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ABSTRACT. From a new rigorous formulation of the general axiomatic foundations of
thermodynamics we derive an operational definition of entropy that responds to the emergent
need in many technological frameworks to understand and deploy thermodynamic entropy
well beyond the traditional realm of equilibrium states of macroscopic systems. The new
treatment starts from a previously developed set of carefully worded operational definitions
for all the necessary basic concepts, and is not based on the traditional ones of “heat” and of
“thermal reservoir”. It is achieved in three steps. First, a new definition of thermodynamic
temperature is stated, for any stable equilibrium state. Then, by employing this definition, a
measurement procedure is developed which defines uniquely the property entropy in a broad
domain of states, which could include in principle even some non-equilibrium states of
few-particle systems, provided they are separable and uncorrelated. Finally, the domain of
validity of the definition is extended, possibly to every state of every system, by a different
procedure, based on the preceding one, which associates a range of entropy values to any
state not included in the previous domain. The principle of entropy non-decrease and the
additivity of entropy are proved in both the domains considered.

1. Introduction

Thermodynamic entropy plays a crucial role in the development of the physical founda-
tions of a variety of emerging technologies — nanomaterials, small-scale hydrodynamics,
chemical kinetics for energy and environmental engineering and biotechnologies, elec-
trochemistry, quantum entanglement in quantum information, non-equilibrium bulk and
interface phenomena, etc. — which require a clear understanding of the meaning and role
of thermodynamic entropy beyond the traditional equilibrium and macroscopic realms, well
into the non-equilibrium and few-particle domains currently being explored very actively in
many fields of science and technology (see, e.g., Verley and Lacoste (2012), Brandão et al.
(2013), Horodecki and Oppenheim (2013), and Skrzypczyk et al. (2014) for recent attempts
to extend thermodynamics to nonequilibrium states and individual quantum systems). In
traditional treatments of thermodynamics (see, e.g. Fermi (1956), Pippard (1957), and
Zemansky (1968)), the definitions of thermodynamic temperature and of entropy are based
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A1-2 G.P. BERETTA AND E. ZANCHINI

on the concepts of heat and of thermal reservoir. Usually, heat is not defined rigorously. For
instance, in his lectures on physics, Feynman et al. (1963) describe heat as one of several
different forms of energy related to the jiggling motion of particles; in this picture, heat
appears as a transfer of kinetic energy and the difference between heat and work is not
clarified. Landau (1980) defines heat as the part of an energy change of a body that is not due
to work done on it. However, there are interactions between systems which are neither heat
nor work, such as, for instance, exchanges of radiation between systems in nonequilibrium
states. Guggenheim (1967) defines heat as an exchange of energy that differs from work
and is determined by a temperature difference. Keenan (1941) defines heat as the energy
transferred from one system to a second system at lower temperature, by virtue of the
temperature difference, when the two are brought into communication. These definitions do
not describe clearly the phenomena which occur at the interface between the interacting
systems; moreover, they require a previous definition of empirical temperature, a concept
which, in turn, is usually not defined rigorously. Another drawback of the employment of
heat in the definition of entropy is the following: since heat, when properly defined, requires
the existence of subsystems in stable equilibrium at the boundary between the interacting
systems, a definition of entropy based on heat can hold, at most, in the domain of local
equilibrium states.

An alternative method for the axiomatization of thermodynamics was developed at MIT
by Hatsopoulos and Keenan (1965) and by Gyftopoulos and Beretta (2005). The main
progress obtained in these references, with respect to the traditional treatments, is a more
general definition of entropy — not based on the heuristic notions of empirical temperature
and heat, and not restricted a priori to stable equilibrium states — that emerges from
a complete set of operational definitions of the basic concepts, such as those of system,
property, state, and stable equilibrium state, and a new statement of the second law expressed
as a postulate of existence, for a system with fixed composition and constraints, of a unique
stable equilibrium state for each value of the energy.

Improvements of this method, yielding more rigorous definitions of isolated system,
environment of a system and external force field, as well as a more direct definition of
entropy, have been proposed over the years by Zanchini (1986, 1988, 1992), Zanchini and
Beretta (2008, 2010), Beretta and Zanchini (2011), and Zanchini and Beretta (2014). Such
constructions are important because they provide rigorous operational definitions of entropy
potentially valid also in the non-equilibrium domain. However, they still require the use of
a thermal reservoir as an auxiliary system (that plays the role of an entropy meter) in the
operational procedure that defines how to measure the entropy difference between any two
states of a system. As already pointed out by Gyftopoulos and Beretta (2005, p.87), such
use of thermal reservoirs has both logical and operational drawbacks.

A thermal reservoir, when properly defined (Gyftopoulos and Beretta 2005; Zanchini
and Beretta 2010; Beretta and Zanchini 2011), is a closed system R, contained in a fixed
region of space, such that whenever R is in stable equilibrium it is also in mutual stable
equilibrium with a duplicate of itself, kept in any of its stable equilibrium states. Once
thermodynamic temperature has been defined, it turns out that a thermal reservoir has the
same temperature in all its stable equilibrium states, independently of the value of the energy.
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This condition is fulfilled by the simple-system model1 of a pure substance kept in the range
of triple-point stable equilibrium states, because within such range of states energy can
be added or removed at constant volume without changing the temperature. Hence, pure
substances in their triple-point ranges are good practical examples of thermal reservoirs that
can be easily set up in any laboratory.

However, the triple-point model is only an approximate description of reality, valid with
exceedingly good approximation for systems with many particles of the order of one mole,
but not in general, e.g., not for systems with few particles. In a fully explicit axiomatic
treatment one could declare the existence of thermal reservoirs as an assumption, but then
one could prove that, strictly, thermal reservoirs cannot exist. Thus, from the strictly logical
point of view, the use of the thermal reservoir in the definition of entropy is an internal
inconsistency.

Another important drawback of the use of a thermal reservoir R in the measurement
procedure that defines the entropy difference of two states A1 and A2 of a system A is that
the procedure (see Gyftopoulos and Beretta (2005), Zanchini and Beretta (2010), Beretta
and Zanchini (2011), and Zanchini and Beretta (2014)) requires to measure the energy
change of the reservoir R in a reversible weight process for the composite system AR in
which A changes from state A1 to state A2. If system A has only few particles, than the
energy change of R will be extremely small and hardly detectable if, as just discussed, the
thermal reservoir R can only be realized by means of a macroscopic system.

The scope of the present paper is to develop new general definitions of thermodynamic
temperature and thermodynamic entropy that are neither based on the concept of heat nor
on that of thermal reservoir, so that both the logical and the practical drawbacks due to the
use of these concepts are removed.

A procedure which yields the definitions of temperature and entropy without employing
the concepts of heat and of thermal reservoir was presented by Carathéodory (1909).
However, his treatment is valid only for stable equilibrium states of simple systems in the
sense established by Gyftopoulos and Beretta (2005, Ch.17). The same restriction holds for
some developments of Carathéodory’s method (see Turner (1960), Landsberg (1961), Sears
(1963), and Giles (1964)), aimed at making the treatment simpler and less abstract.

Another axiomatization of thermodynamics has been developed in recent years by Lieb
and Yngvason (1999, 2013, 2014). Their method is based on establishing an order relation
between states, denoted by the symbol ≺, through the concept of adiabatic accessibility: a
state Y is said to be adiabatically accessible from a state X , i.e., X ≺ Y , if it is possible to
change the state from X to Y by means of an adiabatic process. By introducing a suitable
set of Axioms concerning the order relation ≺, the authors prove the existence and the
essential uniqueness (Lieb and Yngvason 1999) of entropy. While the treatment presented
by Lieb and Yngvason (1999) holds only for stable equilibrium states of simple systems or
collections of simple systems, through the complements presented by Lieb and Yngvason
(2013, 2014) the validity is extended respectively to non-equilibrium states by Lieb and
Yngvason (2013) and, through the use of a simple system as an entropy meter, also to
non-simple systems (Lieb and Yngvason 2014). Since to exhibit simple-system behavior

1As defined and discussed by Gyftopoulos and Beretta (2005, pp.263-265), the simple-system model is
appropriate for macroscopic systems with many particles, but fails for few-particle systems for which, e.g.,
rarefaction effects near walls cannot be neglected.
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the entropy meter must be a many-particle system, when applied to few-particle systems
the definition could present the same kind of ‘practical’ problems faced by our previous
definitions based on the entropy meter being a thermal reservoir.

In the present paper, a set of postulates and assumptions analogous to that stated by
Zanchini and Beretta (2014) is employed, but here the definitions of thermodynamic tem-
perature and thermodynamic entropy are obtained without employing the concept of thermal
reservoir. The main result of the new formulation is that by avoiding to use as entropy
meter a many-particle system, we derive a rigorous and general operational definition of
thermodynamic entropy which holds, potentially, also for some non-equilibrium states of
non-simple and non-macroscopic systems. Then, the domain of validity of the definition
is extended to include possibly every state of every system by a procedure, similar to that
developed by Lieb and Yngvason (2013), which associates a range of entropy values to any
state not included in the previous domain.

The potential applicability to non-equilibrium states is a relevant feature in the framework
of the fast growing field of non-equilibrium thermodynamics (see, e.g., Kjelstrup and
Bedeaux (2008)), where research advances seem to substantiate from many perspectives the
validity of a general principle of maximum entropy production (Gheorghiu-Svirschevski
2001a,b; Martyushev and Seleznev 2006; Beretta 2009, 2014). It is also relevant in the
framework of the recently growing field of thermodynamics in the quantum regime, where
much discussion about the microscopic foundations of thermodynamics is still taking place
(see, e.g., Maddox (1985), Beretta (1986), Bennett (2008), Hatsopoulos and Beretta (2008),
Lloyd (2008), Maccone (2009), Beretta (2012), Verley and Lacoste (2012), Brandão et al.
(2013), Horodecki and Oppenheim (2013), Skrzypczyk et al. (2014), Brandão et al. (2015),
Cano-Andrade et al. (2015), and Weilenmann et al. (2016)).

