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Abstract: Rate-Controlled Constrained-Equilibrium (RCCE) modeling of complex chemical kinetics provides
acceptable accuracieswithmuch fewer differential equations than for the fully DetailedKineticModel (DKM).
Since its introduction by James C. Keck, a drawback of the RCCE scheme has been the absence of an automat-
able, systematic procedure to identify the constraints that most effectively warrant a desired level of approx-
imation for a given range of initial, boundary, and thermodynamic conditions. An optimal constraint identi-
fication has been recently proposed. Given a DKMwith S species, E elements, and R reactions, the procedure
starts by running a probeDKMsimulation to compute an S-vector thatwe call overall degree of disequilibrium
(ODoD) because its scalar product with the S-vector formed by the stoichiometric coefficients of any reaction
yields its degree of disequilibrium (DoD). The ODoD vector evolves in the same (S-E)-dimensional stoichio-
metric subspace spanned by the R stoichiometric S-vectors. Next we construct the rank-(S-E) matrix of ODoD
traces obtained from the probe DKM numerical simulation and compute its singular value decomposition
(SVD). By retaining only the first C largest singular values of the SVD and setting to zero all the others we ob-
tain the best rank-C approximation of the matrix of ODoD traces whereby its columns span a C-dimensional
subspace of the stoichiometric subspace. This in turn yields the best approximation of the evolution of the
ODoD vector in terms of only C parameters that we call the constraint potentials. The resulting order-C RCCE
approximate model reduces the number of independent differential equations related to species, mass, and
energy balances from S+2 to C+E+2, with substantial computational savings when C≪ S-E.

Keywords: model reduction in nonequilibrium thermodynamics, rate-controlled constrained equilibrium,
RCCE constraints, degrees of disequilibrium, singular value decomposition, principal component analysis

||
Dedicated to the memory of James C. Keck, inventor of the RCCE approach; see www.JamesKeckCollectedWorks.org

1 Introduction

Various techniques for model order reduction in chemical kinetics and dynamical systems hinge on the time
separation between a subset of “relatively fast” kinetic mechanisms that contribute rapidly to the system’s
partial equilibration and a subset of “bottleneck” mechanisms that effectively control and slow down the
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relaxation towards complete equilibrium. For example in the kinetic theory of gases, three-body collisions –
which occur much less frequently than two-body collisions – form a subset of bottleneck mechanisms which
for sufficient dilution can evenbeneglected (suchas in the standardBoltzmannequation),whereas for denser
gases they are the slow rate-controllingmechanisms. For the same reason, in chemical kinetics the three-body
reactions are slowandalmost always among the rate-controlling bottleneckmechanisms: the associated rate-
limiting constraint is the total number of moles, which would be conserved in the absence of three-body
reactions.

When modeling the nonequilibrium dynamics of systems such as turbulent combustion of heavy hydro-
carbon fuels,where the transport of hundreds of chemical speciesmust be considered togetherwith the kinet-
ics of thousands of chemical reactions,model order reduction techniques are essential for effective numerical
simulation and severalmethods have been developed over the past several decades. It is not our purpose here
to review the vast and growing literature on the subject by various independent research groups (see, e. g.,
Refs. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] and themanymore references cited therein and citing these
papers thereafter). In this paper we focus on the RCCE approach [4, 5, 16, 17, 18, 19, 20] and present a possible
strategy to resolve a long standing problem that has so far prevented its widespread systematic application
in spite of its strong built-in thermodynamic consistency.

Chemical kinetic models are usually characterized by a wide spectrum of time scales. In recent years
the same techniques are being developed and adapted to tackle also large-scale models of cellular reaction
networks and complex models that account for many details of the physiology, biochemistry, and genetics of
cell cycle control, such as in budding yeast modeling [21, 22, 23].

For each particular problem, set of conditions, and acceptable degree of approximation the RCCE ap-
proach to modeling the nonequilibrium dynamics is based on assuming that: (1) there is a threshold time
scale which essentially separates the “relatively fast” equilibrating kinetic mechanisms from the “relatively
slow” ones; (2) if the latter were frozen the system would be characterized by an additional set of conserved
properties, called RCCE constraints; (3) at any time and every spatial position the local nonequilibrium state
iswell approximated by the partial equilibrium statewhichmaximizes the entropy density subject to the local
density values of the set of conserved properties augmented by the RCCE constraints. The RCCE constraints
characterize the bottlenecks of the kinetic scheme that for the time scale of interest essentially character-
ize the “relatively slow” and hence interesting part of the nonequilibrium dynamics. As long as the RCCE
constraints can be assumed fixed, the RCCE constraints identify a low-dimensional manifold in composition
space, where the time evolution can be assumed to take place for the chosen level of approximation.

As emphasized for example in Ref. [16], the main difficulty in the practical implementation of the RCCE
modeling approach has been the lack of a systematic method for identifying the kinetic bottlenecks and
the corresponding set of constraints. Several efforts have addressed these problems with varying degrees
of success (see, e. g., Refs. [24, 25, 26, 27, 28, 29, 30, 31, 32, 33] and references therein). Below, the constraint
selection strategy we proposed in Ref. [34] is reformulated and illustrated by means of abstract geometric
considerations that may help establish connections with the more general nonequilibrium thermodynamics
frameworks discussed in Refs. [35, 36, 37, 38, 39, 40, 41] and references therein.

