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The rate-controlled constrained equilibrium (RCCE) is a model reduction scheme for chem-
ical kinetics. It describes the evolution of a complex chemical system with acceptable
accuracy with a number of rate controlling constraints on the associated constrained-equi-
librium states of the system, much lower than the number of species in the underlying
detailed kinetic model (DKM). Successful approximation of the constrained-equilibrium
states requires accurate identification of the constraints. One promising procedure is the
fully automatable Approximate Singular Value Decomposition of the Actual Degrees of Dis-
equilibrium (ASVDADD) method that is capable of identifying the best constraints for a
given range of thermodynamic conditions and a required level of approximation.
ASVDADD is based on simple algebraic analysis of the results of the underlying DKM simu-
lation and is focused on the behavior of the degrees of disequilibrium (DoD) of the individ-
ual chemical reactions. In this paper, we introduce an alternative ASVDADD algorithm.
Unlike the original ASVDADD algorithm that require the direct computation of the
DKM-derived DoDs and the identification of the set of linearly independent reactions, in
the alternative algorithm, the components of the overall degree of disequilibrium vector
can be computed directly by casting the DKM as an RCCE simulation considering a set
of linearly independent constraints equaling the number of chemical species in size. The
effectiveness and robustness of the derived constraints from the alternative procedure is
examined in hydrogen/oxygen and methane/oxygen ignition delay simulations and the
results are compared with those obtained from DKM. [DOI: 10.1115/1.4050815]

Keywords: rate-controlled constrained equilibrium (RCCE), dimension reduction for
chemical kinetics, singular value decomposition (SVD), derived kinetics constraints

1 Introduction
An important issue in quantitative prediction of turbulent com-

bustion is realistic description of combustion chemistry. Consider-
ation of chemical kinetics in sufficient detail, typically involving
hundreds of species and thousands of reaction steps, is however
computationally intractable in turbulent flow simulations. To allevi-
ate this issue, significant efforts have been devoted toward develop-
ment of methods to simplify detailed kinetics as summarized in
Ref. [1]. Among the promising methods developed thus far, the
rate-controlled constrained equilibrium (RCCE) is particularly
appealing due to its basis in classical thermodynamics. This
method is originally introduced by Keck and Gillespie [2,3] and
further developed and applied by Metghalchi and co-workers [4–
19]. The method is also employed in many investigations after-
wards [8,9,11,12,20–26]. In RCCE, the evolution of a reacting
system is approximated by assuming that the governing detailed
kinetic model (DKM) separates the overall chemical dynamics
into fast and slow effects. The slow ones are characterized by a rela-
tively small number of slowly varying linear combinations of the

species concentrations called RCCE kinetic constraints. The fast
ones produce a most rapid local maximization of the entropy com-
patible with the conservation principles augmented by the RCCE
constraints, because on the time scale of the fast dynamics they
act effectively as additional conserved properties. As a result of
the approximation, the system is at any given time in a constrained
equilibrium state, which however shifts in time to adjust to the
slowly varying (and, hence, rate controlling) RCCE constraints. It
is noteworthy that exactly the same modeling approach has been
subsequently considered by various authors in the framework of
model order reduction strategies for general dynamical systems,
where it has been renamed as the “quasi-equilibrium approxima-
tion” often resulting in unfortunate overlooks of the preexisting
RCCE literature (see e.g. Ref. [27]). As long as the RCCE con-
straints can be assumed fixed for a given DKM and a given set of
initial and boundary conditions, the RCCE constraints identify a
low-dimensional manifold in composition space, where the time
evolution can be assumed to take place for the chosen level of
approximation. As discussed in Ref. [22], it is also noteworthy
that this manifold is not invariant under the dynamics generated
by the full DKM. But it is invariant under the approximate dynam-
ics generated by (1) using the full DKM to continuously update the
slowly changing values of the RCCE constraints and (2) updating
the constrained equilibrium state to the new values.
A very important issue in RCCE is selection of constraints. This

challenging issue has been addressed in limited investigations.
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In previous contributions [10,11], the C1 hydrocarbon fuel oxida-
tion process is studied and a very successful set of structurally
valid constraints are developed based on studying oxidation path-
ways. Algorithms for automated selection of constraints include
that developed by Yousefian [21] as well as other methods based
on level of importance to identify single species constraints by
determining the species governed by fast/slow mechanisms [28];
greedy algorithm [24,29] to select single species constraints by
cyclic direct integration of chemical kinetics; time scale analysis
[30–32]; and degree of disequilibrium analysis [12,33–37]. The
present work focuses on the latter method.
The paper is organized as follows. Fundamentals of RCCE, its

constraint potential formulation and an alternative formulation the
Approximate Singular Value Decomposition of the Actual
Degrees of Disequilibrium (ASVDADD) method for RCCE con-
straint selection-based degree of disequilibrium (DoD) analysis is
presented in Secs. 2 and 3. The results of RCCE application to cons-
tant energy/volume homogeneous ignition and combustion of
hydrogen and methane for different sets of initial conditions using
the derived constraints are provided in Sec. 4 along with a conclu-
sion in Sec. 5.

2 Governing Equations
In a chemically reacting system involving ns chemical species,

consider chemical reactions of the following form:

∑ns
j=1

ν+jℓZj =
∑ns
j=1

ν−jℓZj (ℓ = 1, . . . , nr) (1)

where Z is the vector of chemical species symbols, ν+ and ν− are
ns × nr matrices of stoichiometric coefficients of reactants and prod-
ucts, respectively, and nr is the number of reactions. In a macro-
scopically homogeneous and closed system, the evolution of the
system is governed by

dYj
dt

= Sj(t) with Sj(t) =
ω̇ jMj

ρ
(j = 1, 2, . . . , ns) (2)

where ρ is the density of the gas mixture and Yj, Mj, and ω̇ j denote
mass fraction, molar mass, and net production rate of chemical
species j, respectively, with

ω̇j =
∑nr
ℓ=1

ν jℓ Ωℓ =
∑nr
ℓ=1

(ν−jℓ − ν+jℓ)Ωℓ (3)

where νjℓ is the net stoichiometric coefficient of species j in reaction
ℓ and Ωℓ the net rate of reaction ℓ, defined at temperature T in terms
of species concentrations [Nj] and forward and backward reaction
rate constants k±ℓ (T) by

Ωℓ = k+ℓ (T)
∏ns
j=1

[Nj]
ν+jℓ − k−ℓ (T)

∏ns
j=1

[Nj]
ν−jℓ (4)

together with the principle of detailed balance

k+ℓ (T)
k−ℓ (T)

=
po
RuT

( )νℓ

exp −
Δgoℓ(T)
RuT

( )
(5)

where νℓ =
∑ns

j=1 ν jℓ, ν jℓ = ν−jℓ − ν+jℓ, Δgoℓ(T) =
∑ns

j=1 ν jℓgj(T , po),
and po, Ru, gj(T, po) are the standard pressure, the universal gas
constant, and the Gibbs free energy per unit mole of pure species
j at T and po, respectively.
The RCCE method provides a reduced representation of the

reacting system using nc scalars that impose constraints on the evo-
lution of the system. The constraints are assumed to be linear com-
binations of gas mixture species concentrations [2]