The definition of entropy presented here is complementary to that developed by Lieb
and Yngvason: indeed, while Lieb and Yngvason (1999, 2013, 2014) focused their demon-
strations on the proof of existence and essential uniqueness of an entropy function which is
additive and fulfils the principle of entropy nondecrease, the present treatment identifies a
general measurement procedure suitable to determine the entropy values. The principle of
entropy nondecrease and the additivity of entropy are then proved as consequences of the
definition.

In order to focus immediately on the construction of the new general definition of entropy,
we keep to a minimum the discussion of the preliminary concepts. Instead, we provide in
footnotes full proofs of the lemmas, theorems, and corollaries.

2. Summary of basic preliminary definitions

In this section, we very briefly summarize the definitions of terms and preliminary
concepts that we will use in the rest of the paper. A complete set of operational definitions
of these concepts is available in (Zanchini and Beretta 2010; Beretta and Zanchini 2011).
System. With the term system we mean a set of material particles, of one or more kinds,
such that, at each instant of time, the particles of each kind are contained within a given
region of space. Regions of space containing different kinds of particles can overlap and
even coincide. If the external boundary surface of the union of the regions of space which
contain the particles of the systems is a wall, i.e., a surface that cannot be crossed by material
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particles, the system is called closed.
Property. Any system is endowed with a set of reproducible measurement procedures; each
procedure that involves a single instant of time defines a property of the system.
State. The set of all the values of the properties of a system, at a given instant of time,
defines the state of the system at that instant.
External force field. A system can be in contact with other matter, or surrounded by empty
space; moreover, force fields due to external matter can act in the region of space occupied
by the system. If, at an instant of time, all the particles of the system are removed from
the respective regions of space and brought far away, but a force field is still present in
the region of space (previously) occupied by the system, then this force field is called
an external force field. An external force field can be either gravitational, or electric or
magnetic, or a superposition of the three.
Environment of a system. Consider the union of all the regions of space spanned by a
system during its entire time evolution. If no other material particles, except those of the
system, are present in the region of space spanned by the system or touches the boundary of
this region, and if the external force field in this region is either vanishing or stationary, then
we say that the system is isolated. Suppose that an isolated system I can be divided into
two subsystems, A and B. Then, we can say that B is the environment of A and viceversa.
System separable and uncorrelated from its environment. If, at a given instant of time,
two systems A and B are such that the force field produced by B is vanishing in the region
of space occupied by A and viceversa, then we say that A and B are separable at that instant.
The energy of a system A is defined (see Section 3) only for the states of A such that A is
separable from its environment. Consider, for instance, the following simple example from
mechanics. Let A and B be rigid bodies in deep space, far away from any other object and
subjected to a mutual gravitational force. Then, the potential energy of the composite system
AB is defined, but that of A and of B is not. For a system A which is separable from its
environment, any change in either gravitational, or electric, or magnetic field in the region
of space occupied by the system is due to a change of this region, i.e., to a displacement of
the system.
If, at a given instant of time, two systems A and B are such that the outcomes of the
measurements performed on B are statistically independent of those of the measurements
performed on A, and viceversa, we say that A and B are uncorrelated from each other at
that instant. The entropy of a system A is defined in this paper only for the states of A such
that A is separable and uncorrelated from its environment.
Process. We call process of a system A from state A1 to state A2 the time evolution of the
isolated system AB from (AB)1 (with A in state A1) to (AB)2 (with A in state A2), where B
is the environment of A.
Reversible process. A process of A is reversible if the isolated system AB can undergo a
time evolution which restores it in its initial state (AB)1. A process of a system A is called
a cycle for A if the final state A2 coincides with the initial state A1. A cycle for A is not
necessarily a cycle for AB.
Weight process. An elementary mechanical system is a system such that the only admissible
change of state for it is a space translation in a uniform external force field; an example is a
particle which can only change its height in a uniform external gravitational field. A process
of a system A from state A1 to A2, such that both in A1 and in A2 system A is separable
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from its environment, is a weight process for A if the only net effect of the process in the
environment of A is the change of state of an elementary mechanical system.
Equilibrium states. An equilibrium state of a system is a state such that the system is
separable, the state does not vary with time, and it can be reproduced while the system is
isolated. An equilibrium state of a closed system A in which A is uncorrelated from its
environment B, is called a stable equilibrium state if it cannot be modified by any process
between states in which A is separable and uncorrelated from its environment such that
neither the geometrical configuration of the walls which bind the regions of space RRRA where
the constituents of A are contained, nor the state of the environment B of A have net changes.
Two systems, A and B, are in mutual stable equilibrium if the composite system AB (i.e.,
the union of both systems) is in a stable equilibrium state.
Weight polygonal and work in a weight polygonal. Consider an ordered set of n states of
a closed system A, (A1,A2, ...,An), such that in each of these states A is separable from its
environment. If n - 1 weight processes exist, which interconnect A1 and A2, ... , An−1 and
An, regardless of the direction of each process, we say that A1 and An can be interconnected
by a weight polygonal. For instance, if weight processes A1

w−→ A2 and A3
w−→ A2 exist for A,

we say that A1
w−→ A2

w←− A3 is a weight polygonal for A from A1 to A3. We call work done
by A in a weight polygonal from A1 to An the sum of the works done by A in the weight
processes with direction from A1 to An and the opposites of the works done by A in the
weight processes with direction from An to A1 (Zanchini 1986, 1988). The work done by A

in a weight polygonal from A1 to An will be denoted by W A
wp−→

1n ; its opposite will be called

work received by A in a weight polygonal from A1 to An and will be denoted by W A
wp←−

1n .

Clearly, for a given weight polygonal, W A
wp←−

1n =−W A
wp−→

1n =W A
wp−→

n1 . For the example of
weight polygonal A1

w−→ A2
w←− A3 considered above, we have

W A
wp−→

13 =W A→
12 −W A→

32 . (1)

3. Postulates and Assumptions

In this paper, we call Postulates the axioms which have a completely general validity and
Assumptions the additional axioms whose domain of validity could be completely general
or not, and identifies the domain of validity of our treatment. In this section, we list at once
all the Postulates and, for ease of reference, also a preview of the Assumptions. However,
the assumptions require concepts and notation that we introduce later. Therefore, they will
acquire meaning and will be repeated along our deductive development by introducing them
immediately before they become necessary for the subsequent logical development. This
approach allows us to emphasize which results require which assumptions.

Postulate 1. Every pair of states (A1, A2) of a closed system A, such that A is separable
from its environment in both states, can be interconnected by means of a weight polygonal
for A. The works done by a system in any two weight polygonals between the same initial
and final states are identical.

Remark. Zanchini (1986) has proved that, in sets of states where sufficient conditions of
interconnectability by weight processes hold, Postulate 1 can be proved as a consequence
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of the traditional form of the First Law, which concerns weight processes (or adiabatic
processes).

Postulate 2. Among all the states of a system A such that the constituents of A are contained
in a given set of regions of space RRRA, there is a stable equilibrium state for every value EA

of the energy of A.

Postulate 3. Starting from any state in which the system is separable from its environment,
a closed system A can be changed to a stable equilibrium state with the same energy by
means of a zero work weight process for A in which the regions of space occupied by the
constituents of A have no net changes.

Postulate 4. There exist systems, called normal systems, whose energy has no upper bound.
Starting from any state in which the system is separable from its environment, a normal
system A can be changed to a non-equilibrium state with arbitrarily higher energy (in which
A is separable from its environment) by means of a weight process for A in which the
regions of space occupied by the constituents of A have no net changes.

Remark. The restriction to normal closed systems is adopted here in the interest of simplic-
ity, in order to focus the attention of the reader on the main result of the paper, namely that
of avoiding the use of the concept of thermal reservoir in the foundations of thermodynam-
ics. The extension of the treatment to special systems and open systems will be presented
elsewhere.

Assumption 1. For any given pair of states (A1, A2) of any closed system A such that A is
separable and uncorrelated from its environment, it is always possible to find or to include
in the environment of A a system B which has a stable equilibrium state Bse1 such that the
states A1 and A2 can be interconnected by means of a reversible weight process for AB,
standard with respect to B, in which system B starts from state Bse1.

Assumption 2. The function f B→C
11 (EB) defined (see Lemma 2, below) through the set of

pairs of processes {(ΠBse1
XBrev;Π

Cse1
XCrev)} (also defined in Lemma 2, below) is differentiable in

EB
se1; in symbols

lim
EB→EB

se1

f B→C
11 (EB)− f B→C

11 (EB
se1)

EB−EB
se1

=
d f B→C

11
dEB

⏐⏐⏐⏐
EB

se1

.

Assumption 3. For every system B and every choice of the regions of space RRRB occupied
by the constituents of B, the temperature of the stable equilibrium states of B (as defined in
Section 5, below) is a continuous function of the energy of B and is vanishing only in the
stable equilibrium state with the lowest energy for the given regions of space RRRB.

In the last section of the paper we extend our operational definition of entropy to a
broader class of system models by relaxing Assumption 1 as follows.
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Relaxed Assumption 1. Any given state A1 of any closed system A such that A is separable
and uncorrelated from its environment, either belongs to a single set ΣA where every pair of
states fulfills Assumption 1 or it can be an intermediate state of at least a composite weight
process for A that connects two states of the set ΣA.

4. Definition of energy for a closed system.

Let (A1, A2) be any pair of states of a system A, such that A is separable from its
environment in both states. We call energy difference between states A2 and A1 the work
received by A in any weight polygonal from A1 to A2, expressed as

EA
2 −EA

1 =−W A
wp−→

12 =W A
wp←−

12 . (2)

Postulate 1 implies the following consequences:
(a) the energy difference between two states A2 and A1 depends only on the states A1 and
A2;
(b) (additivity of energy differences) consider a pair of states (AB)1 and (AB)2 of a composite
system AB, and denote by A1,B1 and A2,B2 the corresponding states of A and B; then, if A,
B and AB are separable from their environment in the states considered,

EAB
2 −EAB

1 = EA
2 −EA

1 +EB
2 −EB

1 ; (3)

(c) (energy is a property) let A0 be a reference state of a system A, in which A is separable
from its environment, to which we assign an arbitrarily chosen value of energy EA

0 ; the
value of the energy of A in any other state A1 in which A is separable from its environment
is determined uniquely by

EA
1 = EA

0 +W A
wp←−

01 , (4)

where W A
wp←−

01 is the work received by A in any weight polygonal for A from A0 to A1.
Simple proofs of these consequences are available in Zanchini (1986), and will not be
repeated here.