2 Standard DKM formulation

A Detailed Kinetic Model (DKM) for gas-phase combustion with nsp chemical species and nr reactions is typ-
ically defined by the following set of assumptions. The terms ν+jℓ and ν

−
jℓ denote the forward and reverse sto-

ichiometric coefficients of species j in reaction ℓ. The kinetic parameters A+ℓ , b
+
ℓ , and E+ℓ determine the for-

ward reaction rate constants k+ℓ (T) = A
+
ℓ T

b+ℓ exp(−E+ℓ /RT) (typically in mol-cm-s-K units with the forward
activation energy E+l in cal/mol). The principle of detailed balance determines the backward reaction rate
constants according to k−ℓ (T) = k+ℓ (T)K

co
ℓ (T), where the equilibrium constant based on concentrations is

Kco
ℓ (T) = (po/RT)

νℓ exp(−Δgoℓ (T)/RT) with νℓ = ∑
nsp
j=1(ν
−
jℓ − ν
+
jℓ) and Δgoℓ (T) = ∑

nsp
j=1 νjℓ gj,pure(T , po) (Gibbs free

energy of reaction ℓ at standard pressure po and temperature T).
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Here, we use the notation of [16], which differs only slightly from that of [42], whereby gj,pure = μj,pure
refers to the Gibbs free energy of pure species j, whereas the symbol gj = μj represents the partial Gibbs free
energy, i. e., the chemical potential, of species j in the mixture.

Forward and reverse reaction rates, r+ℓ and r
−
ℓ , are given by r±ℓ = k

±
ℓ (T) ∏

nsp
j=1[Nj]

ν±jℓ where [Nj] is the con-
centration of species j. These in turn determine the chemical production density terms in the species balance
equations (consumptiondensity if negative)ωj = ∑

nr
ℓ=1 νjℓ(r

+
ℓ −r
−
ℓ ) and the chemical contribution to the entropy

production density σchem = R∑
nr
ℓ=1(r
+
ℓ − r
−
ℓ ) ln(r

+
ℓ /r
−
ℓ ).

The local-equilibrium simple-system assumption assigns to the local fluid element the properties of
the so-called “surrogate system” [42], i. e., of the stable thermodynamic equilibrium state of a nonreacting
(“frozen”) mixture with the same energy and composition of the fluid element, under the assumption of an
ideal Gibbs–Dalton mixture of ideal gases, whereby p = [N]RT and the chemical potentials are related to the
mole fractions Xj by μj(T , p,X) = gj,pure(T , po) + RT ln(p/po) + RT ln(Xj).

3 RCCE model of local nonequilibrium states
The RCCE method models the local nonequilibrium states as partially equilibrated states with the local mole
fractions XCE

j = Nj/∑
nsp
k=1 Nk (where Nj represents the molar amount of species j) that minimize the Gibbs

free energy subject to the local values of temperature T, pressure p, and molar amounts of elements NEL
i =

∑nspj=1 a
EL
ij Nj = ⟨aELi |N⟩ (where a

EL
ij represents the number of atoms of element i in amolecule of species j, aELi its

row entries arranged in an nsp-dimensional vectors, N the species amounts arranged in an nsp-dimensional
vector, and ⟨⋅|⋅⟩ the scalar product in ℝnsp ) and to the local values of a set of nc slowly varying and, hence,
rate-controlling constraints assumed to be given by linear combinations of the molar amounts, i. e., ci(N) =
∑nspj=1 a

CE
ij Nj = ⟨aCEi |N⟩, where the matrix aCEij (with its row entries arranged in the nsp-dimensional vectors aCEi )

is the heart of the model in that it is assumed to fully characterize the rate-controlling bottlenecks of the full
kinetic mechanism all along the evolution of interest, i. e., to remain fixed during the evolution. For ideal
gas mixture behavior, i. e., chemical potentials given by μj(T , p,X) = gj,pure(T , p) + RT lnXj, the constrained
maximization yields the composition

lnXCE
j = −gj,pure(T , p)/RT −

nel
∑
i=1

γELi aELij −
nc
∑
i=1

γCEi aCEij , (1)

that is,

Λj ≡ −
1
RT

μj(T , p,X
CE) =

nel
∑
i=1

γELi aELij +
nc
∑
i=1

γCEi aCEij , (2)

where we denote by Λj = μj/RT the (dimensionless) entropic chemical potentials. The Lagrange multipli-
ers γELi and γCEi are called elemental and constraint potentials, respectively. For the ℓth chemical reaction
∑nspj=1 νjℓAj = 0, the stoichiometric balance requires bELiℓ = ∑

nsp
j=1 a

EL
ij νjℓ = ⟨ai|νℓ⟩ = 0, where νℓ are the column

entries of the matrix of stoichiometric coefficients νjℓ arranged in nsp-dimensional vectors. The advantage of
the RCCE approximation is that the composition depends only on the nel +nc parameters γELi and γCEi , instead
of the nsp molar amounts of species which can be many more. In the CFD modeling contexts (for example of
flame propagation in internal combustion engines [43]), thismeans that in addition to the continuity, Navier–
Stokes, and energy balance equations, the nsp species balance equations can be effectively substituted by the
nel +nc balance equations for the elemental and constraint potentials (see eqs. (10)–(14) below), thus achiev-
ing a substantial model reduction that has a built-in strong thermodynamic consistency and does not require
to cut the number of species nor the number of reactions to be taken into account. Themethod has been used
with excellent results when a proper choice of constraints is made. For example (see, e. g., [44, 45]) for the
ignition delay of hydrogen–oxygen mixtures (nsp = 8, nel = 2), the RCCE method yields excellent agreement
with fully detailed model predictions by using only nc = 2 constraints, with a saving of 8 − (2 + 2) = 4 differ-
ential equations. The computational savings is much more important for higher hydrocarbons, for example,
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Figure 1: Left: Pictorial representation of the projection that defines the overall DoD vector ΛDoD from the vector Λ of the en-
tropic potentials, showing their geometric relations with the DoD’s ϕℓ (scalar product between ΛDoD and the stoichiometric
vector νℓ of reaction ℓ) and the elemental constraint potentials γELi (in terms of the row vectors aELi of the elemental composition
matrix aELij ). Here Λ⊥ is shorthand for Λspan({aELi })