Ci =
∑ns
j=1

aij
Y j

Mj
(i = 1, 2, . . . , nc) (6)

where Ci and nc represent the value and the number of constraints.
The transformation matrix aij, a predefined constant here, represents
the contribution of the chemical species j to the constraint i.
We assume that the first ne of these linear combinations are the
elemental constraints, representing the concentrations of the
atomic elements that compose the molecular species in the DKM
(aELij represents the number of atoms of kind i in chemical species j).
Elemental constraints are conserved exactly by any well-defined
DKM. The remaining nc− ne are the slowly varying RCCE con-
straints, which according to the RCCE model are approximately
conserved on the fast time scale.
Inserting Eq. (2) into Eq. (6) yields the nc− ne rate equations for

the slowly varying RCCE constraints

dCi

dt
=
∑ns
j=1

aij
M j

Sj(t) (i = ne + 1, 2, . . . , nc) (7)

In RCCE, Eq. (2) is replaced by Eq. (7) which is advantageous since
Eq. (7) includes fewer ordinary differential equations (ODEs) with
reduced numerical stiffness.
The constrained-equilibrium composition is specified using the

method of undetermined Lagrange multipliers to maximize
the entropy subject to the instantaneous values of the energy, the
volume, and the constraints [10]. As detailed for example in
Refs. [3,13,38–40], this well-known procedure yields

Λj =
∑nc
i=1

aij γi (8)

where γi is the ith constraint potential and the vector Λ of the dimen-
sionless entropic chemical potentials is defined by

Λj = −
μj(T , ρ, Y)

RuT
(j = 1, 2, . . . , ns) (9)

As detailed in Sec. 3.1, for an ideal Gibbs–Dalton mixture of ideal
gases, from Eqs. (8) and (9) we obtain

YRCCE
j (t) =

Mj

ρ

p0
RuT(t)

exp −
gj(T(t), po)
RuT(t)

( )
exp −

∑nc
i=1

aijγi(t)

( )

(10)

where YRCCE
j is the mass fraction of species j at the

constrained-equilibrium state.

2.1 Rate Equations for the Constraint Potentials. The con-
straint potential representation of RCCE is obtained by transform-
ing Eq. (7) into a set of differential equations for the constraint
potentials. For prescribed rates of change of the density and the
energy (for example, equal to zero if the closed system has fixed
volume and heat losses are negligible), the differential equations
for the constraint potentials plus the energy balance equation consti-
tute a set of nc+ 1 equations describing the time variation of the
temperature and the nc constraint potentials

Qc
i

1
T

dT

dt
+
∑nc
k=1

Rc
ik

dγk
dt

= Cα
1
ρ

dρ

dt
+
∑ns
j=1

aij
M j

Sj(t) (11a)

Qe 1
T

dT

dt
+
∑nc
k=1

Re
k

dγk
dt

=
u

ρ

dρ

dt
+
du

dt
(11b)
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where the coefficients are

Qc
i =

∑ns
j=1

aij
Y j

M j

uj
RuT

; Rc
ik = −

∑ns
j=1

aijakj
Y j

M j

Qe = cvT +
∑ns
j=1

uj2

RuT

Yj
Mj

; Re
k = −

∑ns
j=1

akjuj
Yj
Mj

(12)

where uj, u, and cv denote the internal energy per unit mole of pure
species j, the specific internal energy per unit mass of the mixture,
and the specific heat capacity of the mixture at constant volume,
respectively. Notice that since chemical reactions conserve the
atomic elements, the second term on the right-hand side of
Eq. (11a) is different from zero only for i= ne+ 1, 2, …, nc and,
therefore, needs not be computed for (i= 1, 2, …, ne). Given an
initial thermodynamic state (T(0),γ1(0),…,γnc (0)), Eq. (11) are inte-
grated to obtain T(t) and γk(t) (k= 1, …, nc). When substituted into
Eq. (10), these variables provide the mass fractions of all the species
present in the chemical mechanism.
More general RCCE constraint potential formulations for open

systems or for prescribed enthalpy and pressure are given in
Refs. [13,35,38,39,41].

3 Constraint Identification Based on Degree of
Disequilibrium Analysis and the ASVDADD Algorithm
In this paper, the RCCE constraint selection is focused on the

behavior of the degrees of disequilibrium of the individual chemical
reactions introduced in Refs. [12,33]. This methodology consists of
a straightforward algebraic analysis of the results of probe simula-
tions based on the underlying DKM. In particular, we focus on
the variation of this methodology that computes an Approximate
Singular Value Decomposition of the Actual Degrees of Disequili-
brium (ASVDADD) [33] to find a low dimensional subspace in
chemical potential space (the space spanned by the vector Λ)
approximating the actual chemical potential and DoD traces with
a given accuracy.

3.1 Original ASVDADD Algorithm. In the following, a brief
summary of the ASVDADD algorithm is given.
I - In the matrix of stoichiometric coefficients νjℓ (j = 1, . . . , ns,

ℓ = 1, . . . , nr), a set of r= ns− ne linearly independent columns
νℓk (k= 1, …, r) is identified.
II - The DoD of reaction ℓ is related to the matrix of stoichio-

metric coefficients and the chemical potentials of the chemical
species in the gas mixture as follows:

ϕℓ(t) = −
1

RuT(t)

∑ns
j=1

ν jℓ μj(T(t), ρ, Y(t)) (ℓ = 1, 2, . . . , nr) (13)

where for an ideal Gibbs-Dalton mixture of ideal gases the chemical
potentials are related to the mass fractions Yj by

μ j(T , ρ, Y) = g j(T , po) + RuT ln
ρRuT

po
+ RuT ln

Yj
Mj

(14)

where, again, gj is the Gibbs free energy of pure species j.
Equation (13) indicates that the DoD of any chemical reaction ℓ

can be viewed as the scalar product

ϕℓ =
∑ns
j=1

Λjν jℓ = 〈Λ ∣ νℓ〉 (ℓ = 1, 2, . . . , nr) (15)

of the ℓth column νℓ of the stoichiometric matrix ν and vector of the
dimensionless entropic chemical potentials Λ. The dimensionless
vector Λ can be decomposed [33,35] as

Λ = ΛDoD + Λ⊥ (16)

into the sum of two orthogonal components that lie in the
two orthogonal subspaces of Rns often referred to as the “reactive
subspace” and the “inhert subspace” denoted, respectively, as
span({νℓ}) and span({aELi }) because one is the (ns− ne)-
dimensional linear span of the columns of the stoichiometric
matrix and the other the ne-dimensional linear span of the
columns of the transposed of the matrix aELij defining the elemental
constraints. The orthogonality of the two subspaces is guaranteed
by element conservation which can be written as

〈aELi ∣ νℓ〉 = 0 (i = 1, . . . , ne; ℓ = 1, . . . , nr) (17)

and, therefore, also implies that 〈Λ⊥ ∣ νℓ〉 = 0 for every ℓ and that

ϕℓ = 〈ΛDoD ∣ νℓ〉 (ℓ = 1, 2, . . . , nr) (18)