Remark. The additivity of energy implies that the union of two or more normal systems,
each separable from its environment, is a normal system to which Postulate 4 applies.
In traditional treatments of thermodynamics only normal systems are considered, without
an explicit mention of this restriction. Moreover, Postulate 4 is not stated, but it is used,
for example in theorems where one says that any amount of work can be transferred to a
thermal reservoir by a stirrer. Any system whose constituents have translational, rotational or
vibrational degrees of freedom is a normal system. On the other hand, quantum theoretical
model systems, such as spins, qubits, qudits, etc., whose energy is bounded also from above,
are special systems.
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5. Definition of temperature of a stable equilibrium state

Lemma 1. Uniqueness of the stable equilibrium state for a given value of the energy.
There can be no pair of different stable equilibrium states of a closed system A with identical
regions of space RRRA and the same value of the energy EA. The proof is in Footnote 2.

Theorem 1. Impossibility of a Perpetual Motion Machine of the Second Kind (PMM2).
If a normal system A is in a stable equilibrium state, it is impossible to lower its energy by
means of a weight process for A in which the regions of space occupied by the constituents
of A have no net change. The proof is in Footnote 3.

Remark. Kelvin-Planck statement of the Second Law. As noted by Hatsopoulos and
Keenan (1965) and Gyftopoulos and Beretta (2005, p.64), the impossibility of a PMM2,
which is also known as the Kelvin-Planck statement of the Second Law, is a corollary of the
definition of stable equilibrium state, provided that we adopt the (usually implicit) restriction
to normal systems.

Definition. Weight process for AB, standard with respect to B. Given a pair of states
(A1,A2) of a system A, such that A is separable from its environment, and a system B in the
environment of A, we call weight process for AB, standard with respect to B a weight process
A1Bse1

w−→ A2Bse2 for the composite system AB in which the end states of A are the given
states A1 and A2, and the end states of B are stable equilibrium states with identical regions
of space RRRB. For a weight process for AB, standard with respect to B, we denote the final
energy of system B by the symbol EB

se2

⏐⏐sw,Bse1
A1A2

or, if the process is reversible, EB
se2rev

⏐⏐sw,Bse1
A1A2

(when the context allows it, we simply denote them by EB
se2 and EB

se2rev, respectively).

Remark. The term “standard with respect to B” is a shorthand to express the conditions
that: 1) the end states of B are stable equilibrium, and 2) the regions of space RRRB

se1 and RRRB
se2

are identical. The regions of space RRRA
1 and RRRA

2 , instead, need not be identical.

Assumption 1. For any given pair of states (A1, A2) of any closed system A such that A is
separable and uncorrelated from its environment, it is always possible to find or to include
in the environment of A a system B which has a stable equilibrium state Bse1 such that the

2Proof of Lemma 1. Since A is closed and in any stable equilibrium state it is separable and uncorrelated
from its environment, if two such states existed, by Postulate 3 the system could be changed from one to the other
by means of a zero-work weight process, with no change of the regions of space occupied by the constituents of
A and no change of the state of the environment of A. Therefore, neither would satisfy the definition of stable
equilibrium state. □

3Proof of Theorem 1. Suppose that, starting from a stable equilibrium state Ase of A, by means of a weight
process Π1 with positive work W A→ =W > 0, the energy of A is lowered and the regions of space RRRA occupied by
the constituents of A have no net change. On account of Postulate 4, it would be possible to perform a weight
process Π2 for A in which its regions of space RRRA have no net change, the weight M is restored to its initial state so
that the positive amount of energy W A← =W > 0 is supplied back to A, and the final state of A is a non-equilibrium
state, namely, a state clearly different from Ase. Thus, the composite zero-work weight process (Π1, Π2) would
violate the definition of stable equilibrium state. □
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states A1 and A2 can be interconnected by means of a reversible weight process for AB,
standard with respect to B, in which system B starts from state Bse1.

Remark. If, for a given pair of states (A1, A2), a stable equilibrium state Bse1 of B fulfills
Assumption 1, then any other stable equilibrium state of B with the same regions of space
and with an energy value higher than that of Bse1 fulfills Assumption 1, as well. Therefore,
for a given pair of states (A1, A2) of a system A and a selected system B, there exist infinite
different choices for Bse1.

Remark. Since Postulates 1 to 3 can be considered as having a completely general validity,
our new operational definition of entropy for a normal and closed system A applies to
any set of states such that A is separable and uncorrelated from its environment, and for
which the crucial Assumption 1 holds for every pair of states in the set. In the next remark,
we show that in quantum statistical mechanics (QSM) Assumption 1 holds for all the
stable equilibrium states and for a large class of nonequilibrium states, for both large
and few-particle systems. Moreover, in subsequent remarks we also demonstrate the full
compatibility of our construction with the general framework of QSM.

Remark. Plausibility of Assumption 1 in the framework of quantum statistical me-
chanics. Let us illustrate the range of validity of Assumption 1 within the framework of
quantum statistical mechanics by showing that a broad (albeit not all-inclusive) class of
pairs (A1,A2) of nonequilibrium states of any system A can be interconnected by a quantum
mechanical unitary process (i.e., a reversible weight process) of a composite system AB
such that the initial and final states of a system B are stable equilibrium states.
To this end, given the system A, consider a system B with Hilbert space of equal dimen-
sionality (dimHB = dimHA) but different Hamiltonian operator (HB ̸= HA), and consider
the states Bse1 = ρB

1 = exp(− lnZB
1 −β1HB) and Bse2 = ρB

2 = exp(− lnZB
2 −β2HB) where

ρ denotes the density operator (i.e., the state representative in QSM) and Z the partition
function defined by the condition Trρ = 1.
Next, consider the eigenvalue problems HA|ψA

j ⟩= εA
j |ψA

j ⟩ and HB|ψB
j ⟩= εB

j |ψB
j ⟩ and as-

sume that the index j ranks energy eigenvalues in increasing order for both A and B. Finally,
consider the states of A constructed as follows A1 = ρA

1 = ∑ j exp(− lnZB
2 −β2εB

j )|ψA
j ⟩⟨ψA

j |
and A2 = ρA

2 = ∑ j exp(− lnZB
1 −β1εB

j )|ψA
j ⟩⟨ψA

j |. These states are nonequilibrium states
for A because the εB

j ’s are not the eigenvalues of HA but those of HB ̸= HA. Notice, how-
ever, that they commute with HA and have decreasing diagonal elements (probabilities), so
that EA

1 = TrρA
1 HA is minimal among the states with −kTrρ lnρ =−kTrρA

1 lnρA
1 = SA

1 and
EA

2 = TrρA
2 HA is minimal among the states with −kTrρ lnρ =−kTrρA

2 lnρA
2 = SA

2 . From
these nonequilibrium states we can access, via unitary evolutions of A (i.e., by means of
reversible weight processes for A), a large number of nonequilibrium states corresponding
to all possible rearrangement of the order of the diagonal elements in the HA representation.
Now, we need only show that the process ρA

1 ⊗ ρB
1 → ρA

2 ⊗ ρB
2 can be done by means

of a unitary evolution for the composite system AB. This is a straightforward conse-
quence of the well-known fact (see, e.g., von Neumann 1955, p.351 and Hatsopoulos
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NEW DEFINITIONS OF THERMODYNAMIC TEMPERATURE AND ENTROPY . . . A1-11

and Gyftopoulos 1976, p.136) that by designing a suitable time dependent Hamilton-
ian that starts and ends with the initial, separable one (HAB = HA ⊗ IA + IB ⊗HB) it
is possible to change any density operator unitarily into any other one with the same
set of eigenvalues. Indeed, the eigenvalues of ρA

1 , ρB
2 , ρA

2 , and ρB
1 are, respectively,

(p j)
A
1 = (p j)

B
2 = exp(− lnZB

2 −β2εB
j ) and (p j)

A
2 = (p j)

B
1 = exp(− lnZB

1 −β1εB
j ). Therefore,

by our particular construction, operators ρA
1 ⊗ρB

1 and ρA
2 ⊗ρB

2 have the same eigenvalues
(pi j)

AB
1 = (pi)

A
1 (p j)

B
1 = (pi j)

AB
2 = (pi)

A
2 (p j)

B
2 .

It is noteworthy that if we repeat the above considerations by using a system B identical
to A, i.e., for identical Hamiltonian operators (HB = HA), then states A1 and A2 are stable
equilibrium and we confirm that, in the QSM context, Assumption 1 is always fulfilled for
all pairs of stable equilibrium states.
In summary, in a QSM context in which only unitary protocols are conceivable, the domain
of validity of Assumption 1 includes all but only: (1) the (stable equilibrium) canonical
density operators of A; and (2) the pairs of nonequilibrium density operators of A each of
which can be unitarily reduced to a form with eigenvalues that are canonically distributed
with respect to the same but otherwise arbitrary set of energy levels εB

j (not necessarily the
eigenvalues of HA).
However, if one accepts that, at least in some limiting sense, non-unitary protocols may
be within feasible reach or are at least conceivable, then the domain of validity can be
broadened to include all nonequilibrium density operators. This would be the case if we
could smoothly control each eigenvalue of the given ρA

1 and ρA
2 so that each of them follows

the path of steepest energy descent (Beretta 2008, Eq.75) to the corresponding canonical
density operator with entropy −kTrρA

1 lnρA
1 and −kTrρA

2 lnρA
2 , respectively.