. Right: Pictorial representation of the projection of a time-dependent trajectory
ΛDoD(t) for a relaxation transient and its “closest” nc-dimensional subspace, span({u

nc
i=1}), identified by the nc-truncated SVD of

the discretized path Λ⊥(t) obtained from the solution of a full DKM probe computation.

for methane–oxygen ignition (nsp = 29, nel = 3) excellent results [44, 45] are obtained with nc = 13, with a
saving of 29 − (3 + 13) = 13 differential equations and without giving up the ability to predict fine details such
as the typical temperature and composition overshoots occurring immediately following ignition.

4 ASVDADD strategy for identifying optimal RCCE constraints

The recently proposed algorithm based on Approximate Singular Value Decomposition of the Actual Degrees
of Disequilibrium (ASVDADD) [34] allows the identification of optimal sets of constraints with no need for
deep knowledge and understanding of chemical kinetics fundamentals such as chain branching, radical for-
mation, etc., thus making the RCCEmethod accessible to a broad range of scientists and engineers. The algo-
rithm is based on the following basic observations. The degree of disequilibrium (DoD) of reaction ℓ, defined
by ϕℓ = ln r+ℓ /r

−
ℓ , is given in general by

ϕℓ = ln
r+ℓ
r−ℓ
= − 1

RT

nsp
∑
j=1

μj νjℓ =
nsp
∑
j=1

Λj νjℓ = ⟨Λ|νℓ⟩. (3)

The entropic chemical potentials Λj can be viewed as the components of the nsp-vector Λ. Also the nel rows
of the elemental composition matrix aELij can be viewed as the components of the nsp-vectors aELi . Due to the
orthogonality relation ∑nspj=1 a

EL
ij νjℓ = ⟨ai|νℓ⟩ = 0, the nel-dimensional linear span of vectors aELi is the left null

space of thematrix νjℓ of stoichiometric coefficients, often called the inert subspace. In view of its orthogonal-
ity with the inert subspace, the (nsp − nel)-dimensional linear span({νℓ}) is usually called the stoichiometric
subspace or reactive subspace. As illustrated pictorially in Fig. 1 (left), the projection of vector Λ onto the
inert subspace can be written as Λ⊥ = Λspan({aELi })

= ∑neli=1 γ
EL
i aELi , where the coefficients γELi can be readily

computed: γELi = ∑
nel
k=1(A
−1)ik⟨Λ|aELk ⟩, where A

−1 is the inverse of the matrix with elements Aik = ⟨aELi |a
EL
k ⟩ (for

a proof see, e. g., the appendix of Ref. [46]). Since Λspan({aELi })
does not contribute to the DoD of any reaction

(in fact,∑nspj=1 ∑
nel
i=1 γ

EL
i aELij νjℓ = ∑

nel
i=1 γ

EL
i bELiℓ = 0), we call the vector

ΛDoD = Λ − Λspan({aELi })
= Λ −

nel
∑
i=1

γELi aELi or, equivalently, ΛDoD,j = Λj −
nel
∑
i=1

γELi aELij (4)
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the “overall DoD vector.” In fact, eq. (3) shows that it contains the information about the DoDs, ϕℓ, of all the
reactions. It is the null vector if and only if they are all equilibrated, i. e., only for the chemical equilibrium
states. Notice that within the RCCE model, from eq. (1), we have

ΛRCCE
DoD =

nc
∑
i=1

γCEi aCEi or, equivalently, ΛRCCE
DoD,j =

nc
∑
i=1

γCEi aCEij . (5)

Since the aCEi vectors are assumed to be fixed for a (given portion of a) given evolution, eq. (5) shows that
the overall DoD vector remains within the subspace span ({aCEi }

nc
i=1) for the entire (portion of the) evolution.

Within the RCCEmodel, therefore, this subspace can be viewed as a low-dimensional slow invariantmanifold
(LDSIM) (see, e. g., [7, 9, 11, 47, 48, 49] and references therein) although it is not an invariant manifold of the
full DKM.