For this reason, ΛDoD is named the Overall Degree of Disequili-
brium vector (ODoD). It is the projection of the vector of dimen-
sionless entropic chemical potentials, Λ, onto the column space of
the overall stoichiometric matrix ν, or, that is the same, onto the sub-
space orthogonal to the elemental constraints aELi . This projection
can be obtained by either of the following equivalent ways.
II.I—Starting from the degrees of disequilibrium ϕk of a set of

linearly independent reactions, the ODoD vector ΛDoD can be
obtained using the relation [33]

ΛDoD =
∑r
k=1

ϕk

∑r
k′=1

Wkk′νℓk′ (19)

where r= ns− ne, ϕk denotes the DoD of the kth linearly indepen-
dent reaction with stoichiometric vector νℓk , and W =M−1 is the
inverse of the r × r matrix M whose components are calculated
using Mkk′ = 〈νℓk ∣ νℓk′ 〉. Matrix M is non-singular because of the
linear independence of the vectors νℓk , which from a basis for the
reactive subspace.
II.II—Starting from the vector Λ of the dimensionless entropic

potentials Λj, the ODoD vector ΛDoD can be obtained using the rela-
tion [35]

ΛDoD = Λ − Λ⊥ (20a)

where

Λ⊥ =
∑ne
i=1

γELi aELi (20b)

γELi =
∑ne
k=1

(G−1)ik〈aELk |Λ〉 (20c)

and G−1 is the inverse of the positive definite Gram matrix with ele-
ments

Gik = 〈aELi |aELk 〉 (20d)

For a generic linear-algebra proof of the construction of the projec-
tion (here, ΛDoD) of a vector (here, Λ) onto the subspace orthogonal
to the span of a set of linearly independent but not necessarily
orthogonal vectors (here the aELk ’s), see, e.g., the Appendix of
Ref. [42].
III—Use DKM derived values of ΛDoD at nm discrete times tm

and store the data in the ns × nm matrix D with elements

Djm = ΛDoD,j(tm) (j = 1, . . . , ns; m = 1, . . . , nm) (21)

where m labels the computational time grid points and we assume
that nm> ns.
IV—Compute the Singular Value Decomposition (SVD) of the

matrix D,

D = UΣVT (22)
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where U is an ns × ns orthogonal matrix of rank r, VT is an nm× nm
orthonormal matrix also of rank r, and Σ is a ns × nm diagonal matrix
having the singular values σi of matrix D in decreasing order as the
first r elements of the diagonal, i.e., for k= 1, …, r, and zeros else-
where. The singular values σi are the positive square roots of the r
positive eigenvalues σ2i of the positive semi-definite matrices DDT

and DTD. Since only the first r columns of U matrix are in the
column space of D, and only the first r rows of VT matrix (i.e.,
the first r columns of V matrix) are in the row space of D,
Eq. (22) can be replaced by the “reduced SVD” form

D = ŨΣ̃ṼT
(23)

where Ũ is the ns× r orthogonal matrix made up of the first r

columns of U, Ṽ
T
is the r× nm made up of the first r rows of VT ,

and Σ̃ is the r × r diagonal matrix with the r singular values σi in
decreasing order on the diagonal.

Now, defining γ̃ = Σ̃ṼT
, Eq. (23) becomes

Djm =
∑r
i=1

Uji σi Vmi =
∑r
i=1

Uji γ̃im (24)

or, equivalently, denoting the columns of Ũ by ũk,

ΛDoD(tm) =
∑r
i=1

ũi γ̃i(tm) (25)

Equation (25) shows that the time evolution ΛDoD(tm) of the ODoD
vector resulting from the solution of the full DKM lies in the
r-dimensional subspace of Rns spanned by the columns ũi of Ũ.
But a strength of the SVD stems from the Eckert–Young theorem

[43] which constitutes the basis of the ASVDADD algorithm
[33,35]. It states that the “best” approximate time evolution lying
in a lower dimensional subspace of Rns is obtained by simply trun-
cating the sum in Eq. (25). Thus, choosing any nc with nc− ne< r,
the best approximate time evolution lying in an (nc− ne)-
dimensional subspace is given by

Λapprox
DoD (tm)

∣∣
(nc−ne)-dim =

∑nc−ne
i=1

ũi γ̃i(tm) (26)

V—Next we observe that within the RCCE model Eq. (10)
inserted into Eq. (14) and then in Eq. (9) yields ΛRCCE

j =∑nc
i=1 aij γi or, equivalently, Λ

RCCE =
∑nc

i=1 ai γi so that its projection
onto the reactive subspace is

ΛRCCE
DoD =

∑nc
i=ne+1

γi ai (27)

Therefore, comparison of Eqs. (26) and (27) indicates that the
“best” nc− ne RCCE kinetic constraints (in addition to the ne ele-
mental constraints) are the first nc− ne columns of Ũ, which is the
ASVDADD recipe for RCCE constraint selection

aASVDADDi = aELi i = 1, . . . , ne
ũi−ne i = ne + 1, . . . , nc

{
(28)

Considering that all we need are the columns of the SVD matrix U,
it is noteworthy that they are the left-singular vectors of matrix D
and form a set of orthonormal eigenvectors of matrix DDT whose
eigenvalues are the squares of the singular values of D. Therefore,
the ASVDADD constraints can also be found by solving the eigen-
value problem for matrix DDT .
VI—As a result, the constraint Eqs. (6) are set as follows:

CEL
i =

∑ns
j=1

aELij
Y j

Mj
(i = 1, . . . , ne) (29a)

Ci =
∑ns
j=1

U(i−ne)j
Y j

Mj
(i = ne + 1, . . . , nc) (29b)

Note that if we choose nc= ne+ r= ns the RCCE model consid-
ers all the r columns of matrix Ũ as kinetic constraints, and, there-
fore, it involves no approximation: for the same initial conditions,
it yields the exact DKM solution. The number of kinetic con-
straints can be decreased by abandoning the last ne+ r− nc=
ns − nc columns of matrix Ũ, giving rise to a hierarchy of RCCE
approximate solutions of decreasing accuracy with respect to the
exact DKM solution.