Theorem 2. Given a pair of states (A1, A2) of a system A such that A is separable and
uncorrelated from its environment, a system B in the environment of A, and an initial stable
equilibrium state Bse1, among all the weight processes for AB, standard with respect to B, in
which A goes from A1 to A2 and B begins in state Bse1, the energy EB

se2

⏐⏐sw,Bse1
A1A2

of system B

in its final state has a lower bound, EB
se2rev

⏐⏐sw,Bse1
A1A2

, which is reached if and only if the process
is reversible. Moreover, for all such reversible processes, system B ends in the same stable
equilibrium state Bse2rev. The proof is in Footnote 4.

4Proof of Theorem 2. Consider a weight process for AB, standard with respect to B, ΠAB = A1Bse1
w−→ A2Bse2,

a reversible weight processes for AB, standard with respect to B, ΠABrev = A1Bse1
wrev−−→ A2Bse2rev, and the corre-

sponding final energies of B, respectively, EB
se2

⏐⏐sw,Bse1
A1A2

and EB
se2rev

⏐⏐sw,Bse1
A1A2

. We will prove that:

(a) EB
se2rev

⏐⏐sw,Bse1
A1A2

≤ EB
se2

⏐⏐sw,Bse1
A1A2

;

(b) if also ΠAB is reversible, then EB
se2

⏐⏐sw,Bse1
A1A2

= EB
se2rev

⏐⏐sw,Bse1
A1A2

, and the end stable equilibrium state of B is the same,
i.e., Bse2 = Bse2rev;
(c) if EB

se2

⏐⏐sw,Bse1
A1A2

= EB
se2rev

⏐⏐sw,Bse1
A1A2

, then also ΠAB is reversible.

Proof of (a). Let us suppose, ab absurdo, that the energy of B in state Bse2 is lower than that in state Bse2rev.
Then, the composite process (−ΠABrev, ΠAB) would be a weight process for B in which, starting from the stable
equilibrium state Bse2rev, the energy of B is lowered and its regions of space have no net changes, in contrast with
Theorem 1. Therefore, EB

se2rev

⏐⏐sw,Bse1
A1A2

≤ EB
se2

⏐⏐sw,Bse1
A1A2

.
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A1-12 G.P. BERETTA AND E. ZANCHINI

Theorem 3. Consider a pair of states (A1, A2) of a system A such that A is separable and
uncorrelated from its environment, and two systems in the environment of A, B and C, in
given initial stable equilibrium states Bse1 and Cse1. Let ΠABrev and ΠACrev be reversible
weight processes for AB and for AC, both from A1 to A2 and standard with respect to B
and C respectively, with the given initial states Bse1 and Cse1 of B and C; let EB denote, for
shorthand, the final energy EB

se2rev

⏐⏐sw,Bse1
A1A2

of B in process ΠABrev and let EC denote the final

energy EC
se2rev

⏐⏐sw,Cse1
A1A2

of C in process ΠACrev. Then, if EB−EB
se1 is vanishing, EC−EC

se1 is
vanishing as well; if EB−EB

se1 is non vanishing, EC−EC
se1 is non vanishing and the ratio

(EB−EB
se1)

/
(EC−EC

se1) is positive. The proof is in Footnote 5.

Lemma 2. Consider a pair of systems, B and C, a pair of stable equilibrium states of
these systems, Bse1 and Cse1, and a system X in the environment of BC with an initial
state X1 such that: every stable equilibrium state of B with the same regions of space as
Bse1 can be interconnected with Bse1 by a reversible weight process for XB starting from
(X1,Bse1); every stable equilibrium state of C with the same regions of space as Cse1 can be
interconnected with Cse1 by a reversible weight process for XC starting from (X1,Cse1).

Proof of (b). If also process ΠAB is reversible, then, in addition to EB
se2rev

⏐⏐sw,Bse1
A1A2

≤ EB
se2

⏐⏐sw,Bse1
A1A2

, also the relation

EB
se2

⏐⏐sw,Bse1
A1A2

≤ EB
se2rev

⏐⏐sw,Bse1
A1A2

must hold by virtue of the proof of a) just given and, therefore, EB
se2rev

⏐⏐sw,Bse1
A1A2

=

EB
se2

⏐⏐sw,Bse1
A1A2

. On account of Postulate 2 and Lemma 1, the final value of the energy of B determines a unique final
stable equilibrium state of B; therefore Bse2 = Bse2rev.

Proof of (c). Let ΠAB be such that EB
se2

⏐⏐sw,Bse1
A1A2

= EB
se2rev

⏐⏐sw,Bse1
A1A2

. Then, the final states Bse2 and Bse2rev have the
same energy and, being stable equilibrium states, by Lemma 1 they must coincide. Thus, the composite process
(ΠAB, −ΠABrev) is a cycle for the isolated system ABC, where C is the environment of AB, where the only effect is
the return of the weight to its initial position. As a consequence, being a part of a cycle of the isolated system ABC,
process ΠAB is reversible. □

5Proof of Theorem 3. Assume that EB−EB
se1 is vanishing and that EC−EC

se1 is positive, and consider the
composite process (ΠABrev,−ΠACrev); this would be a reversible weight process for C in which the energy change
of C is negative, the regions of space occupied by C do not change and the initial state of C is a stable equilibrium
state, in contrast with Theorem 1. Assume now that EB−EB

se1 is vanishing and that EC−EC
se1 is negative, and

consider the composite process (ΠACrev,−ΠABrev); this would be a reversible weight process for C in which the
energy change of C is negative, the regions of space occupied by C do not change and the initial state of C is a
stable equilibrium state, in contrast with Theorem 1. Then, if EB−EB

se1 is vanishing, EC−EC
se1 is vanishing as

well.
Assume now that the energy change of B is negative, i.e., EB−EB

se1 < 0. Clearly, the energy change of C cannot
be zero, because this would imply EB−EB

se1 = 0. Suppose that the energy change of C is positive, EC−EC
se1 > 0,

and consider the composite process (ΠABrev,−ΠACrev). In this process, which is a cycle for A, system BC would
have performed a positive work, given (energy balance for BC) by the sum of two positive addenda, namely
W =−(EB−EB

se1)+(EC−EC
se1). On account of Postulates 4 and 3, one could supply back to system C a positive

work amount equal to (EC−EC
se1) and restore C to its initial state Cse1 by means of a composite weight process

ΠC = Cse2
w−→C3

w−→Cse1 where C3 has energy EC
3 = EC

se1. Thus, the composite process (ΠABrev,−ΠACrev,ΠC)

would be a again a weight process for B which violates Theorem 1. Therefore, if EB−EB
se1 is negative, EC−EC

se1
is negative as well.
Let us assume now that, in process ΠABrev, the energy change of B is positive. Then, in the reverse process
−ΠABrev, the energy change of B is negative and, as we have just proved, the energy change of C in the reverse
process −ΠACrev must be negative as well. Therefore, in process ΠACrev, the energy change of C is positive. □
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Denote by {(ΠBse1
XBrev;Π

Cse1
XCrev)} the set of all the pairs of reversible weight processes for XB

and for XC, standard with respect to B and C and with initial states (X1,Bse1) and (X1,Cse1)
respectively, and such that for each pair of processes, the final state X2 of X is the same.
Let {(Bse2;Cse2)} the set of pairs of final states of B and C which one obtains by the set of
pairs of processes {(ΠBse1

XBrev;Π
Cse1
XCrev)}, and let {(EB

se2;EC
se2)} be the corresponding values of

the energy of B and C. Then, the set of pairs of processes {(ΠBse1
XBrev;Π

Cse1
XCrev)} determines a

single valued and invertible function from the set {EB
se2} to the set {EC

se2},

EC = f B→C
11 (EB) , (5)

which is independent on the choice of system X and on the initial state X1 used to construct
the set of processes {(ΠBse1

XBrev;Π
Cse1
XCrev)}. The proof is in Footnote 6.

Remark. Lemma 2 plays a key role in the new definition of temperature that we propose
below. On the other hand, the statement and the proof of Lemma 2 require a considerable
effort to be fully understood. Therefore, to help the reader, we show here that the existence
of the function f B→C

11 (EB), as well as its differentiability in EB
se1, that we state later in

Assumption 2, can be easily shown in the usual framework of thermodynamics a posteriori,
i.e., once temperature and entropy are defined. Consider systems B and C in their initial
stable equilibrium states Bse1 and Cse1, with energy values EB

se1 and EC
se1 (and corresponding

temperatures T B
se1 and TC

se1) and pairs of reversible weight processes for XB and for XC,
standard with respect to B and C, with initial state X1 of the auxiliary system X and such
that for each pair of processes, the final state X2 of X is the same, so that the entropy change
of X is the same. In each pair of such processes, the entropy change ∆S of C is equal to
that of B, because both are equal to the opposite of the entropy change of X . Moreover, the
end states of B and C are stable equilibrium states and the regions of space occupied by
the systems do not change. For a closed system that occupies a fixed region of space, each
stable equilibrium state is determined uniquely either by the value of the energy, or by that
of the entropy, since entropy is a strictly increasing function of the energy. Therefore, the

6Proof of Lemma 2. Choose a system X and an initial state X1 of X , and consider a pair of reversible weight
processes (ΠBse1

XBrev;Π
Cse1
XCrev), which belongs to the set {(ΠBse1

XBrev;Π
Cse1
XCrev)}. Let X2, Bse2 and Cse2 be the final states

of X , B and C for this pair of processes. Choose now a system X ′ and an initial state X ′1 of X ′, and consider a pair
of reversible weight processes (ΠBse1

X ′Brev;Π
Cse1
X ′Crev), which belongs to the set {(ΠBse1

X ′Brev;Π
Cse1
X ′Crev)}. Let X ′2, Bse3 and

Cse3 be the final states of X , B and C for this pair of processes. We will prove that, if Bse3 coincides with Bse2, then
also Cse3 coincides with Cse2, so that the correspondence between the final stable equilibrium states of B and C is
not affected by either the choice of the auxiliary system, X or X ′, or the choice of the initial state of the auxiliary
system.
Consider the composite system XX ′BC, in the initial state X1X ′2Bse1Cse2, and consider the composite process
Π = (Π

