed energy E, volume V , and number of particles n. A maximum of the entropy, and thus an equilibrium
state, exists only for a fixed energy, volume, and number of particles. Thus, to have the forces and fluxes
relative to these quantities (for example temperature gradients and heat fluxes) we would need to consider a
system composed of two or more subsystems. Then E, V , and n are only conserved for the overall system, but
not for the subsystems. In this case, it is necessary to introduce vector currents of quantities (note that these
are not fluxes in Onsager’s notation). For the details, see Callen [17]. Then we obtain a very similar formula

1 For the operative definition of the entropy of a system in a non-equilibrium state and its additivity for separated subsystems, see
[13, 14, 15]. Note also that Carati, Maiocchi, and Galgani show that entropy can be defined starting from the microscopic dynam-
ics, without requiring the dynamics to be ergodic [16]. Following instead the familiar approach based on the Gibbs ensembles,
ergodicity would be a requirement to define the entropy from themicroscopic dynamics. Thus, ergodicity is required only to prove
the Onsager relations in the microscopic formulations.
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(see the end of this section) for the entropy production as the onewewill shortly review, only that in that case
we will use gradients of the forces and currents instead of fluxes.2

The deviations of all the A variables from their equilibrium values are denoted by α,

αi = Ai − A
eq
i (i = 1, 2, . . . , n) . (2)

Onsager and Machlup [18] formulated rules for a correct choice. First, they need to be additive3 variables.
This is because speaking of fluctuations for intensive quantities is conceptually ill-defined (see for example
the large literature [19, 20] on the idea of temperature fluctuations). Onsager and Machlup’s idea for defining
variables for a system out of equilibrium is to consider the system as made of several small subsystems, each
near local equilibrium4 and each containing a statistically large number of molecules: the α variables must
be macroscopic variables which refer to these subsystems.

In addition, Onsager andMachlup assume that the αmust be algebraic sums ofmolecular variables. This
eliminates pathological variables like nonadditive functions of extensive variables and implies that, if these
molecular variables areweakly coupled, algebraic sumsof thembehave asGaussian randomvariables. This is
because the fluctuations of the variables, by virtue of the Central Limit Theorem, have Gaussian distributions
about the equilibrium values.

So far we may think that the α are the actual time-varying observables we just defined. However, this
would mean that the fluxes are instantaneous time derivatives, which would have very large fluctuations
that are not necessarily reproduced on successive repetitions of the same conditions. This would imply that
any macroscopic law that includes these fluxes has a very detailed time variation. This should not happen
for well-defined variables that describe a macroscopic system. To address this problem, Casimir [21] in 1945
suggested that the macroscopic flux J should be defined as the time-averaged rate of change of this ensemble
average over a mesoscopic time τ, which is an (arbitrary) intermediate time between the collision time of the
molecules and the relaxation time of the system as a whole. This is the common way to define the fluxes;
see for example the recent paper by Patitsas [22]. This definition of the fluxes in terms of time averages is the
reason why in linear response theory one has to make the ergodic hypothesis to define the linear transport
coefficients (see Section 3.2). What is not very elegant with this proposal is that it requires an explicit time
scale to be incorporated into the basic definition of J. To overcome this problem La Cour and Schieve [23]
defined α as the large-n expected value of the observable using large deviation theory.

It is indeed a delicate task to choose the variables properly. The idea is that there are many levels of de-
scription of a system, obtained by coarse graining the previous one, starting from themicroscopic description
[24, 25, 26, 27]. In a coarse-grainedmodel, we should look for the slow-varying variables, the ones that dictate
the evolution of the system. These are the important ones to choose to study the system,whereas the fast vari-
ables will immediately follow the evolution of the slow ones and thus their detailed evolution is irrelevant.