3.2 Inclusion of Prescribed Constraints. In the RCCE litera-
ture, some constraints have been identified on the basis of important
kinetic considerations, for example, the total number of moles is
often considered a rate controlling constraint based on the general
observation that it is conserved by two-body reactions and only
the much slower three-body reactions can change it.
The ASVDADD approach can be readily adapted to a set

of np (linearly independent) prescribed constraints aPCq , with
q = 1, 2, . . . , np, by simply “appending” them to the set of ele-
mental constraints aELi , so that the linear span of the augmented
set is ne+ np-dimensional. More explicitly, Eq. (20) then become

ΛDoD = Λ − Λ⊥ (30a)

where

Λ⊥ =
∑ne+np
i=1

γEL+PCi aEL+PCi (30b)

γEL+PCi =
∑ne+np
k=1

(G−1)ik〈aEL+PCk |Λ〉 i = 1, . . . , ne + np (30c)

aEL+PCi =
aELi i = 1, . . . , ne
aPCi−ne i = ne + 1, . . . , ne + np

{
(30d)

and G−1 is the inverse of the positive definite Gram matrix with
elements

Gik = 〈aEL+PCi |aEL+PCk 〉 (30e)

In this case, the vector ΛDoD evolves in the (ns−ne−np)-
dimensional subspace of Rns orthogonal to the elemental and the
prescribed constraints, which for the particular case when the total
number of moles is the only prescribed constraint, is the linear
span of the stoichiometric vectors νℓ of the two-body reactions in
the DKM. Equation (28) extends as follows:

aASVDADDi =
aELi i = 1, . . . , ne
aPCi−ne i = ne + 1, . . . , ne + np
ũi−ne−np i = ne + np + 1, . . . , nc

⎧⎨
⎩ (31)

3.3 Alternative ASVDADD Algorithm. Alternatively to
steps II.I and II.II above, which require the direct computation of
the DKM-derived DoDs and the identification of the set of linearly
independent reactions, the components of the ΛDoD vector can be
computed directly by casting the DKM as an RCCE simulation
with the following set of ns linearly independent constraints

CEL+PC
i =

∑ns
j=1

aEL+PCij

Y j

Mj
(i = 1, . . . , ne + np) (32a)

Ci =
∑ns
j=1

δij
Y j

Mj
(i = ne + np + 1, . . . , ns) (32b)
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Notice that the ns × ns matrix a∗ of constraint coefficients, defined
by the elements

a∗ij = aEL+PCij

for i = 1, . . . , ne + np and a∗ij = δij for i = ne + np

+ 1, . . . , ns (33)

is invertible owing to the linear independence of the constraints.
Denoting its inverse matrix by a−1∗ , we may invert Eq. (8) to yield

γ∗i =
∑ns
i=1

Λ∗
j (a

−1
∗ ) ji (34)

In this way, the DKM model can be replaced by a fully equivalent
RCCE model with ns constraints, obtained by considering as con-
straints, in addition to the ne+ np elemental plus prescribed con-
straints, the mole fractions of the last ns− ne− np species in the
species list. Different orderings of the species list give different
RCCE models that are all fully equivalent to the DKM model pro-
vided that the mole fractions are initially all nonvanishing. Other-
wise, exact equivalence is obtained by replacing the vanishing
initial mole fractions with very small values, say 10−20, for both
the RCCE and DKM simulation.
At this stage, we may proceed in two equivalent ways. The first is

to run the DKM starting from the slightly modified initial condi-
tions, to obtain the time dependences of the temperature, T*(t),
and of the mass fractions Yj*(t). These, inserted in Eq. (14) yield
the time dependence of the chemical potentials and hence of the
entropic chemical potentials Λ*j (t), which in turn, using Eq. (34)
give the constraint potentials γ*i (t). The second route is to solve
Eqs. (11) for the above equivalent RCCE simulation with ns con-
straints, defined by Eqs. (32), to obtain directly the time depen-
dences of the temperature, T*(t), and of the constraint potentials
γ*k (t), which inserted in Eq. (8) yield the entropic chemical poten-
tials Λ*j (t).
From the γ*i(t)’s and Eq. (30b), we obtain the time dependences

Λ∗
⊥j(t) =

∑ne+np
k=1 γ∗k (t) a

∗
kj of the components of vector Λ∗

⊥(t), so that
finally, using Eq. (30a), we obtain the ODoD vector

Λ∗
DoD(t) = Λ∗(t) −

∑ne+np
i=1

γ∗i (t) a
EL+PC
i (35)

which can then be subjected to the SVD as described in steps III–VI
above.
A noteworthy advantage of the particular set of constraints

defined by Eqs. (32) and (33) is that we can write

Λ∗
j (t) =

∑ne+np
i=1

γ∗i (t) a
EL+PC
ij +

∑ns
i=ne+np+1

γ∗i (t) δij (36)

which compared with Eq. (35) shows that vector Λ∗
DoD(t) has only

r′ = ns− ne− np nonzero components,

Λ∗
DoD,j(t) = γ∗j (t) for j > ne + np whereas Λ∗

DoD,j(t)

= 0 for j ≤ ne + np (37)

allowing the following simplification of the SVD computation in
steps III–VI.
In fact, using the values of Λ∗

DoD at nm discrete time instants tm,
the matrix D defined in step III has entries in the first ne+ np
rows that are all zero. Therefore, the SVD can be conveniently
applied to the r′ × nm submatrix D∗ defined by the elements

D∗
jm = Λ∗

DoD,ne+np+j(tm)

(j = 1, . . . , r′ = ns − ne − np; m = 1, . . . , nm)
(38)

so that

D∗ = U∗Σ∗V∗T (39)

where U∗ is an r′ × r′ orthogonal full rank matrix, V∗T is an nm× nm
orthonormal matrix also of rank r′, and Σ∗ is an r′ × nm diagonal
matrix having the singular values σ∗i of matrix D∗ in decreasing
order on the diagonal of the left r′ × r′ square submatrix and zero
entries in all columns between r′ + 1 and nm. Note that all r′
columns of matrix U∗ are in the column space of D∗ but only the
first r′ rows of V∗T (or the first r′ columns of V∗) are in the row
space of D∗. This means that Eq. (39) can be replaced by the
“reduced SVD”

D∗ = U∗Σ̃∗Ṽ∗T (40)

As before Ṽ∗T is an r′ × nm matrix, and Σ̃∗ is r′ × r′ diagonal.
Finally, to obtain the ns× r′ matrix Ũ

∗
whose columns ũk are the

ASVDADD constraints as defined in steps IV and V, we “mount”
again, on top of the square matrix U∗, the ne+ np rows with all
entries equal to zero. Then, Eq. (28), i.e., the ASVDADD recipe
for RCCE constraint selection, extends as follows. For an RCCE
model with nc constraints, the “best” nc− ne− np kinetic constraints,
additional to the ne+ np elemental plus prescribed constraints, are
the first nc− ne− np columns of Ũ

∗
,

aASVDADD∗i =
aELi i = 1, . . . , ne
aPCi−ne i = ne + 1, . . . , ne + np
ũ∗i−ne−np i = ne + np + 1, . . . , nc

⎧⎨
⎩ (41)

For every choice of nc, the sets of constraints obtained by
Eqs. (41) and (31) are different. But in A, we prove that they are
entirely equivalent in that they span exactly the same nc-
-dimensional subspace of Rns , in other words, we prove that the
columns of aASVDADD∗ are linear combinations of those of
aASVDADD (and viceversa).
The effectiveness and robustness of RCCE models based on the

ASVDADD constraint selection procedure is demonstrated in
Refs. [33–35] for several simulations of increasing difficulty includ-
ing (1) a one-dimensional expansion of the products of the hydro-
gen/oxygen combustion in a supersonic nozzle (ns= 8 species, ne
= 2 elements, nr= 24 reactions); (2) methane/oxygen combustion
in the same supersonic nozzle (ns= 29 species, ne= 3 elements, nr
= 133 reactions); and (3) ignition delay simulation of homogeneous
methane/air mixture (ns= 53 species, ne= 5 elements, nr= 325
reactions).