Bse1
XBrev,−Π

Cse1
XCrev,−Π

Bse1
X ′Brev,Π

Cse1
X ′Crev), where −Π

Cse1
XCrev is the reverse of Π

Cse1
XCrev and −Π

Bse1
X ′Brev is the reverse

of Π
Bse1
X ′Brev. As easily verified, Π = X1X ′2Bse1Cse2

wrev−−→ X2X ′2Bse2Cse2
wrev−−→ X1X ′2Bse2Cse1

wrev−−→ X1X ′1Bse1Cse1
wrev−−→

X1X ′2Bse1Cse3, therefore, the final state of the composite system XX ′BC, after process Π, is X1X ′2Bse1Cse3. There-
fore, Π is a reversible weight process for C in which the regions of space occupied by the constituents of C have
no net change. If the energy of C in state Cse3 were lower than that in the initial state Cse2, then Π would violate
Theorem 1. If the energy of C in state Cse3 were higher than that in the initial state Cse2, then the reverse of Π

would violate Theorem 1. Therefore, the energy of C in state Cse3 must coincide with the energy of C in state Cse2,
i.e., on account of Postulate 2 and Lemma 1, the state Cse3 must coincide with Cse2. □
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final energy values EB and EC are determined uniquely by ∆S, so that the latter determines
a one-to-one correspondence between the final energy values EB and EC, that we denote by
EC = f B→C

11 (EB). In addition, when ∆S is very small, also the energy changes ∆EB and ∆EC

are very small, and one has ∆EB ≈ T B
se1∆S, ∆EC ≈ TC

se1∆S, so that ∆EC ≈ TC
se1∆EB/T B

se1, and
by considering the limit for ∆S→ 0 one obtains

lim
∆S→0

∆EC(∆S)
∆EB(∆S)

= lim
∆EB→0

∆EC(∆EB)

∆EB =
TC

se1
T B

se1
. (6)

In another remark, reported after our definition of temperature, we show, as an example,
how the function f B→C

11 (EB) is construed in the framework of quantum statistical mechanics
(Eq. 23).

Lemma 3. For a given pair of systems, B and C, consider an arbitrary pair of stable
equilibrium states (Bse1,Cse1) and the set of processes which defines the function EC =
f B→C
11 (EB) according to Lemma 2. Select another arbitrary stable equilibrium state Bse2

of system B and let Cse2 be the stable equilibrium state of system C such that EC
se2 =

f B→C
11 (EB

se2). Denote by EC = f B→C
22 (EB) the function defined by the set of reversible

processes {(ΠBse2
XBrev;Π

Cse2
XCrev)} according to Lemma 2. Then we have the identity

f B→C
11 (EB) = f B→C

22 (EB) for every EB . (7)

The proof is in Footnote 7.

Corollary 1. The function f B→C
11 (EB) defined through the set of pairs of processes

{(ΠBse1
XBrev;Π

Cse1
XCrev)}

is strictly increasing. The proof is in Footnote 8.

Remark. Since the function f B→C
11 (EB) is strictly increasing, it is invertible. The inverse of

the function
EC = f B→C

11 (EB) , (8)
will be denoted by

EB = f C→B
11 (EC) . (9)

7Proof of Lemma 3. Consider an arbitrary stable equilibrium state of system B with energy EB and denote
it by Bse3, i.e. EB

se3 = EB, and let Cse3 be the stable equilibrium state of system C such that EC
se3 = f B→C

22 (EB).
Then, the pair of composite processes (X1Bse1

wrev−−→ X2Bse2
wrev−−→ X3Bse3 , X1Cse1

wrev−−→ X2Cse2
wrev−−→ X3Cse3) exists

because EC
se2 = f B→C

11 (EB
se2) and EC

se3 = f B→C
22 (EB

se3), and it clearly belongs to the set of pairs of processes which
defines the function EC = f B→C

11 (EB), therefore, EC
se3 = f B→C

11 (EB
se3). □

8Proof of Corollary 1. Consider the pairs of stable equilibrium states (Bse2,Cse2) and (Bse3,Cse3), such that
EC

se2 = f B→C
11 (EB

se2), EC
se3 = f B→C

11 (EB
se3), and EB

se3 > EB
se2. We will prove that EC

se3 > EC
se2, i.e., f B→C

11 (EB
se3) >

f B→C
11 (EB

se2).
Consider the pair of composite processes (X2Bse2

wrev−−→ X1Bse1
wrev−−→ X3Bse3 , X2Cse2

wrev−−→ X1Cse1
wrev−−→ X3Cse3),

which exists because EC
se2 = f B→C

11 (EB
se2) and EC

se3 = f B→C
11 (EB

se3). In this pair of processes, the energy change
of B, EB

se3 −EB
se2, is positive. On account of Theorem 3, also the energy change of C must be positive, i.e.,

EC
se3 > EC

se2. □
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The domain of function f B→C
11 is the set of all the energy values of system B compatible

with the regions of space occupied by the constituents of B in state Bse1. The domain of
function f C→B

11 is the set of all the energy values of system C compatible with the regions of
space occupied by the constituents of C in state Cse1.

Lemma 4. Consider three systems B, C, and R, three stable equilibrium states Bse1, Cse1,
and Rse1, and the functions ER = f B→R

11 (EB), EC = f R→C
11 (ER), and EC = f B→C

11 (EB) defined
as in Lemma 2. Then,

f B→C
11 (EB) = f R→C

11 ( f B→R
11 (EB)) . (10)

The proof is in Footnote 9.

Assumption 2. The function f B→C
11 (EB) defined through the set of pairs of processes

{(ΠBse1
XBrev;Π

Cse1
XCrev)} is differentiable in EB

se1; in symbols

lim
EB→EB

se1

f B→C
11 (EB)− f B→C

11 (EB
se1)

EB−EB
se1

=
d f B→C

11
dEB

⏐⏐⏐⏐
EB

se1

. (16)

Below, in the Remark that follows the definition of temperature, we show that Assumption
2 is fulfilled within the quantum statistical mechanics framework, at least within the range
of validity of Assumption 1.

Corollary 2. The inverse function EB = f C→B
11 (EC) is differentiable in EC

se1, moreover if

d f B→C
11 /dEB⏐⏐

EB
se1
̸= 0

9Proof of Lemma 4. Consider an auxiliary system X , the pair of states (X1,X2), and the three processes
Π

Bse1
XBrev, Π

Cse1
XCrev, Π

Rse1
XRrev, respectively defined as follows: Π

Bse1
XBrev is a reversible weight process for XB with initial

and final states X1 and X2 for X , and initial state Bse1 for B; Π
Cse1
XCrev is a reversible weight process for XC with

initial and final states X1 and X2 for X , and initial state Cse1 for C; Π
Rse1
XRrev is a reversible weight process for XR

with initial and final states X1 and X2 for X , and initial state Rse1 for R. Let us denote by EB
se2, EC

se2, ER
se2 the energy

of the final states of B, C and R, respectively. The pair of processes (ΠBse1
XBrev,Π

Rse1
XRrev) belongs to the set of processes

{(ΠBse1
XBrev,Π

Rse1
XRrev)} that defines according to Lemma 2 the function ER = f B→R

11 (EB), therefore,

ER
se2 = f B→R

11 (EB
se2) . (11)

The pair of processes (ΠRse1
XRrev,Π

Cse1
XCrev) belongs to the set of processes {(ΠRse1

XRrev,Π
Cse1
XCrev)} that defines according

to Lemma 2 the function EC = f R→C
11 (ER), therefore,

EC
se2 = f R→C

11 (ER
se2) . (12)

The pair of processes (ΠBse1
XBrev,Π

Cse1
XCrev) belongs to the set of processes {(ΠBse1

XBrev,Π
Cse1
XCrev)} that defines according

to Lemma 2 the function EC = f B→C
11 (EB), therefore,

EC
se2 = f B→C

11 (EB
se2) . (13)

From (11) and (12) it follows that
EC

se2 = f R→C
11 ( f B→R

11 (EB
se2)) . (14)

Comparing (14) and (13) we find

f B→C
11 (EB

se2) = f R→C
11 ( f B→R

11 (EB
se2)) . (15)

Equation (10) follows immediately from (15) by repeating the above for all possible choices of the pair of states
(X1,X2). □
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then
d f C→B

11
dEC

⏐⏐⏐⏐
EC

se1

=
1

d f B→C
11

dEB

⏐⏐⏐⏐
EB

se1

. (17)

The proof is in Footnote 10.

Definition. Temperature of a stable equilibrium state. Let R be a reference system, and
let Rse1 be a reference stable equilibrium state of R. Both R and Rse1 are fixed once and for
all, and a positive real number, T R

se1, chosen arbitrarily, is associated with Rse1 and called
temperature of Rse1. Let B be any system, and Bse1 any stable equilibrium state of B.
Let us consider the set of pairs of processes {(ΠRse1

XRrev;Π
Bse1
XBrev)}, where Π

Rse1
XRrev is any

reversible weight process for XR standard with respect R and with initial state Rse1, Π
Bse1
XBrev

is any reversible weight process for XB standard with respect B and with initial state Bse1,
and X is a system which can be chosen and changed arbitrarily, as well as the initial
state of X . On account of Lemma 2 and of Assumption 2, the set of pairs of processes
{(ΠRse1

XRrev;Π
Bse1
XBrev)} defines a single valued and invertible function f R→B

11 (ER), from the
energy values of the stable equilibrium states of R with the same regions of space as Rse1
to the energy values of the stable equilibrium states of B with the same regions of space
as Bse1, which is differentiable in ER

se1. We define as temperature of system B in the stable
equilibrium state Bse1 the quantity T B

se1 such that

T B
se1

T R
se1

= lim
ER→ER

se1

f R→B
11 (ER)− f R→B

11 (ER
se1)

ER−ER
se1

=
d f R→B

11
dER

⏐⏐⏐⏐
ER

se1

. (18)

On account of Corollary 1, T B
se1 is non-negative. Since R and Rse1 have been fixed once and

for all, the temperature is a property of B, defined for all the stable equilibrium states of
B. Clearly, the property temperature is defined by Eq. (18) only with respect to the chosen
reference state Rse1 of the reference system R and up to the arbitrary multiplicative constant
T R

se1.