Now let us consider a CFD numerical simulation in which the index z = 1, . . . , Z labels the space–time
discretization (i. e., z labels both the finite volumes or elements of the mesh as well as the time grid). If we
adopt the full DKM and solve the full set of balance equations including those for all the species, the resulting
overall DoD vectors form an nsp × Z matrix ΛDKM

DoD,jz = ΛDoD,j(z) that has rank r = nsp − nel. If instead the local
states are described according to the RCCE assumption defined above, the nsp × Z matrix ΛRCCE

DoD,jz = Λ
RCCE
DoD,j(z) =

∑nci=1 γ
CE
i (z) a

CE
ij has a rank equal to the (typically much smaller) number nc of constraints. In other words,

even if the number nsp of chemical species in the underlying DKM is in the hundreds and therefore the nsp ×Z
overall DoDmatrix ΛDKM

DoD,jz has rank nsp−nel, its approximationwithin the RCCEmodel, ΛRCCE
DoD,jz, is of themuch

lower rank nc.
In order to identify the matrix aCEij of the constraints that allow such approximation, the idea behind

the ASVDADD algorithm is to probe the DKM by running a preliminary full DKM computation, possibly on a
submesh of the full problem and for a shorter time so as to span a limited range of temperatures, pressures,
and compositions. From such computationwe obtain the nsp×Z overall DoDmatrix, that we shall nowdenote
for brevity by D, with elements Djz = ΛDKM

DoD,jz . Then we compute its singular value decomposition (SVD). As is
well known [50], the result can be written formally in reduced form as D = U diag(σ)VT , whereU is an nsp × r
orthogonal matrix (in the sense that UTU = I, i. e., UT is its left inverse) whose r columns form the vectors
|ui⟩which represent an orthonormal basis for the column space ofD,VT is the transpose of a Z × r orthogonal
matrix whose r column vectors vi represent an orthonormal basis for the column space of DT , and σ is an
r-dimensional vector whose entries are the singular values of D arranged in decreasing order. Recalling that
r = rank(D) = nsp − nel, the SVD of the overall DoD matrix can be written explicitly as

Djz = Λ
DKM
DoD,jz =

r
∑
i=1

Uji σi Viz =
r
∑
i=1

Uji γ
DKM
iz , (6)

where σ1 ≥ σ2 ≥ ⋅ ⋅ ⋅ ≥ σr > 0 and we defined γDKMiz = σi Viz .
Next, we use the well-known Eckart–Young theorem of linear algebra (see, e. g., [50]), whereby the trun-

cated SVD of matrix D obtained by setting to zero the r − nc smallest singular values (i. e., by setting σnc+1 =
σnc+2 = ⋅ ⋅ ⋅ = σr = 0) is a matrix Dapprox that provides the closest approximation of rank ≤ nc of the original
matrixD, where by “closest”wemean that the Frobenius normdistance between the twomatrices isminimal.
The value of such norm, ‖Dapprox − D‖Fro = (∑

r
k=nc+1 σ

2
k)
1/2, can be taken as a measure of the error introduced

by approximating the full solution matrix Djz = ΛDKM
DoD,jz with its rank-nc truncated SVD form

Djz |approx = Λ
DKM
DoD,jz |approx =

nc
∑
i=1

Uji γ
DKM
iz or, equivalently, ΛDKM

DoD (z)|approx =
nc
∑
i=1

γDKMi (z)ui. (7)

As sketched in Fig. 1 (right), the evolution ΛDKM
DoD (z)|approx of the approximate overall DoD vector is the pro-

jection of the evolution of the exact overall DoD vector ΛDKM
DoD (z) onto the nc-dimensional linear span of the

first nc vectors ui. The low-dimensional subspace span ({ui}
nc
i=1) where vectors Λ

DKM
DoD (z)|approx lie for every z is

optimized in the sense that it minimizes the average distance between the evolutions of the approximate and
the exact overall DoD vectors.
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Therefore, the heart of the ASVDADD strategy for optimal automatic selection of RCCE constraints is to
enforce the RCCE states to correspond to overall DoD vectors that remain within the subspace span ({ui}

nc
i=1).

This is readily done by assuming as constraints precisely the first nc vectors ui, i. e., by setting (ASVDADD
choice of RCCE constraints)

aCEi = ui or, equivalently, aCEij = Uji for i = 1, . . . , nc. (8)

As a result, the RCCE computation is guaranteed to yield overall DoD vectors of the form

ΛRCCE
DoD,jz =

nc
∑
k=1

Ujk γ
CE
kz =

nc
∑
i=1

γCEiz aCEij or, equivalently, ΛRCCE
DoD (z) =

nc
∑
i=1

γCEi (z)a
CE
i . (9)

Interestingly, the r columns of the reduced SVD matrix U provide at once the entire set of optimal RCCE con-
straints, ordered in decreasing order of importance andhence ready for any choice of nc. InMatLab this can be
readily done using the command [U,sigma,V] = svd(D,'econ'). However, as alreadymentioned, the singu-
lar values provide the estimate E(nc) = (∑

r
k=nc+1 σ

2
k)
1/2 of the error involved in the approximation D ≈ Dapprox,

which is obviously a decreasing function of nc. Therefore, a more efficient algorithm could be to preset a
threshold value Emax, compute just the r singular values of D (for example with the MatLab command sigma

= svd(D)), and with them choose the smallest nc such that E(nc) < Emax. Then, for example using the Mat-
Lab command [U,sigma,V] = svds(D,k)with k = nc, one canmore quickly compute just the truncated SVD,
which is all that is needed to identify the nc constraint vectors ui for the preset level of approximation. The
reader is referred to [34] for a detailed code of implementation of the ASVDADD algorithm in MatLab.