Near equilibrium, we can expand the entropy of the system to the second order as

S (α) ≃ S|eq −
1
2
∑i∑j Hij(0) αiαj, (3)

where H is the positive definite,5 symmetric Hess matrix, defined as

Hij(α) ≡
à2S(α)
àαiàαj
, (4)

and S|eq is the entropy of the system at equilibrium, which is a function of the equilibrium values Aeqi . If the
entropy S of the system (as a function of the α) and all the α (as functions of time) are differentiable, then, for

2 Note that to obtain this formula one needs to add important hypotheses on the local dependence of the entropy on the thermo-
dynamic variables and on the relation between the entropy flux and the fluxes of the conserved properties.
3 An additive property is one whose magnitude is the sum of that of the subsystems. This is what is often called an extensive
property, as in the current IUPAC definition. However, on this issue see again [13, 14].
4 Hence we can define variables that are only defined in equilibrium.
5 H is positive definite because the entropy at equilibrium ismaximum (see (1)). Outside of equilibrium, i. e., for α ̸= 0, the entropy
must me lower, so H must be strictly positive definite.
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an isolated system displaced from equilibrium, from the chain rule we have the well-known formula for the
(non-negative) rate of entropy generation by irreversibility inside the system

Ṡ(α) ≡ dS(α)
dt
=∑j XjJj, (5)

where taking into account eq. (3) the derivatives

Xi ≡
àS(α)
àαi
≃ −∑j Hij(0) αj (6)

are the thermodynamic forces which drive the system back towards equilibrium and

Ji ≡ α̇i ≡
dα
dt

(7)

are the time rates of change or fluxes of the variables. Note that these so-called fluxes are not currents, and
both the forces and the fluxes are zero at equilibrium (where the system is in a stationary state dα/dt|eq = 0
and, by equations (1) and (2), àS/àαi|eq = 0 and αi|eq = 0). The fluxes are independent and so are the forces,
because the thermodynamic variables are chosen independent. It would be an unnecessary complication to
choose them otherwise (see [28] Chap. 6 Par. 5).

Off equilibrium, thematerial tries to restore equilibrium. It resists to imposedfluxes by buildingup forces,
or it resists imposed forces by building up fluxes. Thus, forces and fluxes are not independent from each other
and can be seen as functions of each other: Xi = Xi (J) or, equivalently, Ji = Ji (X).

Onsager’s reciprocal relations are only valid near equilibrium,6 and this hypothesis will be used in all of
the proofs. If we linearize Ji = Ji (X) around equilibrium, remembering that Ji|eq = 0, we get

Ji (X) ≃∑j LijXj, (8)

where Lij = àJi/àXj
!!!!eq and, therefore, is independent of the Xj.

7 Onsager’s reciprocity states that

Lij = Lji. (9)

Of course, we could linearize Xi = Xi (J) instead, to get Xi ≃ ∑j RijJj, where Rij = àXi/àJj
!!!!eq = (L

−1)ij, and
Onsager’s relations would be Rij = Rji. Combining (8) with (6) we see that linearizing the force–flux relation
is equivalent to linearizing the regression of fluctuations to equilibrium

̇αi = −∑j Mijαj, (10)

where theM matrix is related to L and H byM = LH.
For a system composed of infinitesimal cells of volume dV , we can define densities like s = dS/dV and

the entropy production density is found (see Callen [17]) to be given by

̇s =∑j ∇Xj ⋅ Ij, (11)

where Ij are the current densities of the thermodynamic scalar quantities αj between adjacent cells. We then
introduce the transport coefficients L̂ij by linearizing

I i =∑j L̂ij∇Xj. (12)

For each force–current pair (i, j), the transport coefficient L̂ij is a rank-2 tensor andOnsager symmetry requires
that the Cartesian components of these tensors are related by L̂klij = L̂

lk
ji , where k, l = x, y, z.

Note that this formulation uses currents instead of fluxes and gradients of forces (using the definition of
forces and fluxes given byOnsager). De Groot andMazur in Chap. 6 [28] showhow to convert these quantities,

6 Equation (8) is a Taylor expansion so it is valid only near equilibrium. As long as the neglected higher-order terms in the
expansion are small, the equations still hold. As an example of theOnsager relations breaking down far fromequilibrium, see [29].
7 L is independent of the forces, but it is still a function of the thermodynamic variables.
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and therefore they prove the validity of the Onsager relations for some particular cases. Note that in general
the proofs of the Onsager relations involve the fluxes and forces as defined by Onsager, but some proofs (for
example the proof that uses the Green–Kubo formula in Section 3.2) use currents and gradients of forces
instead.