Remark. Agreement with quantum statistical mechanics. As an important example, we
show that the existence of the single valued function defined in Lemma 2, the differentiability
of that function (Assumption 2) and the definition of thermodynamic temperature given
by Eq. 18 are in agreement with the standard description of stable equilibrium states in
quantum statistical mechanics (QSM).
In QSM, the Hamiltonian operator H of a system defines the canonical density operators
that represent the stable equilibrium (maximum von Neumann entropy) states, namely,
the one-parameter family ρse(β ) = exp(−β H)/Z(β ), where Z(β ) = Trexp(−β H) is the
partition function. As is well known (see, e.g., (von Neumann 1955, p.392) and (Katz 1967,
p.45)), ρ(β ) is the maximizer of the von Neumann entropy functional SvN =−kTrρ lnρ

subject to the constraints Trρ = 1 and TrρH = E, where β is the Lagrange multiplier
associated with the latter constraint and is clearly a continuous function of E. The relations

10Proof of Corollary 2. Since Assumption 2 holds for any pair of systems, by exchanging B with C it implies
that also the function fC→B

11 (EC) is differentiable. Equation (17) follows from the theorem on the derivative of the
inverse function. □
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Ese(β ) =−∂ lnZ(β )/∂β , SvN,se(β ) = kβEse(β )+k lnZ(β ), C(β ) =−kβ 2∂Ese(β )/∂β =

k2β 2∂ 2 lnZ(β )/∂β 2 =−β∂SvN,se(β )/∂β determine the mean energy E, the von Neumann
entropy SvN,se and the heat capacity C, respectively, where k is Boltzmann’s constant. Since
C(β )/kβ 2 is positive, relation E = Ese(β ) is monotonic and hence invertible, to yield β =
β (E). Therefore, we may write SvN,se(E) = kE β (E)+ k lnZ(β (E)) and dSvN,se(E)/dE =
kβ (E).
Next, consider the function of E defined by the difference between the von Neumann
entropies SvN,se(E) and SvN,se(E1) of the two stable equilibrium states with energies E and
E1, respectively. Assuming that E1 is a fixed value, let us denote this function by

h1(E) = SvN,se(E)−SvN,se(E1) , (19)

its derivative by h′1, and its inverse by

h

1, so that the inverse function theorem yields the
identity

h′
1(h1(E)) =

1
h′1(

h

1(h1(E)))
. (20)

Clearly, h′1(E) = kβ (E) and indeed h1(E) is invertible under our Postulate 4 because for
normal systems operator H is unbounded from above and, therefore, β is positive and also
SvN,se(E) is invertible.
Now, select an initial stable equilibrium state for a system B and one for a system C, and
consider the pairs of processes adopted to define the function f B→C

11 in Lemma 2. In each
such pair of processes, since the von Neumann entropies of XB and XC do not change and
the von Neumann entropy change of X is fixed, it follows that the von Neumann entropy
change of C equals that of B, i.e., SC

vN,se(E
C)−SC

vN,se(E
C
1 ) = SB

vN,se(E
B)−SB

vN,se(E
B
1 ) and

so the relation between the energies of the end (stable equilibrium) states of B and C is such
that

hC
1 (E

C) = hB
1 (E

B) . (21)

Using the invertibility of function h1(E), we may rewrite this relation as

EC =

hC
1 (h

B
1 (E

B)) . (22)

Equation (22) shows that the single valued function defined by the pairs of processes defined
in Lemma 2 exists and is given by

EC = f B→C
11 (EB) =

hC
1 (h

B
1 (E

B)) . (23)

It is easily proved that f B→C
11 (EB) is differentiable. In fact, by applying the chain rule and

employing the identity (20) and again Eq. (23), one obtains

d f B→C
11 (EB)

dEB =

h′C
1 (h

B
1 (E

B))h′B1 (E
B) =

h′B1 (E
B)

h′C1 (

hC
1 (h

B
1 (E

B)))
=

h′B1 (E
B)

h′C1 ( f B→C
11 (EB))

=
h′B1 (E

B)

h′C1 (E
C)

.

(24)

Moreover, if instead of B and C we consider systems R and B and we write the definition of
temperature according to Eq. (18) and use Eq. (24), we obtain

T B
1

T R
1

=
d f R→B

11 (ER)

dER

⏐⏐⏐⏐
ER

1

=
h′R1 (E

R
1 )

h′B1 ( f R→B
11 (ER

1 ))
=

h′R1 (E
R
1 )

h′B1 (E
B
1 )

=
kβ R(ER

1 )

kβ B(EB
1 )

(25)
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in agreement with the usual QSM identification β (E1) = 1/kT1 for the temperature of the
stable equilibrium state with energy E1. From the continuity of β (E), it follows that also
our Assumption 3 below is in agreement within QSM.
Inserting the relation dSvN,se(E)/dE = kβ (E) and the identification β (E) = 1/kT (E) in

the integral calculus identity
∫ E2

E1

dSvN,se(E)
dE dE = SvN,se(E2)− SvN,se(E1), one obtains the

relation
∫ E2

E1
1

T (E) dE = SvN,se(E2)−SvN,se(E1) which substituted into our new definition of
entropy below, Eq. (40), yields

SA
1 = SA

0 −
[
SB

vN,se

(
EB

se2rev
⏐⏐sw,Bse1
A0A1

)
−SB

vN,se
(
EB

se1
)]

. (26)

This relation, together with the additivity property of the von Neumann entropy functional
and its invariance in unitary processes, essentially implies that our operational definition of
entropy is fully compatible with the von Neumann entropy.

Corollary 3. The temperature of the stable equilibrium states of any system B is a function
of its energy EB and the region of space RRRB it occupies, i.e.,

T B = T B(EB;RRRB) , (27)

provided the reference state Rse1 of the reference system R and the arbitrary multiplicative
constant T R

se1 that are necessary for the definition of T B according to Eq. (18) have been
chosen once and for all. The proof is in Footnote 11.

Remark. Choice of reference system and reference stable equilibrium state. In the
macroscopic domain, the following choice of R and of Rse1 is currently employed, because
it can be easily reproduced in any laboratory. The reference system R is composed of a
sufficient number of moles of pure water and its reference stable equilibrium state Rse1 is
any of the stable equilibrium states of R in which ice, liquid water, and water vapor coexist.
This choice is convenient because, up to the measurement accuracy available today, the
value of the limit in Eq. (18) is practically independent of both the number of moles in
system R and the particular choice of the reference state Rse1, as long as it belongs to the set
of triple-point states. With this selection for the reference stable equilibrium state, we obtain
the S.I. thermodynamic temperature, with unit called kelvin, by setting T R

se1 = 273.16 K.
In the microscopic field, it could be convenient to choose as a reference system Rµ a
few-particle monoatomic gas and as a reference state of Rµ the stable equilibrium state Rµ

se1
which according to the standard model in quantum statistical mechanics has a temperature
T Rµ

se1 = 273.16 K. Note that, by the next theorem (Theorem 4), we prove that the ratio of
two temperatures can be measured directly and is independent of the choice of the reference
system and of the reference stable equilibrium state. Hence, any system in any stable
equilibrium state such that the temperature of the system is known can be used as a new
reference system in a reference stable equilibrium state, without inconsistencies.

11Proof of Corollary 3. The conclusion is a direct consequence of Postulate 2, Lemma 1 and definition
(18). □
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Theorem 4. Let Bse1 be any stable equilibrium state of a system B and let Cse1 be any
stable equilibrium state of a system C, both with a non vanishing temperature. Then, the
ratio of the temperatures of Bse1 and Cse1, as defined via Eq. (18), is independent of the
choice of the reference system R and of the reference stable equilibrium state Rse1, and can
be measured directly by the following procedure.
Consider the set of pairs of processes {(ΠBse1

XBrev;Π
Cse1
XCrev)}, where Π

Bse1
XBrev is any reversible

weight processes for XB standard with respect B and with initial state Bse1, Π
Cse1
XCrev is any

reversible weight processes for XC standard with respect C, with initial state Cse1 and with
the same initial and final state of X as Π

Bse1
XBrev, and X is a system which can be chosen and

changed arbitrarily, as well as the initial state of X . On account of Lemma 2 the set of pairs
of processes {(ΠBse1

XBrev;Π
Cse1
XCrev)} defines a single valued and invertible function f B→C

11 (EB),
which is differentiable in EB

se1. The ratio of the temperatures TC
se1 and T B

se1 is given by

TC
se1

T B
se1

= lim
EB→EB

se1

f B→C
11 (EB)− f B→C

11 (EB
se1)

EB−EB
se1

=
d f B→C

11
dEB

⏐⏐⏐⏐
EB

se1

. (28)

The proof is in Footnote 12. Theorem 4 completes the definition of temperature of a stable
equilibrium state.

6. Definition of thermodynamic entropy for any state

Corollary 4. Consider a pair of stable equilibrium states (Bse1,Cse1) and the set of processes
which defines the function EC = f B→C

11 (EB) according to Lemma 2. Then, for every pair of
stable equilibrium states of B and C determined by the same regions of space RRRB and RRRC as
Bse1 and Cse1, respectively, and by the energy values EB and EC = f B→C

11 (EB),

TC(EC= f B→C
11 (EB);RRRC)

T B(EB;RRRB)
=

d f B→C
11 (EB)

dEB

⏐⏐⏐⏐
EB

. (32)

The proof is in Footnote 13.