5 Rate equations for the constraint potentials
As done in [16, 31, 44, 45, 51, 52], the RCCE equations can be integrated more efficiently by rewriting them as
rate equations for the elemental and constraint potentials. These are obtained by combining the species and
energy balance equations, the kinetic equations, the ideal gas equation of state, and the linear combinations
ci(N) = ∑

nsp
j=1 a

CE
ij Nj that define the values ci of the constraints. As shown in Ref. [16], we obtain the following

set of rate equations, where for convenience we use β = 1/RT instead of the temperature and the notation
Nj = [Nj]V for the number of moles of species j, ujj and cvjj for the molar specific internal energy and heat
capacity at constant volume of pure species j, and Φ for the viscous dissipation function (usually negligible):

nel
∑
k=1

γ̇ELk
nsp
∑
j=1

aELkj Nja
EL
ij +

nc
∑
k=1

γ̇CEk
nsp
∑
j=1

aCEkj Nja
EL
ij +

β̇
β

nsp
∑
j=1

Njβujja
EL
ij =

V̇
V

nsp
∑
j=1

Nja
EL
ij +

nsp
∑
j=1

aELij Ṅ
→
j

for i = 1, . . . , nel, (10)
nel
∑
k=1

γ̇ELk
nsp
∑
j=1

aELkj Nja
CE
ij +

nc
∑
k=1

γ̇CEk
nsp
∑
j=1

aCEkj Nja
CE
ij +

β̇
β

nsp
∑
j=1

Njβujja
CE
ij =

V̇
V

nsp
∑
j=1

Nja
CE
ij +

nsp
∑
j=1

aCEij Ṅ
→
j − ċi,chem(β, p,N)

for i = 1, . . . , nc, (11)
nc
∑
k=1

γ̇ELk
nsp
∑
j=1

aELkj Njβujj +
nc
∑
k=1

γ̇CEk
nsp
∑
j=1

aCEkj Njβujj +
β̇
β

nsp
∑
j=1

Nj (β
2u2jj =

cvjj
R
) + V̇

V

nsp
∑
j=1

Njβujj + βĖ
→ + βp V̇ − βVΦ, (12)

nc
∑
k=1

γ̇ELk
nsp
∑
j=1

aELkj Nj +
nc
∑
k=1

γ̇CEk
nsp
∑
j=1

aCEkj Nj +
β̇
β

nsp
∑
j=1

Nj (βujj + 1) +
ṗ
p

nsp
∑
j=1

Nj = 0, (13)

where Ṅ→j and Ė→ denote the species and energy transport rates (positive if outgoing), the bottleneck source
terms are

ċi,chem(β, p,N) = V
nr
∑
ℓ=1
(

nsp
∑
m=1

aCEimνmℓ)[
k+ℓ (β, p)
Vν+ℓ

nsp
∏
j=1
(Nj)

ν+jℓ −
k−ℓ (β, p)
Vν−ℓ

nsp
∏
j=1
(Nj)

ν−jℓ], (14)
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Figure 2: Close-up of the final stage of the ignition process of a homogeneous stoichiometric mixture of hydrogen and oxygen
initially at 1 atm and 1500 K. Upper plots: Comparisons of the time evolutions of the 8 components ΛDoD,j of vectors ΛDKM

DoD (t)
(solid lines) and ΛRCCE

DoD (t) (dashed lines) for nc = 3, 4, 5 ASVDADD constraints. Lower plots: Comparisons of the time evolutions
of the degrees of disequilibrium, ϕℓ, of the 24 reactions in detailed kinetic model.

and the composition is that given by eq. (1), i. e.,

Nj = βpVXj = exp ( − gj,pure(β, p)β −
nel
∑
i=1

γELi aELij −
nc
∑
i=1

γCEi aCEij ) for j = 1, . . . , nsp. (15)

The above nel + nnc + 2 implicit differential equations together with the nsp eqs. (15) can be solved for given
values of Ė→,V(t), and the Ṅ→j , to yield the nsp+2 state variables β(t), p(t), andNj(t) and the nel+nc constraint
potentials γELi (t) and γ

CE
i (t).

It is important to notice that in eqs. (14) only the chemical reactions that are not equilibrated contribute
to ċi,chem, i. e., only those for which bCEiℓ = ∑

nsp
m=1 a

CE
imνmℓ ̸= 0. In fact, from eqs. (3), (6), and (8) we write

ϕDKM
ℓ =

nsp
∑
j=1

ΛDKM
DoD,jz νjℓ =

nsp
∑
j=1

νjℓ
r
∑
i=1

Uji σi Viz =
r
∑
i=1
(
nsp
∑
j=1

νjℓUji) γ
DKM
iz =

r
∑
i=1

biℓ γ
DKM
iz , (16)

where we defined biℓ = ∑
nsp
j=1 νjℓUji, which shows that within the RCCE approximation –wherebywe set to zero

the singular values σnc+1 = σnc+2 = ⋅ ⋅ ⋅ = σr = 0 and we set a
CE
ij = Uji for i = 1, . . . , nc – the DoDs are given by

ϕRCCE
ℓ =

nc
∑
i=1

bCEiℓ σi Viz =
nc
∑
i=1

bCEiℓ γ
CE
iz (17)

and therefore the reactions that contribute to ċi,chem, those with bCEiℓ ̸= 0, are those with a nonzero DoD.
To illustrate the results of integrating the above equations we consider the 8 species/24 reactions hy-

drogen/oxygen detailed kinetic mechanism considered in [34, 51] and the problem of predicting the ignition
delay of a homogeneous stoichiometric mixture of H2 and O2 initially at 1 atm and 1500 K. The upper plots
in Fig. 2 show comparisons of the time evolutions of the 8 components ΛDoD,j of vectors ΛDKM

DoD (t) (solid lines)
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and ΛRCCE
DoD (t) (dashed lines) for nc = 3, 4, 5 constraints selected by means of the ASVDADD method. From

these, through eq. (3), we compute the lower plots in Fig. 2, showing the time evolutions of the ϕℓs of the 24
reactions. The figure involves a close-up of the final stage of the ignition process and shows the consistent
improvement of the RCCE approximation by increasing the number of ASVDADD constraints.