3 Microscopic proofs

3.1 Fluctuation theory

There are various versions of this proof, the first one being Onsager’s original in 1931 [2]. All of them are based
on studying the regression of fluctuations of the α variables to equilibrium, and to do so they study the re-
gression of the covariance of the α, i. e. the averages of products of two α at different times.While some papers
[22] explicitly use the ergodic theorem to go from time averages to ensemble averages of the covariances, this
is not strictly necessary as can be seen in a number of other proofs from Jaynes’ [30] to de Groot and Mazur’s
[28]. In fact, Landau [31] writes in the preface of his book on Statistical Physics (in which the Onsager rela-
tions are discussed) that he consciously avoids the problem of the ergodic hypothesis, but then says that his
definition of a statistical averaging is exactly equivalent to a time averaging, which would be a consequence
of the system’s ergodicity. Nevertheless, there is an additional hypothesis needed in all of these proofs, i. e.,
the Boltzmann principle

S = kB lnW , or, equivalently, W−1 = exp [−k−1B S] . (13)

This is the link between the microscopic world and the macroscopic, between the microscopic dynamics
and the thermodynamic entropy: entropy is a measure of the number of possible microstates of a system in
thermodynamic equilibrium. This concept is easily extended to a quasi-equilibrium (or partial-equilibrium)
model of non-equilibrium states whereby the system is assumed to be in thermodynamic equilibrium with
respect to the fast variables but not with respect to the slow (macroscopic) variables Ai whose deviations
from the full equilibrium with the same E, V , and n we denote by αi = Ai − A

eq
i . Thus, the non-equilibrium

probability distribution can be written as

f (α1, ..., αn) ∝ exp [−k−1B S (αi)] . (14)

Boltzmann’s principle, despite its success, remains quite obscure in its justification. Reference [32] shows
that it is actually possible to prove this principle, i. e., to link Clausius’ entropy and Boltzmann’s entropy,
with an argument that can be traced back to Helmholtz and Boltzmann and that is based on a weak ergodic
hypothesis, which states that the time averages are equal to themicrocanonical averages. To prove Onsager’s
relations one needs the Boltzmann principle, and to prove this principle one needs an ergodic hypothesis. It
is not the full ergodic hypothesis, but we need the time averages to be equal to the ensemble averages; this
would be a consequence (in fact the most famous theorem) of the full ergodic hypothesis.

3.2 Linear response theory

Onsager’s reciprocal relations are a consequence of the Green–Kubo relations [33]. Also a consequence of
these relations is Onsager’s regression hypothesis, one of the hypotheses needed in the classical proof of the
reciprocal relations, which states that the average regression of fluctuations will obey the same laws as the
corresponding macroscopic irreversible processes.

In linear response theory, the fluctuations of a system around equilibrium are described by a perturbed
Hamiltonian like

H (P,Q, t) = H0 (P,Q) − F (t)A (P,Q) . (15)

The evolution of the phase-space probability distribution is described in terms of a Liouville equation.
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The reciprocal relations follow by applying the time reversal invariance on the Green–Kubo linear trans-
port coefficients, defined in (12). These are related to the time dependence of the equilibrium fluctuations in
the conjugate fluxes

L̂klij = βV ∫
∞

0
⟨Jki (t) J

l
j (0)⟩ dt, (16)

where β is the inverse temperature,V is the system volume, the J are the fluxes, and k, l = x, y, z. Equation (16)
is an integral of ensemble-averaged time autocorrelation functions. If we take that the fluxes are defined like
Casimir suggested in [21], i. e., performing a time-averaged rate of change over a mesoscopic time, then the
ergodic assumptionallowsone to go from this timeaverage to thephase-space average (denotedby ⟨⋅ ⋅ ⋅⟩). Note
that ⟨A (t)A (0)⟩→ 0 for t →∞ is only necessary for ergodicity, while ∫∞0 ⟨A (t)A (0)⟩ dt <∞ is sufficient.

3.3 Stochastic dynamics

Various works including Green [34], Onsager and Machlup [18], as well as de Groot and Mazur [4] developed
a proof of the reciprocal relations based on Markov processes, assuming a definite statistical law for the path
of the system in the phase space. A Markov process, roughly speaking, is a stochastic process for which the
behavior of the process in the future is independent of its behavior in the past. Most, if not all, of these proofs
still consider the system as based on time-reversible dynamics, so we include them in the microscopic cat-
egory. These works, compared to the original proof by Onsager in 1931, are mathematically more complex,
but they also answer the question of what is the most probable path that the system will undergo during its
evolution. In fact, some of the cited papers aremore focused on this question than on the proof of the (already
proven) reciprocal relations. For a complete proof in this framework, see Wigner [3].