12Proof of Theorem 4. By applying to Eq. (10) the theorem on the derivative of a composite function, one
obtains

d f B→C
11

dEB

⏐⏐⏐⏐
EB

se1

=
d f R→C

11
dER

⏐⏐⏐⏐
ER= f B→R

11 (EB
se1)

d f B→R
11

dEB

⏐⏐⏐⏐
EB

se1

. (29)

On account of Eq. (18), the first derivative at the right hand side of Eq. (29) can be rewritten as

d f R→C
11

dER

⏐⏐⏐⏐
ER

se1

=
TC

se1
T R

se1
. (30)

By applying Eqs. (17) and (18), the second derivative at the right hand side of Eq. (29) can be rewritten as

d f B→R
11

dEB

⏐⏐⏐⏐
EB

se1

=
1

d f R→B
11

dER

⏐⏐⏐⏐
ER

se1

=
1

T B
se1

T R
se1

=
T R

se1
T B

se1
. (31)

By combining Eqs. (29), (30) and (31) we obtain Eq. (28). □

13Proof of Corollary 4. For the fixed regions of space RRRB, consider the set of stable equilibrium states of
system B defined by varying the energy EB. Select a value of energy EB and denote the corresponding state in
this set by Bse2, i.e., EB

se2 = EB. Consider the pair of stable equilibrium states (Bse2,Cse2), where Cse2 is such that
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Assumption 3. For every system B and every choice of the regions of space RRRB occupied
by the constituents of B, the temperature of the stable equilibrium states of B is a continuous
function of the energy of B and is vanishing only in the stable equilibrium state with the
lowest energy for the given regions of space RRRB.

Lemma 5. For every pair of stable equilibrium states Bse1 and Bse2 of a system B, with a non
vanishing temperature and with the same regions of space RRRB occupied by the constituents
of B, the integral ∫ EB

se2

EB
se1

1
T B(EB;RRRB)

dEB , (34)

has a finite value and the same sign as EB
se2−EB

se1. The proof is in Footnote 14.

Theorem 5. Consider an arbitrarily chosen pair of states (A1,A2) of a system A, such that
A is separable and uncorrelated from its environment, another system B in the environment
of A and a reversible weight process Π

Bse1
ABrev for AB in which A goes from A1 to A2, standard

with respect to B and with initial state Bse1, chosen so that the temperature of B is non
vanishing both for Bse1 and for the final state Bse2. Denote by RRRB the regions of space
occupied by the constituents of B in its end states Bse1 and Bse2. Then the value of the
integral ∫ EB

se2rev

⏐⏐sw,Bse1
A1A2

EB
se1

1
T B(EB;RRRB)

dEB , (35)

depends only on the pair of states (A1,A2) of system A and is independent of the choice
of system B, of the initial stable equilibrium state Bse1, and of the details of the reversible
weight process for AB, standard with respect to B. The proof is in Footnote 15.

EC
se2 = f B→C

11 (EB
se2) and let EC = f B→C

22 (EB) be the function defined according to Lemma 2. Then, we have

TC(EC
se2;RRRC)

T B(EB
se2;RRRB)

=
TC

se2
T B

se2
=

d f B→C
22 (EB)

dEB

⏐⏐⏐⏐
EB

se2

=
d f B→C

11 (EB)

dEB

⏐⏐⏐⏐
EB

se2

, (33)

where the first equality obtains from Eq. (27), the second from Eq. (28) applied to f B→C
22 (EB), and the third from

Eq. (7). Recalling that EB
se2 = EB, that EB can be varied arbitrarily, and that EC

se2 = f B→C
11 (EB), Eq. (33) yields Eq.

(32). □

14Proof of Lemma 5. Since both EB
se1 and EB

se2 are greater than the lowest energy value for the given regions of
space RRRB, on account of Assumption 3 the function 1/T B(EB;RRRB) is defined and continuous in the whole interval.
Therefore the integral in Eq. (34) exists. Moreover, on account of Corollary 1, the function 1/T A(E;RRRA) has
positive values. Therefore, if EA

se2 > EA
se1 the integral in Eq. (34) has a positive value; if EA

se2 < EA
se1 the integral in

Eq. (34) has a negative value. □

15Proof of Theorem 5. On account of Theorem 2, once the initial state Bse1 has been chosen, the final state
Bse2 is determined uniquely. Therefore, the value of the integral in Eq. (35) can depend, at most, on the pair
of states (A1,A2) and on the choice of system B and of its initial state Bse1. Consider another system C and a
reversible weight process Π

Cse1
ACrev for AC in which A goes again from A1 to A2, standard with respect to C and with

an initial state Cse1 chosen arbitrarily, provided that the temperature of C is non vanishing both for Cse1 and for the
final state Cse2. We will prove that the integral∫ EC

se2rev

⏐⏐sw,Cse1
A1A2

EC
se1

1
TC(EC;RRRC)

dEC (36)
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Definition. Definition of thermodynamic entropy. Let (A1,A2) be any pair of states of a
system A, such that A is separable and uncorrelated from its environment, and let B be any
other system placed in the environment of A. We call entropy difference between A2 and A1
the quantity

SA
2 −SA

1 =−
∫ EB

se2rev

⏐⏐sw,Bse1
A1A2

EB
se1

1
T B(EB;RRRB)

dEB , (39)

where Bse1 and Bse2rev are the initial and the final state of B in any reversible weight process
for AB from A1 to A2, standard with respect to B, RRRB is the set of regions of space occupied
by the constituents of B in the states Bse1 and Bse2rev, and T B is the temperature of B. The
initial state Bse1 is chosen so that both T B

se1 and T B
se2rev are non vanishing. On account of

Theorem 5, the right hand side of Eq. (39) is determined uniquely by states A1 and A2.
Let A0 be a reference state of A, to which we assign an arbitrarily chosen value of entropy
SA

0 . Then, the value of the entropy of A in any other state A1 of A such that A is separable
and uncorrelated from its environment is determined uniquely by the equation

SA
1 = SA

0 −
∫ EB

se2rev

⏐⏐sw,Bse1
A0A1

EB
se1

1
T B(E;RRRB)

dEB , (40)

where Bse1 and Bse2rev are the initial and the final state of B in any reversible weight process
for AB from A0 to A1, standard with respect to B, T B

se1 and T B
se2rev are non vanishing, and

the other symbols have the same meaning as in Eq. (39). Such a process exists for every
state A1 such that A is separable and uncorrelated from its revenvironment, in a set of states
where Assumption 1 holds.

Lemma 6. Let (A1, A2) be any pair of states of a system A such that A is separable and
uncorrelated from its environment, and let B be any other system placed in the environment
of A. Let ΠABirr be any irreversible weight process for AB, standard with respect to B, from

has the same value as the integral in Eq. (35), implying that such value is independent of the choice of system B
and of the initial state Bse1, and, therefore, it depends only on the pair of states (A1,A2).
The set of pairs of processes {(ΠBse1

ABrev,Π
Cse1
ACrev)} such that the energy of the final state of B is in the range EB

se1 ≤
EB ≤ EB

se2 belongs to the set defined in Lemma 2, so that EC = f B→C
11 (EB) and, since this function is invertible

(Lemma 2), EB = fC→B
11 (EC) so that, in particular, EB

se1 = fC→B
11 (EC

se1) and EB
se2rev

⏐⏐sw,Bse1
A1A2

= fC→B
11

(
EC

se2rev

⏐⏐sw,Cse1
A1A2

)
.

Now, consider the change of integration variable in the definite integral (36) from EC = f B→C
11 (EB) to EB. By

virtue of Eq. (32) (Corollary 4) we have

dEC =
d f B→C

11 (EB)

dEB dEB =
TC( f B→C

11 (EB);RRRC)

T B(EB;RRRB)
dEB. (37)

Thus, the integral in Eq. (36) can be rewritten as follows∫ fC→B
11

(
EC

se2rev

⏐⏐sw,Cse1
A1A2

)
fC→B
11 (EC

se1)

1
TC( f B→C

11 (EB);RRRC)

TC( f B→C
11 (EB);RRRC)

T B(EB;RRRB)
dEB

=
∫ EB

se2rev

⏐⏐sw,Bse1
A1A2

EB
se1

1
T B(E;RRRB)

dEB (38)

□
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A1 to A2, and let Bse1 and Bse2irr be the end states of B in the process. Then

−
∫ EB

se2irr

⏐⏐sw,Bse1
A1A2

EB
se1

1
T B(EB;RRRB)

dEB < SA
2 −SA

1 . (41)

The proof is in Footnote 16.

Remark. Approximate measurement of the entropy difference. A conceptually differ-
ent but practically important issue is that, even within the domain of validity of Assumption
1 in a given nonequilibrium framework, the reversible weight processes for AB, standard
with respect to B, that are assumed to be conceivable, may nevertheless be difficult or prac-
tically impossible to implement, whereas it may be easier to approximate them irreversibly.
Consider a closed system A and a system B in its environment that fulfill Assumption 1 for
the pair of states (A1, A2) of A and state Bse1 of B, as well as for the pair of states (A2, A1)
of A and state Bse1′ of B. Assume that for both pairs we can perform an irreversible process
under the conditions of Lemma 6. In such cases, of course, system B ends in different
states than if the process were reversible: we denote the energies of the end states of B by
EB

se2irr

⏐⏐sw,Bse1
A1A2

and EB
se2′irr

⏐⏐sw,Bse1′
A2A1

, respectively. Then, applying Lemma 6 to the two processes
we obtain

−
∫ EB

se2irr

⏐⏐sw,Bse1
A1A2

EB
se1

1
T B(EB;RRRB)

dEB < SA
2 −SA

1 <
∫ EB

se2′irr

⏐⏐sw,Bse1′
A2A1

EB
se1′

1
T B(EB;RRRB)

dEB . (44)

Equation 44 allows one to establish experimentally, by performing two irreversible processes
(protocols), an upper and a lower bound to the value of the entropy difference SA

2 −SA
1 . By

repeated experiments it is thus possible to restrict the range between lower and upper bound
so as to converge towards an acceptable degree of approximation.