4 Results
In this section, we present and discuss ignition delay simulations

of H2/O2 and CH4/O2 mixtures in a constant energy/volume per-
fectly stirred reactor (PSR) for different initial pressures and tem-
peratures. The assumed DKM for the H2/O2 mixture includes
ns = 8 species, ne= 2 elements, and the nr= 24 reaction steps [12]
listed in Table 1 where the r= ns− ne= 6 linearly independent reac-
tions chosen for use in Eq. (19) are ℓk= 1, 11, 12, 13, 14, 20 with k=
1, …, 6.

4.1 RCCE Simulations. First, we considered a 3 × 3 grid con-
sisting of the following three temperatures and three pressures:
(1660 K, 1310 K, 1080 K) and (100 atm, 10 atm, 1 atm) for the
H2/O2 mixture. These values are evenly distanced on a log (p)
versus 1/T scale. Tables 2–5 list the six derived constraints and
the constraint-related singular values for the initial conditions of
(p= 1 atm and T= 1660 K), (p= 100 atm and T= 1660 K), (p= 1
atm and T= 1080 K), and (p= 100 atm and T= 1080 K), respec-
tively. The sum of the six derived constraints and the two chemical
element constraints form the maximum number of constraints avail-
able for RCCE simulations, which is 8. In order to see the effect of
number of constraints used, RCCE simulations were performed for
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three sets of derived constraints. In the first, the four constraints with
the largest singular values were selected, in the second the first 3,
and in the third only, the first 2, resulting, respectively, in a total
of 6, 5, and 4 constraints. The simulation results are shown in
Figs. 1(a), 2(a), and 3(a) where DKM and RCCE predicted ignition

temperatures are compared. Results show excellent agreement
between DKM and RCCE predicted temperatures, when six total
constraints are used (not shown in the figures). In these simulations,
the maximum difference in predicted RCCE and DKM ignition
delay times of all the cases is 3.5%. The ignition delay time is
defined as the time needed for 10% rise over the initial temperature.
Considering the uncertainties inherent in thermochemical parame-
ters used in these computations, it is reasonable to consider these
differences as insignificant and hence assume that only two
derived constraints are needed for accurate RCCE simulation of
temperature when constraints are obtained for individual cases.
The Eckart–Young theorem says that ‖D‖2 = σ1 and

‖D − Di‖2 = σi+1, where ‖ · ‖2 denotes the spectral norm and Di

is the approximation of D obtained from its SVD truncated by
keeping only the first i singular values and setting the others to
zero. Therefore, the ratios σi+1/σ1 listed in Tables 2–5 represent
these errors normalized by the spectral norm of the exact D. We
see that if we want an overall error of less than 5% in the prediction
of the ODoD, the first case requires three constraints, the second,
third and fourth require only two constraints which is consistent
with the minimum number of constraints required to keep ignition
delay time error small. The tables list also the value of the alterna-
tive error measure

δFro,i =

��������∑r

k=i+1

σ2k

√ / �������∑r
k=1

σ2k

√
(42)

based on the fact that the Eckart–Young theorem also says that
‖D‖Fro = (

∑r
k=1 σ

2
k )

1/2 and ‖D − Di‖Fro = (
∑r

k=i+1 σ
2
k )

1/2 where
‖ · ‖Fro denotes the Frobenius norm.
The performance of the alternative SVD formulation with and

without prescribed constraints is assessed by recalculating RCCE
predicted ignition temperatures of the previous cases. These simula-
tions plus the previous ones encompasses four RCCE/SVD models:
(1) ASVDADD original model that requires the identification of

Table 1 H2/O2 detailed kinetics model

ℓ Reaction ℓ A+
ℓ b+ℓ E+

ℓ

1 O + O +M = O2 +M 1.20E + 17 −1 0
2 O + H +M = OH +M 5.00E + 17 −1 0
3 H + H +M = H2 +M 1.00E + 18 −1 0
4 H + H + H2 = H2 + H2 9.00E + 16 −0.6 0
5 H + H + H2O = H2 + H2O 6.00E + 19 −1.3 0
6 H + OH +M = H2O +M 2.20E + 22 −2 0
7 H + O2 +M = HO2 +M 2.80E + 18 −0.9 0
8 H + O2 + O2 = HO2 + O2 2.08E + 19 −1.2 0
9 H + O2 + H2O = HO2 + H2O 1.13E + 19 −0.8 0
10 OH + OH +M = H2O2 +M 7.40E + 13 −0.4 0
11 O + H2 = H + OH 3.87E + 04 2.7 6260
12 O + HO2 = OH + O2 2.00E + 13 0 0
13 O + H2O2 = OH + HO2 9.63E + 06 2 4000
14 H + O2 = O + OH 2.65E + 16 −0.7 17,041
15 H + HO2 = O + H2O 3.97E + 12 0 671
16 H + HO2 = O2 + H2 4.48E + 13 0 1068
17 H + HO2 = OH + OH 8.40E + 13 0 635
18 H + H2O2 = HO2 + H2 1.21E + 07 2 5200
19 H + H2O2 = OH + H2O 1.00E + 13 0 3600
20 OH + H2 = H + H2O 2.16E + 08 1.5 3430
21 OH + OH = O + H2O 3.57E + 04 2.4 −2110
22 OH + HO2 = O2 + H2O 1.45E + 13 0 −500
23 OH + H2O2 = HO2 + H2O 2.00E + 12 0 427
24 HO2 + HO2 = O2 + H2O2 1.30E + 11 0 −1630

Note: The units of A+
ℓ and E+

ℓ for use in Eq. (4) for k+ℓ (T) =
A+
ℓ
b+
ℓ exp (−E+

ℓ /RuT) are mole-cm-s-K and cal/mol, respectively. The six
linearly independent reactions chosen for use in Eq. (19) are reactions 1,
11, 12, 13, 14 and 20.