The macroscopic variables αi determining the non-equilibrium state on the thermodynamic system are
assumed to be Gaussian stochastic, and the entropy is assumed as in eq. (3). The evolution of the α is assumed
to satisfy a set of linear Langevin equations

∑j (L
−1)ij

dαj
dt
= −∑j Hijαj + ηi, (17)

where η is a white noise vector, i. e., a Gaussian process with ⟨ηk (t)⟩ = 0, and ⟨ηk (t) ηj (t�)⟩ = δ (t − t�) δk,j. As
already noted by Onsager and Machlup [18], eq. (17) is essentially eq. (10) with an added random force term
ϵi = ∑j Lijηj.

It is shown that the covariance matrix C(τ) with elements Cij(τ) = ⟨αi(t)αj(t + τ)⟩ has the property

C(τ1)C(τ2) = C(τ1 + τ2), (18)

which is a sufficient condition for the process to be Markovian. It can also be proven that a Gaussian and
Markovian process is ergodic, like the Brownianmotion for example. An ergodic process allows its statistical
properties to be deduced from a single, sufficiently long, random sample of the process, because the process
does not change in an inconsistent way.

La Cour and Schieve consider stochastic processes in the framework of large deviation theory [23], with
similar implications as before. Gallavotti [35, 36, 37] has proven the Onsager relations using his chaotic hy-
pothesis, deriving a fluctuation theorem, then deriving from this the Green–Kubo relations, and then finally
the Onsager reciprocal relations. He identifies the rate of entropy production with the rate of contraction of
the phase space. His chaotic hypothesis implies ergodicity at equilibrium.

3.4 Kinetic theory of gases

Onsager relations can be proven using the time reversibility of the gas scattering kernel within the framework
of the kinetic theory of gases [28, 38, 39]. Of course, this framework is limited to the study of gases, and
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it is based on the Boltzmann equation. To derive the Boltzmann equation, one needs the molecular chaos
hypothesis (Stosszahlansatz), the assumption that the velocities of colliding particles are uncorrelated and
independent of position. Thus, the knowledge of the precise state of a single molecule before a collision will
not be a good predictor of the state of the same molecule before the next collision. This decay of correlation
is linked to ergodicity: the ergodic hypothesis was considered by Boltzmann andMaxwell a generalization of
the molecular chaos hypothesis [40].

4 Macroscopic proofs

4.1 Entropy production invariance under time reversal

Meixner was the first to arrive at this proof in 1973 [6], based on the derivation by Thomson of one of his
reciprocal relations for the thermoelectric effect, which is an example of an Onsager relation. To do so, he
introduced a principle that states that the entropy production (written as a function of appropriate variables)
is unchanged upon time reversal. Liu rediscovered this proof much more recently [7].

Consider an isolated thermodynamic system.We can assume that the time inversion parity of the entropy
of the system S is tip(S) = +1. In fact, we are unaware of any non-even entropy. For example, in statistical me-
chanics the Gibbs entropy formula is S = −kB∑i pi ln pi, which is obviously even. In non-equilibrium statisti-
cal mechanics, Maes and Netočný [41] obtain the same result. They also show that what they identify as the
entropy production rate, identified with a statistical mechanical definition, is also even under time reversal.
This is the crucial assumption in this proof of the Onsager relations.

The fact that the entropy production rate is even under time reversal could appear confusing: this is
the famous concept of the arrow of time. Entropy, in fact, requires a particular direction in time: as one goes
forward in time, the entropy of an isolated system cannever decrease. This is possible despite themicroscopic
dynamics being reversible, because entropy requires a coarse graining. Thus,weassume that for every chosen
level of coarse graining both S and Ṡ are even under time reversal.