6 Conclusions

The ASVDADD algorithm identifies a full sequence of RCCE constraints that characterize the kinetic bottle-
necks effectively rate-controlling the underlying DKM in the chosen range of conditions as it emerges from
DoD analysis of a probe full DKM computation. The algorithm automatically ranks the candidate constraints
in terms of their relative contributions to the average overall degree of disequilibrium along the probe DKM
computation. These features make the algorithm suitable for adaptive or tabulation strategies and therefore
opens up the advantages of the RCCE method to effective implementations in the context of CFD simulation
along the lines suggested in [26, 29].

The ASVDADD strategy for systematic RCCE constraint identification is based on analyzing how the de-
grees of disequilibrium of the chemical reactions behave in a full DKM probe simulation. Geometrically, the
procedure identifies a hierarchy of subspaces of the reactive space that have decreasing dimensionality and
are at minimal average distance from the exact evolution of the overall DoD vector.

The effectiveness and robustness of the methodology have already been demonstrated in [34, 44, 45] for
different combustion systems. The excellent performance of the ASVDADD constraints confirms the conclu-
sion that the new algorithm essentially resolves the difficulties that have prevented the RCCE method from a
more widespread use in systematic model order reduction of detailed combustion kinetic models of hydro-
carbon fuels.

We hope that future work will show that the same model order reduction strategy is suitable and can
find useful applications also in model reduction of complex biochemical kinetic schemes (such as in [21,
22, 23, 53, 54]), complex fluid structure interactions such as turbulence generated noise [55, 56], as well as
natural extensions in the more general frameworks of nonequilibrium thermodynamics modeling (such as
in [35, 36, 37, 38, 39, 40, 41, 57, 58]).

References
[1] S. Vajda, P. Valko, and T. Turanyi, Principal component analysis of kinetic models, Int. J. Chem. Kinet. 17 (1985), 55–81.
[2] S. H. Lam and D. A. Goussis, Understanding complex chemical kinetics with computational singular perturbation, Symp.,

Int., Combust. 22 (1988), 931–941.
[3] S. J. Fraser, The steady state and equilibrium approximations: A geometrical picture, J. Chem. Phys. 88 (1988), 4732–4738.
[4] R. Law, M. Metghalchi, and J. C. Keck, Rate-controlled constrained equilibrium calculation of ignition delay times in

hydrogen-oxygen mixtures, Symp., Int., Combust. 22 (1989), 1705–1713.
[5] J. C. Keck, Rate-controlled constrained-equilibrium theory of chemical reactions in complex systems, Prog. Energy

Combust. Sci. 16 (1990), 125–154.
[6] M. R. Roussel and S. J. Fraser, On the geometry of transient relaxation, J. Chem. Phys. 94 (1991), 7106–7113.
[7] U. Maas and S. B. Pope, Simplifying chemical kinetics – Intrinsic low dimensional manifolds in composition space,

Combust. Flame 88 (1992), 239–264.
[8] G. Li, A. S. Tomlin, H. Rabitz, and J. Tóth, Determination of approximate lumping schemes by a singular perturbation

method, J. Chem. Phys. 99 (1993), 3562–3574.
[9] S. Singh, J.M. Powers, and S. Paolucci, On slow manifolds of chemically reactive systems, J. Chem. Phys. 117 (2002),

1482–1496.
[10] E. L. Haseltine and J. B. Rawlings, Approximate simulation of coupled fast and slow reactions for stochastic chemical

kinetic, J. Chem. Phys. 117 (2002), 6959–6969.
[11] A. N. Gorban and I. V. Karlin, Method of invariant manifold for chemical kinetics, Chem. Eng. Sci. 58 (2003), 4751–4768.
[12] D. Lebiedz, Computing minimal entropy production trajectories: An approach to model reduction in chemical kinetics,

J. Chem. Phys. 120 (2004), 6890–6897.



G. P. Beretta et al., Systematic Constraint Selection in RCCE | 129

[13] M. Valorani, F. Creta, D. A. Goussis, J. C. Lee, and H. N. Najm, An automatic procedure for the simplification of chemical
kinetic mechanisms based on CSP, Combust. Flame 146 (2006), 29–51.

[14] E. Chiavazzo, A. N. Gorban, and I. V. Karlin, Comparison of invariant manifolds for model reduction in chemical kinetics,
Commun. Comput. Phys. 2 (2007), 964–992.

[15] A. N. Al-Khateeb, J.M. Powers, S. Paolucci, A. J. Sommese, J. A. Diller, J. D. Hauenstein, et al.,One-dimensional slow
invariant manifolds for spatially homogenous reactive systems, J. Chem. Phys. 131 (2009), 024118.

[16] G. P. Beretta, J. C. Keck, M. Janbozorgi, and H. Metghalchi, The rate-controlled constrained-equilibrium approach to
far-from-local-equilibrium thermodynamics, Entropy 14 (2012), 92–130.