7. Principle of entropy non-decrease, additivity of entropy, maximum entropy princi-
ple

Based on the above construction, in this section we obtain some of the main standard
theorems about entropy and entropy change.

Theorem 6. Principle of entropy non-decrease in weight processes. Let (A1,A2) be a
pair of states of a system A such that A is separable and uncorrelated from its environment
and let A1

w−→ A2 be any weight process for A from A1 to A2. Then, the entropy difference

16Proof of Lemma 6. Let ΠABrev be any reversible weight process for AB, standard with respect to B, from
A1 to A2, with the same initial state Bse1 of B, and let Bse2rev be the final state of B in this process. On account of
Theorem 2,

EB
se2rev

⏐⏐sw,Bse1
A1A2

< EB
se2irr

⏐⏐sw,Bse1
A1A2

. (42)

Since T B is a positive function, from Eqs. (42) and (39) one obtains

−
∫ EB

se2irr

⏐⏐sw,Bse1
A1A2

EB
se1

1
T B(EB;RRRB)

dEB <−
∫ EB

se2rev

⏐⏐sw,Bse1
A1A2

EB
se1

1
T B(EB;RRRB)

dEB =SA
2−SA

1 . (43)

□
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SA
2 −SA

1 is equal to zero if and only if the weight process is reversible; it is strictly positive
if and only if the weight process is irreversible. The proof is in Footnote 17.

Theorem 7. Additivity of entropy differences. Consider the pair of states (C1 =A1B1,C2 =
A2B2) of the composite system C = AB, such that A, B and C are separable and uncorrelated
from their environment. Then,

SAB
2,2−SAB

1,1 = SA
2 −SA

1 +SB
2 −SB

1 . (47)

The proof is in Footnote 18.

Remark. As a consequence of Theorem 7, if the values of entropy are chosen so that they
are additive in the reference states, entropy results as an additive property.

17Proof of Theorem 6. If A1
w−→ A2 is reversible, then it is a special case of a reversible weight process for

AB, standard with respect to B, in which the initial stable equilibrium state of B does not change. Therefore,
EB

se2rev

⏐⏐sw,Bse1
A1A2

= EB
se1 and Eq. (39) yields

SA
2 −SA

1 =−
∫ EB

se2rev

⏐⏐sw,Bse1
A1A2

=EB
se1

EB
se1

1
T B(EB;RRRB)

dEB = 0 . (45)

If A1
w−→ A2 is irreversible, then it is a special case of an irreversible weight process for AB, standard with respect

to B, in which the initial stable equilibrium state of B does not change. Therefore, EB
se2irr

⏐⏐sw,Bse1
A1A2

= EB
se1 and Eq.

(41) yields

SA
2 −SA

1 >−
∫ EB

se2irr

⏐⏐sw,Bse1
A1A2

=EB
se1

EB
se1

1
T B(EB;RRRB)

dEB = 0 . (46)

Moreover, if a weight process A1
w−→ A2 for A is such that SA

2 −SA
1 = 0, then the process must be reversible, because

we just proved that for any irreversible weight process SA
2 −SA

1 > 0; if a weight process A1
w−→ A2 for A is such that

SA
2 −SA

1 > 0, then the process must be irreversible, because we just proved that for any reversible weight process
SA

2 −SA
1 = 0. □

18Proof of Theorem 7. Let us choose a system D (with fixed regions of space RRRD) in the environment of C,
and consider the processes ΠADrev = A1Dse1

wrev−−→ A2Dse3rev and ΠBDrev = B1Dse3rev
wrev−−→ B2Dse2rev. For process

ΠADrev Eq. (39) implies that

SA
2 −SA

1 =−
∫ ED

se3rev

⏐⏐sw,Dse1
A1A2

ED
se1

1
T D(ED;RRRD)

dED . (48)

For process ΠBDrev Eq. (39) implies that

SB
2 −SB

1 =−
∫ ED

se2rev

⏐⏐sw,Dse3rev
B1B2

ED
se3rev

⏐⏐sw,Dse1
A1A2

1
T D(ED;RRRD)

dED . (49)

The composite process (ΠADrev,ΠBDrev) = A1B1Dse1
wrev−−→ A2B1Dse3rev

wrev−−→ A2B2Dse2rev is a reversible weight
process from C1 = A1B1 to C2 = A2B2 for CD, standard with respect to D, in which the energy change of D is the
sum of its energy changes in the constituent processes ΠADrev and ΠBDrev. Therefore, Eq. (39) implies that

SC
2 −SC

1 =−
∫ ED

se2rev

⏐⏐sw,Dse1
C1C2

=ED
se3rev

⏐⏐sw,Dse1
A1A2

+ED
se2rev

⏐⏐sw,Dse3rev
B1B2

ED
se1

1
T D(ED;RRRD)

dED . (50)

Subtracting Eqs. (48) and (49) from Eq. (50) yields Eq. (47). □
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Theorem 8. Maximum entropy principle. Consider a closed system A, and the set of all
the states of A with a given value EA

1 of the energy, given regions of space RRRA, and such that
A is separable and uncorrelated from its environment. Then, the entropy of A has the highest
value in this set of states only in the unique stable equilibrium state Ase1 = Ase(EA

1 ;RRRA)

determined by RRRA and the value EA
1 . The proof is in Footnote 19.

8. Definition of entropy extended to sets of states that do not fulfill Assumption 1

In this section we extend our operational definition of thermodynamic entropy to a
broader class of system models for which Assumption 1 is fulfilled only within one or more
subsets of states. We begin by relaxing Assumption 1 as follows.

Relaxed Assumption 1. Any given state A1 of any closed system A such that A is separable
and uncorrelated from its environment, either belongs to a set ΣA where every pair of states
fulfills Assumption 1 or it can be reached from at least one state of ΣA by means of a weight
process for A and it can be the initial state of at least one weight process for A having as
final state a state of ΣA.

Definition. Definition of thermodynamic entropy. For the states in ΣA we adopt the
definition given in Section 6. For every state A1 that does not belong to ΣA, we associate
a range of entropy values, as follows. Let A1low be the state with highest entropy, in ΣA,
such that a weight process for A from A1low to A1 is possible, and let A1high be the state with
lowest entropy, in ΣA, such that a weight process for A from A1high to A1 is possible. The
existence of such states is granted by Relaxed Assumption 1. Then the range of entropy
values associated with state A1 is

SA
1low ≤ SA

1 ≤ SA
1high . (51)

Theorem 9. Principle of entropy non-decrease in weight processes. Let A1 and A2 be
two states of system A, such that all the entropy values in the range associated with A2 are
higher than all the entropy values in the range associated with A1, namely, SA

2low > SA
1high.

Then a weight process for A from A2 to A1 is impossible. The proof is in Footnote 20.

Theorem 10. Additivity of entropy. Consider a state (AB)1 =A1B1 of a composite system
AB fulfilling Relaxed Assumption 1 and such that A and B are separable and uncorrelated.
Denote by

[
SA

1low,S
A
1high

]
the range of entropy values associated with state A1, and with

19Proof of Theorem 8. Let A1 be any state different from Ase1 in the set of states of A considered here. On
account of Postulate 3 a zero work weight process A1

w−→ Ase1 exists and is irreversible because a zero work
weight process Ase1

w−→ A1 would violate the definition of stable equilibrium state. Therefore, Lemma 6 implies
SA

se1 > SA
1 . □

20Proof of Theorem 9. Weight processes A2low
w−→ A2 and A1

w−→ A1high exist by definition of A2low and of
A1high. Suppose that, contrary to the conclusion, a weight process A2

w−→ A1 exists. Then, a weight process A2low
w−→

A2
w−→ A1

w−→ A1high would exist and, since SA
2low > SA

1high, would violate the principle of entropy nondecrease in ΣA
already proved in Theorem 6. □
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[
SB

1low,S
B
1high

]
the range for state B1. If the entropy values in the reference states of A,

B and AB have been chosen so that in ΣAB the entropy of any state of AB in which A
and B are separable and uncorrelated equals the sum of the entropy values of A and B,
then the range of entropy values associated with state A1B1 is contained in the interval[
SA

1low +SB
1low,S

A
1high +SB

1high

]
. The proof is in Footnote 21.

9. Conclusions

We presented a rigorous and general logical construction of an operational definition
of thermodynamic entropy which can be applied, in principle, even to non-equilibrium
states of few-particle systems, provided they are separable and uncorrelated from their
environment. The new logical construction provides an operational definition of entropy
which requires neither the concept of heat nor that of thermal reservoir. Therefore, it
removes: (1) the logical limitations that restrict a priori the traditional definitions of entropy
to the equilibrium states of many-particle systems; and (2) the operational limitations that
restrict in practice to many-particle systems our previous definitions of non-equilibrium
entropy because they hinged on the notion of thermal reservoirs.

21Proof of Theorem 10. Let (AB)1low be the highest entropy state in ΣAB such that a weight process for AB
from (AB)1low to A1B1 is possible. A weight process for AB from state A1lowB1low to A1B1 is possible, because it
can be obtained by two separate weight processes for A and B. Therefore, SAB

1low,1low ≤ SAB
1low or, using the additivity

in ΣA×ΣB,
SA

1low +SB
1low = SAB

1low,1low ≤ SAB
1low . (52)

Similarly, let (AB)1high be the lowest entropy state in ΣAB such that a weight process for AB from A1B1 to (AB)1high
is possible. A weight process for AB from state A1B1 to A1highB1high is possible, because it can be obtained by two
separate weight processes for A and B. Thus, we have SAB

1high ≤ SAB
1high,1high, i.e.,

SAB
1high ≤ SAB

1high,1high = SA
1high +SB

1high . (53)

By definition, the entropy range associated with state (AB)1 is

SAB
1low ≤ SAB

1 ≤ SAB
1high . (54)

Therefore, combining Eqs. (52), (53), (54) yields our conclusion

SA
1low +SB

1low = SAB
1low,1low ≤ SAB

1low ≤ SAB
1 ≤ SAB

1high ≤ SAB
1high,1high = SA

1high +SB
1high . (55)

□
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