For simplicity, consider a system described by two variables α1 and α2. Then Ṡ = X1J1 + X2J2, and using
Ji = ∑j LijXj we obtain the entropy production as a function of either X1 and X2 or X1 and J2. We have

Ṡ = L11X
2
1 + L22X

2
2 + (L12 + L21)X1X2 = (DX

2
1 + J

2
2 + (L12 − L21)X1J2) /L22, (19)

where D ≡ L11L22 − L12L21. For Ṡ to be even under time reversal, every single term of the above two sums
has to be even or vanish. Assuming the time inversion parity tip(S) = +1, from dS = ∑i Xi dαi, it follows
that tip(Xi) = tip(αi), and since Ji = α̇i and tip(α̇i) = −tip(αi), it follows that tip(X1J2) = −tip(X1X2). Since
the coefficient preceding the odd one has to be zero, we obtain L12 = −L21 if tip(X1X2) = −1 and L12 = L21 if
tip(X1J2) = −1. We can summarize the result with L12 = tip (X1X2) L21, and since tip(Xi) = tip(αi) we have

L12 = tip (α1α2) L21, (20)

which is Casimir’s extension of theOnsager reciprocal relations. Note that in Casimir’s extension in particular
no confusion is allowed on which is the force and which is the flux, because the time inversion properties are
important.

Pavelka, Klika, and Grmela discuss the time reversal properties of entropy and entropy production in
Ref. [5]. Their work proves that the assumption tip(S) = tip(Ṡ) = +1 entails the Onsager–Casimir relations in
the GENERIC framework and hence also in the SEA framework, in view of their essential equivalence shown
in Ref. [42].

4.2 Principle of maximum entropy production

This proof [43] of the Onsager relations is based on theMEPP. Beingmacroscopic, this proof does not require a
mean to go from the (time-reversible) microscopic equations ofmotion to themacroscopic equations describ-
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ing the thermodynamic system. There are many versions of the principle of maximum entropy production in
the literature, so to be more precise we are referring to the principle as stated by Ziegler [8, 9, 10] and often
referred to as MEPP [43].

Since eq. (5) holds for all systems regardless of their particular force–flux interrelations, it is taken as
a general constraint. The MEPP can be stated in either the force or the flux picture. In the force picture, it
asserts that for prescribed fluxes Jj the actual forces Xj maximize the entropy production Ṡ(X) subject to the
constraint Ṡ(X) = ∑i Xi Ji(X), i. e.,

max
X
|J Ṡ(X) − λX [Ṡ(X) −∑i Xi Ji] . (21)

This results in Ziegler’s orthogonality condition J = − 1−λXλX
àṠ
àX where the Lagrange multiplier reduces to λX = 2

near equilibrium, where the force–flux relation Ji(X) can be linearized as in eq. (8) and Ṡ(X) = ∑i ∑j Xi LijXj,
so that the orthogonality condition becomes∑j(Lij − Lji)Xj = 0 and, to hold for arbitrary Xj, requires Lij = Lji.
In the flux picture, the MEPP asserts that for prescribed forces Xj the actual fluxes Jj maximize the entropy
production Ṡ(J) subject to the constraint Ṡ(J) = ∑i Xi(J) Ji, resulting in the orthogonality conditionX = −

1−λJ
λJ
àṠ
àJ

with λJ = 2 andRij = Rji near equilibrium,whereRij = (L−1)ij. In either picture, the reciprocity relations emerge
as a theorem of the MEPP valid in the near-equilibrium linear regime. However, Ziegler’s idea in postulating
and trying to justify the MEPP was that the orthogonality conditions provide a plausible generalization of
Onsager’s relations to the non-linear regime.

4.3 Principle of steepest entropy ascent

An alternative version of MEPP, also providing a generalization of Onsager’s relations to the non-linear
regime, is the steepest entropy ascent principle (SEAP), originally advocated by one of us in the frame-
work of quantum thermodynamics [44] and later generalized to several other traditional frameworks of
non-equilibrium thermodynamics description [45] and proven to be essentially the same idea that has been
adopted for the dissipative part of the GENERIC scheme [42]. According to the SEAP, a non-equilibrium ther-
modynamic model is well defined if the space of its thermodynamic (macroscopic, slow, rate controlling)
variables (here, the αi) is equippedwith a system-dependent metric functionalG(α)with respect to which the
dissipative component of that system’s dynamics, responsible for its spontaneous relaxation towards equi-
librium, is along the direction of steepest ascent of the entropy functional S(α). In this geometrized point of
view, for an isolated system the fluxes Ji ≡ α̇i are viewed as components of a vector J tangent to the manifold
of constant conserved properties where the relaxation path α(t) lies for all times t until themaximum entropy
equilibrium state α(∞) = 0 is reached. Equation (5) is valid for all systems and holds independently of the
particular metric G characterizing each of them. Therefore, the SEAP asserts that at each point α(t) along the
time evolution, the direction of the tangent vector J is that of steepest entropy ascent compatible with the
local values of the forces (interpreted as degrees of disequilibrium) Xi, i. e., among all compatible directions
of J the actual direction maximizes ∑i Xi Ji. Since the maximization is with respect to direction, it requires
that we consider equal-length advancements of the trajectory in all possible directions locally tangent to
the manifold and then pick the one that increases the entropy the most, with the important proviso that the
length of a portion of trajectory is measured with respect to the system’s metric G, i. e.,