[17] E. P. Gyftopoulos and G. P. Beretta, Entropy generation rate in a chemically reacting system, J. Energy Resour. Technol. 115
(1993), 208–212.

[18] J. C. Keck and D. Gillespie, Rate-controlled partial-equilibrium method for treating reacting gas mixtures, Combust. Flame
17 (1971), 237–241.

[19] J. C. Keck, Rate-controlled constrained equilibrium method for treating reactions in complex systems, in: R. D. Levine,
M. Tribus (Eds.), The Maximum Entropy Formalism, MIT Press, Cambridge, MA, 1979, pp. 219–245. Available online at
www.jameskeckcollectedworks.org/.

[20] G. P. Beretta and J. C. Keck, The constrained-equilibrium approach to nonequilibrium dynamics, in: R. A. Gaggioli (Ed.),
Second Law Analysis and Modeling, ASME Book H0341C-AES, Vol. 3, ASME, New York, 1986, pp. 135–139. Available online
at www.jameskeckcollectedworks.org/.

[21] K. C. Chen, A. Csikász-Nagy, B. Gyorffy, J. Val, B. Novák, and J. J. Tyson, Kinetic analysis of a molecular model of the
budding yeast cell cycle,Mol. Biol. Cell 11 (2000), 369–391.

[22] A. Lovrics, A. Csikász-Nagy, I. G. Zsély, J. Zádor, T. Turányi, and B. Novák, Time scale and dimension analysis of a budding
yeast cell cycle model, BMC Bioinform. 7 (2006), 494.

[23] I. Surovtsova, N. Simus, T. Lorenz, A. König, S. Sahle, and U. Kummer, Accessible methods for the dynamic time-scale
decomposition of biochemical systems, Bioinformatics 25 (2009), 2816–2823.

[24] A. I. Karpov, Minimal entropy production as an approach to the prediction of the stationary rate of flame propagation,
J. Non-Equilib. Thermodyn. 17 (1992), 1–10.

[25] V. Yousefian, A rate-controlled constrained-equilibrium thermochemistry algorithm for complex reacting systems,
Combust. Flame 115 (1998), 66–80.

[26] Q. Tang and S. B. Pope, Implementation of combustion chemistry by in situ adaptive tabulation of rate-controlled
constrained equilibrium manifolds, Proc. Combust. Inst. 29 (2002), 1411–1417.

[27] Q. Tang and S. B. Pope, A more accurate projection in the rate-controlled constrained equilibrium method for dimension
reduction of combustion chemistry, Combust. Theory Model. 8 (2004), 255–279.

[28] S. Rigopoulos and T. Løvås, A LOI-RCCE methodology for reducing chemical kinetics, with application to laminar premixed
flames, Proc. Combust. Inst. 32 (2009), 569–576.

[29] T. Løvås, S. Navarro-Martinez, and S. Rigopoulos, On adaptively reduced chemistry in large eddy simulations, Proc.
Combust. Inst. 33 (2011), 1339–1346.

[30] V. Hiremath and S. B. Pope, A study of the rate-controlled constrained-equilibrium dimension reduction method and its
different implementations, Combust. Theory Model. 17 (2013), 260–293.

[31] F. Hadi and M. R. H. Sheikhi, A comparison of constraint and constraint potential forms of the Rate-Controlled
Constraint-Equilibrium method, J. Energy Resour. Technol. 138 (2015), 022202.

[32] F. Hadi, M. Janbozorgi, M. R. H. Sheikhi, and H. Metghalchi, A study of interactions between mixing and chemical
reaction using the Rate-Controlled Constrained-Equilibrium method, J. Non-Equilib. Thermodyn. 41 (2016),
257–278.

[33] F. Hadi, V. Yousefian, M. R. H. Sheikhi, and H. Metghalchi, Time scale analysis for Rate-Controlled Constrained-Equilibrium
constraint selection, in: Proceedings of the 10th U.S. National Combustion Meeting, Eastern States Section of the
Combustion Institute, College Park, Maryland, April 23–26, 2017, 1–6.

[34] G. P. Beretta, M. Janbozorgi, and H. Metghalchi, Degree of Disequilibrium Analysis for Automatic Selection of Kinetic
Constraints in the Rate-Controlled Constrained-Equilibrium Method, Combust. Flame 168 (2016), 342–364.

[35] H. C. Ottinger, General projection operator formalism for the dynamics and thermodynamics of complex fluids, Phys. Rev. E
57 (2015), 1416–1420.

[36] G. P. Beretta, Steepest Entropy Ascent model for far-non-equilibrium thermodynamics. Unified implementation of the
Maximum Entropy Production Principle, Phys. Rev. E 90 (2014), 042113.

[37] A. Montefusco, F. Consonni, and G. P. Beretta, Essential equivalence of the general equation for the nonequilibrium
reversible-irreversible coupling (GENERIC) and steepest-entropy-ascent models of dissipation for nonequilibrium
thermodynamics, Phys. Rev. E 91 (2015), 042138.

[38] S. Cano-Andrade, G. P. Beretta, and M. R. von Spakovsky, Steepest-entropy-ascent quantum thermodynamic modeling of
decoherence in two different microscopic composite systems, Phys. Rev. A 91 (2015), 013848.

