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Abstract
This paper presents a general method for producing randomly perturbed density oper-
ators subject to different sets of constraints. The perturbed density operators are a
specified “distance" away from the state described by the original density operator.
This approach is applied to a bipartite system of qubits and used to examine the
sensitivity of various entanglement measures on the perturbation magnitude. The con-
straint sets used include constant energy, constant entropy, and both constant energy
and entropy. The method is then applied to produce perturbed random quantum states
that correspondwith those obtained experimentally for Bell states on the IBMquantum
device ibmq_manila. The results show that the methodology can be used to simulate
the outcome of real quantum devices where noise, which is important both in theory
and simulation, is present.

Keywords IBMQ · Qiskit · Quantum computation · Entanglement · Random
quantum states · Perturbed quantum states

1 Introduction

Quantum information and computing systems rely on the phenomena of superposition
and entanglement to efficiently perform certain tasks that are otherwise inefficient
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when performed on classical computers. While any quantum system may exhibit
superposition, only composite quantum systems (i.e., those consisting of two or more
subsystems) may exhibit entanglement.

For a composite of two subsystems only the correlated states that are not separable
are entangled. Mathematically, a density operator ρ̂AB represents correlated states of
the two subsystems A and B if

ρ̂AB �= ρ̂A ⊗ ρ̂B (1)

where ρ̂A(B) = TrB(A)(ρ̂AB)while it represents separable states if there exist positive-
valued probabilities, wi , and pure density operators for the subsystems, ρ̂A

i and ρ̂B
i ,

such that

ρ̂AB =
∑

i

wi ρ̂
A
i ⊗ ρ̂B

i (2)

While there is no preferred metric for quantifying how entangled systems are, numer-
ous metrics exist that aim to capture system entanglement [1]. Examples include
the mutual information, concurrence, and the Clauser–Horne–Shimony–Holt (CHSH)
operator expectation value, each of which provide useful insight into the states of com-
posite quantum systems. Other metrics of interest include discord (e.g., the quantum
discord) [2, 3] and discord-like (e.g., the local quantum Fisher information and the
trace distance discord) [4–6] quantifiers. However, these quantify the non-classical
correlations between subsystems that do not necessarily result from entanglement
alone.

Because each of thesemetrics quantify entanglement in a different way, they exhibit
different behavior relative to the physical property changes of the composite system.
Thus, one of the focuses of this paper is to gain insight into the effect of the phys-
ical state of the system on various entanglement measures and, in particular, on the
sensitivity of thesemeasures to perturbations of the state ρ̂AB of the composite system.

Generating random quantum states (RQS) is an important tool for understanding
quantum systemswithmany degrees of freedom, and it has a variety of uses in quantum
information science. For example and principally, it allows one to understand, char-
acterize, and parametrize quantum states [7–10]. When these states are mixed states,
the use of RQS has mainly been focused on obtaining average properties such as
the sub-entropy, coherence, fidelity, and/or entanglement [11–13]. Usual approaches
to producing RQS are Wishart ensembles [12], Gaussian orthogonal ensembles [14,
15], random and pseudo-random unitary matrices [16, 17], and the over-parametrized
method [10]. Even though these methods show good performance and allow for
the characterization of different models, they have nevertheless simply been used
to explore different characteristics of quantum states. In this work, we introduce a new
approach for RQS generation via the development and implementation of a tool for
generating randomlyperturbeddensity operators subject to different sets of constraints.
This is an important approach for potentially dealing with the effects that noise has on
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the performance of quantum algorithms. The noise can dramatically affect the output
of a quantum algorithm in Noisy intermediate-scale quantum (NISQ) devices [18,
19], and our approach can be used for error simulation of such algorithms in quantum
devices and as the basis for error mitigation techniques [20–22]. In the present paper
we focus on using this technique for characterizing and simulating perturbed Bell and
Bell-diagonal states that correspond to the behavior of state preparation in (NISQ)
devices [23]. However, this methodology is not limited to these devices and could be
used in other situations where noise is a factor. The NISQ devices are characterized for
having different error sources grouped into two main categories: (i) decoherent errors
such as relaxation or dephasing (see, e.g., [3, 24–29]) and (ii) coherent errors such
as gate, crosstalk, and readout errors [30–32]. Usually, these errors of depolarization,
amplitude damping, or phase damping are simulated using perturbation shifting in
the unitary matrices that describe a process on a quantum device. Another possible
application is for initial state preparation for simulations of a quantum device using a
master equation [29, 33]. In Sect. 3.2, an application of our methodology is presented
in which the methodology is able to obtain the same range of Bell states prepared on
IBM’s superconducting quantum processor, ibmq_manila.