max
J
|X,α ∑i Xi Ji − λ [∑i∑j Ji Gij(α) Jj − const], (22)

which yields eq. (8) with L = G(α)−1/2λ(α), namely a non-linear8 force–flux relation with conductivities that
may be non-linear functions of the non-equilibrium state variables α. This conclusion based on the SEAP,
which is a possible extension of Onsager’s results to the far non-equilibrium domain, was first reached in

8 The force–flux relation, Ji = ∑j Lij(X)Xj, is essentially non-linear in the Xj because inverting the Xi = Xi(α) we have αi = αi(X)
and therefore L = G(X)−1/2λ(X), a function of the Xj.
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Ref. [46] (last sentence of the paragraph above eq. (24)) where an explicit fluctuation–dispersion expression
in terms of Gram determinants and covariances was also given (eq. (34) therein). Near equilibrium, α → 0,
L → G(0)−1/2λ(0), and the reciprocity is automatically proven because a metric is by definition symmetric
and positive definite and hence it is invertible, and the inverse is symmetric.

5 Conclusions

In the literature there are many microscopic proofs of the Onsager reciprocal relations, which is understand-
able in view of their importance in the field of non-equilibrium thermodynamics. We have tried to classify all
these proofs, based on the time reversal invariance of the microscopic dynamics, into four groups. The need
to go from the microscopic equations to the macroscopic ones describing the state of the system means that
all these proofs require, sometimes hidden inside some other hypothesis, a loss of correlation in the system,
which ultimately allows us to obtain a non-reversible evolution from the microscopic reversible evolution.
This loss of correlation allows us to perform ensemble averages on our system near equilibrium by making
time averages. This is because an ergodic system covers the entire phase space over a long time, spending
more time in regions of the phase space with a proportionally larger volume. In contrast, the macroscopic
proofs of theOnsager relations donot require this delicate step going from themicroscopic to themacroscopic
world. They are based on some additional principles which are not commonly accepted: 1) the time reversal
invariance of the entropy production, 2) the MEPP, and 3) the SEAP. While there are still doubts about the va-
lidity of theMEPP, this paper shows that its sibling, the SEAP, entails the reciprocal relations near equilibrium
and extends the (quasi-)linear force–flux relations to the far non-equilibrium domain, and hopefully will in-
crease the interest in the Steepest Entropy Ascent (SEA) model [45] of non-equilibrium thermodynamics, a
model in which this principle is used in a mathematically very detailed way to allow one to make predictions
about non-equilibrium systems even far from equilibrium. We also hope that future work will address the
obvious connections [47, 48] between the geometric and conceptual foundations of the SEAP and its sibling
profound generalization in the field of partial differential equations, now known as “gradient flows,” that has
been recently producing a fast-growing stream of important applications in mathematics [49, 50, 51].

Acknowledgements: The authors wish to thank Prof. Andrea Carati and Prof. Peter Ván for helpful discus-
sions.

References
[1] L. Onsager, Reciprocal relations in irreversible processes. I, Phys. Rev. 37 (1931), 405–426.
[2] L. Onsager, Reciprocal relations in irreversible processes. II, Phys. Rev. 38 (1931), 2265–2279.
[3] E.P. Wigner, Derivations of Onsager’s Reciprocal Relations, J. Chem. Phys. 22 (1954), 1912–1915.
[4] S.R. de Groot and P. Mazur, On the statistical basis of Onsager’s reciprocal relations, Physica 23 (1957), 73–81.
[5] M. Pavelka, V. Klika, and M. Grmela, Time reversal in nonequilibrium thermodynamics, Phys. Rev. E 90 (2014), 062131.
[6] J. Meixner, Consistency of the Onsager-Casimir reciprocal relations, Adv. Molec. Relax. Proc. 5 (1973), 319–331.
[7] M. Liu, The Onsager symmetry relation and the time inversion invariance of the entropy production, preprint (1998),

arXiv:cond-mat/9806318.
[8] H. Ziegler, An attempt to generalize Onsager’s principle, and its significance for rheological problems, Z. Angew. Math.