[39] G. Li and M. R. von Spakovsky, Steepest-entropy-ascent quantum thermodynamic modeling of the relaxation process of
isolated chemically reactive systems using density of states and the concept of hypoequilibrium state, Phys. Rev. E 93
(2016), 012137.

http://www.jameskeckcollectedworks.org/
http://www.jameskeckcollectedworks.org/


130 | G.P. Beretta et al., Systematic Constraint Selection in RCCE

[40] G. Lebon, D. Jou, and M. Grmela, Extended reversible and irreversible thermodynamics: A Hamiltonian approach with
application to heat waves, J. Non-Equilib. Thermodyn. 42 (2017), 153–168.

[41] G. Li, M. R. von Spakovsky, and C. Hin, Steepest entropy ascent quantum thermodynamic model of electron and phonon
transport, Phys. Rev. B 97 (2018), 024308.

[42] G. P. Beretta and E. P. Gyftopoulos, What is a chemical equilibrium state? J. Energy Resour. Technol. 137 (2015), 021008.
[43] G. P. Beretta and J. C. Keck, Energy and entropy balances in a combustion chamber. Analytical solution, Combust. Sci.

Technol. 30 (1983), 19–29.
[44] G. P. Beretta, M. Janbozorgi, and H. Metghalchi, Use of degree of disequilibrium analysis to select kinetic constraints

for the Rate-Controlled Constrained-Equilibrium (RCCE) method, in: Proceedings of ECOS 2015 – The 28th International
Conference On Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Pau, France, June
30–July 3, 2015. Available online at www.gianpaoloberetta.info/.

[45] L. Rivadossi and G. P. Beretta, Validation of the ASVDADD constraint selection algorithm for effective RCCE modeling
of natural gas ignition in air, in: Proceedings of IMECE2016 – the ASME 2016 International Mechanical Engineering
Congress and Exposition, November 11–17, 2016, Phoenix, Arizona, USA – paper IMECE2016-65323. Available online at
www.gianpaoloberetta.info/ https://doi.org/10.1115/IMECE2016-65323.

[46] G. P. Beretta, Nonlinear quantum evolution equations to model irreversible adiabatic relaxation with maximal entropy
production and other nonunitary processes, Rep. Math. Phys. 64 (2009), 139–168.

[47] M. Valorani, D. A. Goussis, F. Creta, and H. N. Najm, Higher order corrections in the approximation of inertial manifolds and
the construction of simplified problems with the CSP method, J. Comput. Phys. 209 (2005), 754–786.

[48] D. Lebiedz, V. Reinhardt, and J. Siehr, Minimal curvature trajectories: Riemannian geometry concepts for slow manifold
computation in chemical kinetics, J. Comp. Physiol. 229 (2010), 6512–6533.

[49] D. Lebiedz, J. Siehr, and J. Unger, A variational principle for computing slow invariant manifolds in dissipative dynamical
systems, SIAM J. Sci. Comput. 33 (2011), 703–720.

[50] C. D. Martin and M. A. Porter, The extraordinary SVD, Am. Math. Mon. 119 (2012), 838–851.
[51] M. Janbozorgi and H. Metghalchi, Rate-Controlled Constrained-Equilibrium Modeling of H-O Reacting Nozzle Flow, J.

Propuls. Power 28 (2012), 677–684.
[52] L. Rivadossi and G. P. Beretta, Validation of the ASVDADD constraint selection algorithm for effective RCCE modeling of

natural gas ignition in air, J. Energy Resour. Technol. 140 (2018), 052201.
[53] P. D. Kourdis, R. Steuer, and D. A. Goussis, Physical understanding of complex multiscale biochemical models via

algorithmic simplification: Glycolysis in saccharomyces cerevisiae, Physica D 239 (2010), 1798–1817.
[54] V. Damioli, G. P. Beretta, A. Salvadori, C. Ravelli, and S. Mitola, Multi-physics interactions drive VEGFR2 relocation on

endothelial cells, Scientific Reports 7 (2017), 16700.
[55] E. A. Piana, S. Uberti, A. Copeta, B. Motyl, and G. Baronio, An integrated acoustic–mechanical development method for

off-road motorcycle silencers: from design to sound quality test, Int. J. Interact. Des. Manuf. (2018). https://doi.org/10.
1007/s12008-018-0464-x.

[56] E. A. Piana, B. Grassi, F. Bianchi, and C. Pedrotti, Hydraulic balancing strategies: A case-study of radiator-based central
heatig systems, Building Serv. Eng. Res. Technol. (2018). https://doi.org/10.1177/0143624417752830.

[57] G. P. Beretta, Modeling non-equilibrium dynamics of a discrete probability distribution: General rate equation for maximal
entropy generation in a maximum-entropy landscape with time-dependent constraints, Entropy 10 (2008), 160–182.

[58] L.M. Martyushev and V. D. Seleznev, Maximum entropy production: application to crystal growth and chemical kinetics,
Current Opinion in Chemical Engineering 7 (2015), 23–31.

http://www.gianpaoloberetta.info/
http://www.gianpaoloberetta.info/
https://doi.org/10.1115/IMECE2016-65323
https://doi.org/10.1007/s12008-018-0464-x
https://doi.org/10.1007/s12008-018-0464-x
https://doi.org/10.1177/0143624417752830

	Systematic Constraint Selection Strategy for Rate-Controlled Constrained-Equilibrium Modeling of Complex Nonequilibrium Chemical Kinetics
	1 Introduction
	2 Standard DKM formulation
	3 RCCE model of local nonequilibrium states
	4 ASVDADD strategy for identifying optimal RCCE constraints
	5 Rate equations for the constraint potentials
	6 Conclusions
	References