Table 2 ASVDADD derived constraints for initial conditions of p=1 atm and T=1660 K

i H O O2 OH HO2 H2O2 H2 H2O σi σi+1/σ1 δFro,i

1 0.4179 0.2269 0.1574 −0.179 0.2002 −0.0526 −0.0526 −0.6581 128.5005 39.36% 37.08%
2 −0.5256 −0.5925 0.1986 −0.348 0.0634 0.3007 0.3007 −0.1848 50.5725 6.36% 6.22%
3 −0.092 −0.1222 0.5041 0.1717 0.0181 −0.6947 −0.6947 0.2957 8.1751 1.82% 1.94%
4 0.2715 −0.59 −0.1842 0.3288 0.5643 −0.1665 −0.1665 −0.166 2.3384 0.95% 0.95%
5 0.3302 −0.3114 0.4137 0.3813 −0.6042 0.251 0.251 −0.1911 1.2183 0.39% 0.36%
6 −0.5037 0.1824 −0.2449 0.6932 −0.0366 0.0098 0.0098 −0.3324 0.5043 0.00% 0.00%

Table 3 ASVDADD derived constraints for initial conditions of p=100 atm and T=1660 K

i H O O2 OH HO2 H2O2 H2 H2O σi σi+1/σ1 δFro,i

1 0.3825 0.1941 0.1565 −0.2089 0.2172 −0.0328 0.5045 −0.6672 60.6634 23.95% 23.45%
2 −0.5535 −0.5823 0.3709 −0.256 −0.0296 0.1056 0.3693 −0.0552 14.5282 2.54% 2.85%
3 0.1461 −0.1097 0.424 0.5311 −0.0465 −0.6639 0.1971 0.1515 1.5412 1.25% 1.43%
4 0.0583 −0.5539 −0.2992 0.48 0.4075 0.1191 −0.2111 −0.3809 0.7595 0.73% 0.74%
5 0.1853 −0.0582 0.266 0.3257 −0.7137 0.4465 −0.08 −0.2651 0.4445 0.22% 0.21%
6 −0.6197 0.4437 -0.285 0.4347 −0.0591 0.0082 0.3204 −0.2065 0.1331 0.00% 0.00%

Table 4 ASVDADD derived constraints for initial conditions of p=1 atm and T=1080 K

i H O O2 OH HO2 H2O2 H2 H2O σi σi+1/σ1 δFro,i

1 0.3384 0.1564 0.1195 −0.2995 0.2331 0.0594 0.4855 −0.6808 136.7955 12.65% 13.20%
2 −0.5492 −0.5297 0.4518 −0.1888 −0.0602 −0.0509 0.4129 0.0371 17.3016 4.13% 4.12%
3 0.2062 0.1433 0.3608 0.6157 −0.1575 −0.5835 0.2499 0.0013 5.6562 0.37% 0.46%
4 −0.0855 −0.5123 −0.3184 0.475 0.5381 −0.0419 −0.1035 −0.3183 0.5008 0.27% 0.28%
5 0.4518 −0.4622 0.3126 0.1409 −0.446 0.3932 −0.2682 −0.1984 0.3663 0.08% 0.08%
6 −0.4751 0.3071 −0.1891 0.4083 −0.3976 0.4047 0.179 −0.3516 0.1094 0.00% 0.00%
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linearly independent reactions to determine the constraints abbrevi-
ated to SVD, henceforth, (2) ASVDADDwith prescribed constraints
which derives the constraints following ASVDADD approach;
however, it only the identification of linearly independent
two-body reactions when the molar constraint, which is independent
of two-body reactions, is considered as an assigned constraint
(abbreviated to SVDP), (3) alternative ASVDADD model that do
not require the identification of linearly independent reactions to
compute the constraints as a counterpart of the SVDmodel (abbrevi-
ated to ASVD), and (4) alternative ASVDADD model with pre-
scribed constraints as a counterpart of the SVDP model
(abbreviated to ASVDP). The simulation results of the SVDP,
ASVD, and ASVDP models are shown in Figs. 1–3 where
DKM and RCCE predicted ignition temperatures are compared.
Ignition delay time error in RCCE simulations with five total con-
straints is below 5% in all cases; however, the same is not true
for SVDP and ASVDP cases with four total constraints in
which the error is not acceptable. This result is surprising since
SVDP and ASVDP are counterparts to SVD and ASVD with

the replacement of one derived constraint with the molar con-
straint considering its success as a “universal” constraint [10].
Figure 4 shows constraint potentials in exact RCCE simulations
with six derived constraints for SVD and ASVD models and
with five derived and molar constraints for SVDP and ASVDP
models. As can be seen the SVD and ASVD models have two
derived constraint potentials with significant non-zero values
while it is three for SVDP and ASVDP models which confirms
the previous result that for SVDP and ASVDP models a
minimum number of five total constraints is necessary for accurate
simulations. Figure 5 shows constraint potentials in reduced
RCCE simulations with five derived constraints for SVD and
ASVD models and with two derived and molar constraints for
SVDP and ASVDP models. The consistency in the predictions
of the three constraint potentials in the exact simulations
SVD(8), SVDP(8), ASVD(8), and ASVDP(8) and the reduced
ones SVD(5), SVDP(5), ASVD(5) and ASVDP(5) in Fig. 5 dem-
onstrates the ability of the reduced RCCE model with five total
constraints in the accurate prediction of kinetics.

Table 5 ASVDADD derived constraints for initial conditions of p=100atm and T=1080 K

i H O O2 OH HO2 H2O2 H2 H2O σi σi+1/σ1 δFro,i

1 0.3051 0.127 0.1028 −0.357 0.2325 0.1199 0.4703 −0.6805 314.9413 9.26% 9.53%
2 0.5205 0.4889 −0.488 0.0672 0.0472 0.1878 −0.4553 −0.0499 29.1703 2.42% 2.43%
3 0.3326 0.2624 0.2754 0.6001 −0.1085 −0.5672 0.2171 −0.062 7.6358 0.27% 0.28%
4 −0.0558 0.4361 −0.0238 −0.5308 0.2999 −0.4555 0.1452 0.4537 0.8465 0.07% 0.07%
5 0.286 0.1745 0.462 −0.3353 −0.6921 0.2176 −0.0327 0.1858 0.2094 0.03% 0.03%
6 −0.5799 0.5926 −0.2114 0.1744 −0.3037 0.2011 0.2924 −0.139 0.0945 0.00% 0.00%

Fig. 1 RCCE and DKM (solid lines) temperature predictions of stoichiometric H2/O2 combustion at initial temperature
of 1080 K. Total number of constraints for RCCE is 5 (dashed lines) and 4 (dotted lines).
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Fig. 2 RCCE and DKM (solid lines) temperature predictions of stoichiometric H2/O2 combustion at initial tem-
perature of 1310 K. Total number of constraints for RCCE is 5 (dashed lines) and 4 (dotted lines).

Fig. 3 RCCE and DKM (solid lines) temperature predictions of stoichiometric H2/O2 combustion at initial tem-
perature of 1660 K. Total number of constraints for RCCE is 5 (dashed lines) and 4 (dotted lines).
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Fig. 4 Constraint potential predictions of stoichiometric H2/O2 combustion at initial temperature of 1080 K. Total
number of constraints for RCCE is 8.