Phys. 9 (1958), 748–763.
[9] H. Ziegler, Proof of an orthogonality principle in irreversible thermodynamics, Z. Angew. Math. Phys. 21 (1970), 853–863.
[10] H. Ziegler, An introduction to thermomechanics, Appl. Math. Mech. Series 21, North Holland, Amsterdam, 1977.
[11] M. Polettini, Fact-checking Ziegler’s maximum entropy production principle beyond the linear regime and towards steady

states, Entropy 15 (2013), 2570–2584.
[12] B.D. Coleman and C. Truesdell, On the Reciprocal Relations of Onsager, J. Chem. Phys. 33 (1960), 28–31.
[13] E.P. Gyftopoulos and G.P. Beretta, What is a simple system?, J. Energy Res. Technol. 137 (2015), 021007.
[14] E.P. Gyftopoulos and G.P. Beretta, Thermodynamics: Foundations and Applications, Dover Publications, Mineaola, 2005.

http://arxiv.org/abs/cond-mat/9806318


110 | F. Benfenati and G. P. Beretta, Ergodicity, MEPP and SEAP in the Proofs of Onsager Relations

[15] E. Zanchini and G.P. Beretta, Recent progress in the definition of thermodynamic entropy, Entropy 16 (2014), 1547–1570.
[16] A. Carati, A. Maiocchi, L. Galgani, Statistical thermodynamics for metaequilibrium or metastable states,Meccanica 52

(2016), 1295–1307.
[17] H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, Wiley, 1985.
[18] L. Onsager and S. Machlup, Fluctuations and irreversible processes, Phys. Rev. 91 (1953), 1505–1512.
[19] C. Kittel, On the nonexistence of temperature fluctuations in small systems, Am. J. Phys. 41 (1973), 1211–1212.
[20] C. Kittel, Temperature fluctuation: An oxymoron, Physics Today 41 (1988), 93.
[21] H.B.G. Casimir, On Onsager’s principle of microscopic reversibility, Rev. Mod. Phys. 17 (1945), 343.
[22] S.N. Patitsas, Onsager symmetry relations and ideal gas effusion: A detailed example, Am. J. Phys. 82 (2014), 123–134.
[23] B.R. La Cour and W.C. Schieve, Derivation of the Onsager principle from large deviation theory, Physica A 331 (2004),

109–124.
[24] U. Geigenmüller, U.M. Titulaer, and B.U. Felderhof, The approximate nature of the Onsager-Casimir reciprocal relations,

Physica A 119 (1983), 53–66.
[25] A.N. Gorban, I.V. Karlin, and A.Yu. Zinovyev, Constructive methods of invariant manifolds for kinetic problems, Phys.

Reports 396 (2004), 197–403.
[26] G.P. Beretta and E.P. Gyftopoulos, Thermodynamic derivations of conditions for chemical equilibrium and of Onsager

reciprocal relations for chemical reactors, J. Chem. Phys. 121 (2004), 2718–2728.
[27] M. Grmela, Contact Geometry of Mesoscopic Thermodynamics and Dynamics, Entropy 16 (2014), 1652–1686.
[28] S.R. de Groot and P. Mazur, Non-equilibrium Thermodynamics, Dover publications, New York, 1984.
[29] A.E. Allahverdyan, Th.M. Nieuwenhuizen, Steady adiabatic state: its thermodynamics, entropy production, energy

dissipation, and violation of Onsager relations, Phys. Rev. E 62 (2000), 845–850.
[30] E.T. Jaynes, The minimum entropy production principle, Ann. Rev. Phys. Chem. 31 (1980), 579–601.
[31] L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, Elsevier Science, 2013.
[32] M. Campisi and D.H. Kobe, Derivation of the Boltzmann principle, Am. J. Phys. 78 (2010), 608–615.
[33] U.M.B. Marconi, A. Puglisi, L. Rondoni, and A. Vulpiani, Fluctuation–dissipation: Response theory in statistical physics,

Phys. Reports 461 (2008), 111–195.
[34] M.S. Green, Markoff random processes and the statistical mechanics of time-dependent phenomena, J. Chem. Phys. 20

(1952), 1281–1295.
[35] G. Gallavotti, Chaotic hypothesis: Onsager reciprocity and fluctuation-dissipation theorem, J. Stat. Phys. 84 (1996),

899–925.
[36] G. Gallavotti, Extension of Onsager’s reciprocity to large fields and the chaotic hypothesis, Phys. Rev. Lett. 77 (1996), 4334.
[37] G. Gallavotti, Thermostats, chaos and Onsager reciprocity, J. Stat. Phys. 134 (2009), 1121.
[38] L.P. Pitaevskii and E.M. Lifshitz, Course of Theoretical Physics, Vol. 10: Physical Kinetics, Elsevier Science, 2013.
[39] F. Sharipov, Onsager-Casimir reciprocal relations based on the Boltzmann equation and gas-surface interaction: Single

gas, Phys. Rev. E 73 (2006), 026110.
[40] L. Rosenfeld, Classical Statistical Mechanics (inglês), Editora Livraria da Fisica, 2005.
[41] C. Maes and K. Netočný, Time-reversal and entropy, J. Stat. Phys. 110 (2003), 269–310.
[42] A. Montefusco, F. Consonni, and G.P. Beretta, Essential equivalence of the general equation for the nonequilibrium

reversible-irreversible coupling (GENERIC) and steepest-entropy-ascent models of dissipation for nonequilibrium
thermodynamics, Phys. Rev. E 91 (2015), 042138.

[43] L.M. Martyushev and V.D. Seleznev, Maximum entropy production: application to crystal growth and chemical kinetics,
Current Opinion in Chemical Engineering 7 (2015), 23–31. See also references therein and also S. Gheorghiu-Svirschevski,
Addendum to “Nonlinear quantum evolution with maximal entropy production”, Phys. Rev. A 63 (2001), 054102.

[44] G.P. Beretta, Steepest entropy ascent in quantum thermodynamics, Lect. Notes Phys. 278 (1987), 441–443. See also
G.P. Beretta, Nonlinear quantum evolution equations to model irreversible adiabatic relaxation with maximal entropy
production and other nonunitary processes, Reps. Math. Phys. 64 (2009), 139–168.

[45] G.P. Beretta, Steepest entropy ascent model for far-non-equilibrium thermodynamics: unified implementation of the
maximum entropy production principle, Phys. Rev. E 90 (2014), 042113.

[46] G.P. Beretta, Quantum thermodynamics of nonequilibrium. Onsager reciprocity and dispersion-dissipation relations,
Found. Phys. 17 (1987), 365–381.

[47] C. Reina and J. Zimmer, Entropy production and the geometry of dissipative evolution equations, Phys. Rev. E 92 (2015),
052117.

[48] A. Mielke, M.A. Peletier, and D.R.M. Renger, A generalization of Onsager’s reciprocity relations to gradient flows with
nonlinear mobility, J. Non-Equil. Therm. 41 (2016), 141–149.

[49] R. Jordan, D. Kinderlehrer, and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal. 29
(1998), 1–17.

[50] L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows: in metric spaces and in the space of probability measures,
Birkhäuser, 2005.

[51] P. Ván and B. Nyıri, Hamilton formalism and variational principle construction, Annalen der Physik (Leipzig) 8 (1999),
331–354.


	Ergodicity, Maximum Entropy Production, and Steepest Entropy Ascent in the Proofs of Onsager's Reciprocal Relations
	1 Introduction
	2 Onsager–Casimir relations: Prescriptions and statement
	3 Microscopic proofs
	3.1 Fluctuation theory
	3.2 Linear response theory
	3.3 Stochastic dynamics
	3.4 Kinetic theory of gases

	4 Macroscopic proofs
	4.1 Entropy production invariance under time reversal
	4.2 Principle of maximum entropy production
	4.3 Principle of steepest entropy ascent

	5 Conclusions
	References