Fig. 5 Comparison of three constraint potentials in exact and reduced RCCE simulations of stoichiometric H2/O2
combustion at initial temperature of 1080 K. Total number of constraints is 5 in the reduced RCCE simulation.
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Fig. 6 RCCE and DKM temperature predictions of stoichiometric CH4/O2 combustion at initial temperature and
pressure of 1500 K and 1.0 atm, respectively, using the 29-species 132-reactions CH4/O2 system described in
Ref. [10]

Fig. 7 RCCE and DKM temperature predictions of stoichiometric CH4/O2 combustion at initial temperature and
pressure of 1500 K and 1.0 atm, respectively, using a 19-species simplified version of CH4/O2 system described
in Ref. [10]
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Figure 6 shows the CH4/O2 ignition temperatures simulated by
the four SVD models, assuming constant volume and internal
energy with initial temperature and pressure of 1500 K and 1.0
atm, respectively. The 29-species 132-reaction CH4/O2 system
described in Ref. [10] is considered here for the simulations. Also
simulated is a 19-species 94-reaction simplified version of this
system, with DKM ignition temperatures nearly identical to those
of the 29-species system, justifying the exclusion of the 10
neglected species from simulations (Fig. 7). The 10 neglected
species are OCHO, HOOCO, OOCHO, HOOCHO, CH2OOH,
HOCHO, HOCO, CH2, CH, C. Figures 6(a), 6(c) and 7(a), 7(c)
show that the minimum number of constraints required by SVD
and ASVD models to obtain acceptable results is the same for
both the 19- and 29-species systems. This also verifies the insignif-
icance of the 10 neglected species in the case considered. To be
more specific, in the ASVD(7) case, the seven constraints are the
summation of three elemental and four out of 16 SVD derived con-
straints for the 19-species system and four out of 26 for the
29-species case, which means that the 10 additional SVD con-
straints not needed in the 29-speceis simulation could be due to
the insignificance of the 10 neglected species. Furthermore, the
plots of ASVD constraint potentials in Fig. 8 clearly show that in
both the 19- and 29- species systems the first two constraint poten-
tials are significantly greater in magnitude than the rest, hence, only
the two corresponding constraints are required for ASVD(5) simu-
lations. Unlike the eight-species H2/O2 simulations, in this case, the
SVD and ASVD simulation results with reduced number of con-
straints are not exactly the same. Additionally, for the initial condi-
tions considered, the SVD plots in Figs. 6(a) and 7(a) show that for

both the 19- and 29-species systems, this model accurately predicts
ignition temperatures with a minimum of seven constraints, which
is two more than the number of constraints required by the
ASVD model in Figs. 6(c) and 7(c).
Figures 6(b), 6(d ) and 7(b), 7(d ) show the SVDP and ASVDP

simulation results. According to Figs. 6(b) and 7(b), the minimum
number of constraints the SVDP model requires for acceptable
simulation for both the 19- and 29- species systems is seven,
which is now the summation of three elemental, one molar, and
three derived constraints. As Figs. 6(d ) and 7(d ) show, however,
the ASVDP model, which also includes the molar constraint,
requires, respectively, seven and six constraints for the 19- and
29-species systems. This is the only case where additional species
seem to make a difference in the results, although, counterintui-
tively, less number of constraints is required in the 29-species
system. It is useful to note that in the SVD simulation models,
the constraints whose potentials are negligible in the full simulation
are neglected in the reduced simulation. As implied above, the van-
ishing of certain potentials could be due to the insignificance of
certain species. Therefore, it would be interesting to determine
whether this is really the case as well as to be able to identify
these type of constraints.
In Ref. [44], also for methane, it is shown that adding constraints

does not always produce improvement of the temperature profile:
going from 7 to 10 to 13 seems to worsen the situation (for ignition
time and temperature profile) but 13 does begin capturing the tem-
perature overshoot and 16 improves it. In the same reference, it is
also shown that same behavior can be observed for chemical
species profiles. For instance, it is shown that OH and CH3

Fig. 8 Constraint potential predictions of stoichiometric CH4/O2 combustion at initial temperature and pressure of
1500 K and 1.0 atm, respectively

Fig. 9 RCCE and DKM temperature predictions of stoichiometric CH4/O2 combustion at initial temperature and pres-
sure of 900 K and 10 atm, respectively
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overshoots are captured better by 10 than 13 constraints. Therefore,
it is safe to conclude that partial results (temperature, constraint
potentials, DoD’s of some reactions, mole fractions, etc.) provide
only partial aspects, while the ASVDADD method optimizes the
overall DoD, whose components are also shown for example, for
H2/O2, in Ref. [35]. Again, the eight components of the entropic
chemical potential reactive subspace, ΛDoD, are partial aspects as
well. In other words, the ASVDADD method optimizes the
overall distance between ΛRCCE

DoD and ΛDoD, averaged along the
time trajectory (with the time average weighted on the time grid
chosen by the DKM numerical scheme), so it is difficult to judge
improvement even by looking at these components. For just eight
of them (such as for the hydrogen case), it is quite apparent that
going from three to four to five constraints results in clear improve-
ment. But for methane, the components are many more, and there-
fore, it may happen that some constraints improve while others
worsen the results, somewhat leading to a misjudgment of the
average improvement which is granted by the ASVDADD.
The plots in Fig. 9 show the SVD, ASVD, SVDP, and ASVDP

simulated ignition temperatures of 29-species CH4/O2 system at
initial temperature and pressure of 900 K and 10 atm (the
19-species simulation does not apply to this system). As these
figures show, with a total of eight constraints, SVD, ASVD, and
SVDP models accurately predict the ignition temperatures while
the ASVDP model does this with one less constraint.

5 Conclusion
The ASVDADD algorithm, employing DoD analysis of a probe

DKM simulation, computes a full spectrum of RCCE constraints
that are capable of characterizing the kinetic bottlenecks rate-
controlling the underlying DKM in the chosen range of conditions.
The ASVDADD method optimizes the overall difference between
the average overall degree of disequilibrium obtained from DKM
and RCCE by automatically ranking the candidate constraints. In
this paper, an alternative to the original ASVDADD algorithm is
introduced. The alternative procedure computes the components
of the overall degree of disequilibrium vector by casting DKM as
an RCCE without requiring the identification of linearly indepen-
dent reactions. In addition, the new procedure obtains an orthogonal
full rank matrix for constraints further simplifying the original
algorithm. We have proven that the two algorithms are entirely
equivalent mathematically in that they span exactly the same
nc-dimensional subspace of the reactive subspace. However, they
result in two different sets of components of the chemical potentials
that depend on the linearly independent reactions governing the
species chemical evolution. The effectiveness and robustness of
the alternative ASVDADD procedure is demonstrated using igni-
tion delay simulation of homogeneous hydrogen/oxygen and
methane/oxygen mixtures. The results show that the two methods
have comparable accuracy with the alternative ASVDADD algo-
rithm performing slightly better in some of the cases studied.
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Appendix: Proof of Equivalence of Original and
Alternative ASVDADD Algorithms
Let us start by combining Eqs. (30a), (25), (35), and (40), to write

Λ∗(t) =
∑ne+np
i=1

γ∗EL+PCi (t) aEL+PCi +
∑r
i=1

ũ∗i γ̃
∗
i (t) (A1)

Λ(t) =
∑ne+np
i=1

γEL+PCi (t) aEL+PCi +
∑r
i=1

ũi γ̃i(t) (A2)

Next we recall that both algorithms start from the same DKM simu-
lation (or a fully equivalent RCCE simulation with nc= ns con-
straints). Therefore, the resulting base time evolutions of the
vector of the entropic chemical potentials are identical, i.e., we
have Λ∗(t) = Λ(t), so that Eqs. (A1) and (A2) yield, for every t
and hence every tm,

∑r
i=1

ũi γ̃i(tm) =
∑r
i=1

ũ∗i γ̃
∗
i (tm)

+
∑ne+np
i=1

[γ∗EL+PCi (tm) − γEL+PCi (tm)] aEL+PCi (A3)

where (for simplicity) we assume t∗m = tm, i.e., identical time discre-
tization for the two simulations.
Recalling that, with the SVD in step 4, for i= 1,…, r, we defined

γ̃i(tm) = σiVmi and similarly defining, for the alternative algorithm,
γ̃∗i (tm) = σ∗i V

∗
mi, and making use of the orthonormality relations∑nm

m=1 VmiVmk = δik and
∑nm

m=1 V
∗
miV

∗
mk = δik , we multiply Eq. (A3)

by σ−1k Vmk and sum over m to obtain

ũk =
∑r
i=1

ũ∗i cik +
∑ne+np
i=1

dik a
EL+PC
i (A4)

where,

cik = σ∗i σ
−1
k

∑nm
m=1

V∗
miVmk

dik = σ−1k
∑nm
m=1

[γ̃∗EL+PCi (tm) − γ̃EL+PCi (tm)]Vmk

(A5)

Equation (A4) proves that each vector ũk is a linear combination
of the vectors ũ∗i and aEL+PCi . Therefore, they span exactly the
same nc= r+ ne+ np-dimensional subspace of Rns .
To show the linear relationship between the two models, we addi-

tionally consider, as an illustrative example, the dissociation of
N2/O2 system, with species N, O2, NO, O and N2, with molar den-
sities n1, n2,…, n5, governed by the five reactions shown in Table 6,
three of which are linearly independent. In order to investigate the
relationship between the original and alternative ASVDADD algo-
rithms for a reacting system we consider the DKM determined
chemical potentials of the species in this system and the identifica-
tion of linearly independent reactions governing the species

Table 6 N2/O2 reacting system

ℓ Reaction ℓ

1 NO+O=O2+N
2 N2+O=NO+N
3 NO+M=N+O+M
4 O2+M=O+O+M
5 N2+M=N+N+M

Note: The three linearly independent reactions chosen for use in Eq. (19) are
reactions 1, 2, and 3.
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chemical evolution. Using different algorithms, both models first
determine the component of the chemical potentials that depend
on these reactions (the projection onto the column space of the
matrix of stoichiometric coefficients) and then apply the singular
value decomposition technique to approximate this projection
which gives the RCCE constraint matrix. The main difference
between the two algorithms is the fact that, unlike the ASVD
model, the SVD model needs the identification of linearly indepen-
dent reactions to determine the required component of chemical
potentials, resulting in two different sets of such components.
The species chemical potential vector is μj (j= 1, …, ns= 5) and

selecting the first three reactions as the linearly independent set,
νℓk = νI (k= 1, …, r= 3), the independent reactions coefficient
matrix from the matrix of stoichiometric coefficients νjℓ (j= 1, …,
5, ℓ= 1, …, r= 5) is identified:

νI =

1 1 1
1 0 0
−1 1 −1
−1 −1 1
0 −1 0

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ (A6)

In the SVD model, the component of the entropic chemical poten-
tials that depends on chemical reactions is, as explained before, the
projection of this vector onto the column space of the matrix νjℓ
(which is the same as the column space of the matrix νI ), can be
obtained by using Eq. (19) in which the elements of the vector ϕk

(k= 1, 2, 3) are the DoDs of the three independent reactions.
Expanding the term containing the stoichiometric matrix, Eq. (19)
for the system considered becomes

0.0571 0.343 0.429
0.314 −0.114 −0.143
−0.286 0.286 −0.143
−0.343 −0.0571 0.429
0.114 −0.314 −0.143

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

ϕ1

ϕ2
ϕ3

⎡
⎣

⎤
⎦ =

ΛDoD1

ΛDoD2

ΛDoD3

ΛDoD4

ΛDoD5

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ (A7)

This relation implies that only the first three elements of the vector
ΛDoD are needed to determine the relationship between the two
models because the remaining two elements can be obtained
using the first 3. Let ASVD be the top 3 by 3 matrix of the first
matrix on the left-hand side, B the remaining 2 by 3 matrix, ΛSVD

the three first elements of the vector on the right hand side, and
Λ2 the remaining 2 element vector. With these definitions, we
have ΛSVD = ASVD ϕ and Λ2 = Bϕ. Substitution of the expression
ϕ = A−1

SVD ΛSVD in the last equation yields Λ2 = BA−1
SVD ΛSVD. This

shows that the elements of Λ2 are the linear combination of the 3
independent elements. Since ϕ is the same in both SVD and
ASVD models, equating this with the one derived next will yield
the desired relationship.
Given the DKM determined chemical potential vector, ASVD

model identifies its reaction dependent component by considering
the following equations, which represent the system’s
DKM-equivalent RCCE model

C = an (A8a)

Λ = aTγ (A8b)

which are Eqs. (6) and (8) in vectorized form. In this model, for the
N2/O2 system, these are given by

C =

n1
n2
n3
CO

CN

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦γ =

γ1
γ2
γ3
γO
γN

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦a =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 2 1 1 0
1 0 1 0 2

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ (A9)

CO and CN are the molar constraints of O and N elements and γO and
γN their corresponding potentials. With species potential vector

given, this relation can be inverted to determine the five ele-
ments of constraint potential vector. Since γO and γN do not explic-
itly depend on kinetics, γ can be decomposed into the sum of the
components γch, which depends on chemistry and γel, which does
not

γ =

γ1
γ2
γ3
0
0

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ +

0
0
0
γO
γN

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ ≡ γch + γel (A10)

Using Eq. (A8), Λch and Λel can be obtained as

Λch = aTγch (A11a)

Λel = aTγel (A11b)

Since Λch is the only kinetics dependent component and since
aTγch = γch using Eqs. (15) and (18), the DoD of this system
becomes

ϕ = νTI Λ = νTI Λch = νTI γch =

1 1 1
1 0 0
−1 1 −1
−1 −1 1
0 −1 0

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

T
γ1
γ2
γ3
0
0

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

=
1 1 1
1 0 0
−1 1 −1

⎡
⎣

⎤
⎦

T
γ1
γ2
γ3

⎡
⎣

⎤
⎦ (A12)

Reference to the constraint vector in Eq. (A9) shows that only the
first three elements of this vector depend on kinetics, which
means that in this case the coefficient matrix of independent reac-
tions (labeled ν′I) is given by

ν′I =
1 1 1
1 0 0
−1 1 −1

⎡
⎣

⎤
⎦ (A13)

hence ϕ = ν′I
TΛASVD where ΛASVD = γi (i= 1, 2, 3). Note that using

Eq. (19), it is obvious thatΛASVD is in the column space of ν′I . Equat-
ing SVD and ASVD derived DoD vectors yields the desired linear
relationship between the projections obtained from the SVD and
ASVD models:

ν′I
TΛASVD = A−1

SVD ΛSVD (A14)
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