The methodology proposed here is used to randomly perturb an arbitrary baseline
density operator ρ̂0 subject to an arbitrary set of constraints on the expectation values
associated with the density operator. This method is initially illustrated by perturbing
a bipartite system where each subsystem has only two levels but may be straight-
forwardly extended to composite systems of arbitrary numbers of subsystems. To
understand the effect of perturbations on entanglement, the baseline density operator,
ρ̂0, which represents the state of the composite system consisting of subsystems A
and B, can be chosen, for example, to be a Bell diagonal state represented by [34]

ρ̂0 = 1

4

3∑

i=0

ci σ̂
A
i ⊗ σ̂ B

i (3)

where σ̂0 = Î is the identity operator and σ̂1 = σ̂X , σ̂2 = σ̂Y , and σ̂3 = σ̂Z are the
three Pauli spin operators and for this work, the scalar coefficient c0 must be c0 = 1,
to represent a Bell diagonal state, and the other coefficients are chosen as c1 = 0.996,
c2 = 0.4, and c3 = −0.4. A Bell diagonal state is chosen for this initial illustration
because it is a state of nonzero entropy that can be written directly as a sum of Bell
states (which aremaximally entangled pure states of the composite system). Thus, after
the general density operator perturbationmethodology and the setup of the experiment
are presented in Sect. 2, perturbations of the baseline state ρ̂0 are generated under four
different sets of constraints. Properties of the resulting perturbed states are presented in
Sect. 3 aswell as simulations of theBell states of the ibmq_manila quantumprocessor.
Finally, the main trends exhibited in these sets of perturbations are discussed in Sect.
4 along with possible follow-up work. The source code for the randomly perturbed
method, the experimental setup, and the experimental results can be found at https://
github.com/alejomonbar/Generating-randomly-perturbed-density-operators.
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2 Methodology

2.1 General perturbation approach and“closeness" of quantum states

This section presents a method for generating a randomly perturbed density operator
whose distance from the original density operator is O(ε)where the notion of distance
between two states is discussed in Sect. 2.2 and ε is a specified parameter. This
approach permits the enforcement of arbitrary sets of constraints on the expectation
values of the resulting perturbed operator, while ensuring that the entire space of states
in the neighborhood of the original state is uniformly sampled.

While this approach can be applied to composite systems consisting of any numbers
of subsystems, it is illustrated here using a bipartite system of two-level subsystems. To
beginwith, recall that given any density operator there is a unique positive semidefinite√

ρ̂ satisfying by ρ̂ = √
ρ̂
√

ρ̂, called the nonnegative square root of ρ̂. Also recall that
an arbitrary operator γ̂ withHermitian conjugate γ̂ † points to the two density operators
γ̂ γ̂ †/Tr(γ̂ γ̂ †) and γ̂ †γ̂ /Tr(γ̂ †γ̂ ). The random perturbation strategy proposed here
starts by computing the nonnegative square root of the baseline density operator ρ̂ to
be perturbed,

γ̂0 =
√

ρ̂0 (4)

Then a set of operators γ̂r are randomly generated that belong to a neighborhood of γ̂0
in the space of linear operators on the Hilbert space of the composite system subject
to the desired constraints and the normalization constraint Tr(γ̂ †

r γ̂r ) = 1. As a result,
the operators ρ̂r = γ̂r γ̂r

† are automatically positive semi-definite (have nonnegative
eigenvalues) by construction and are taken as the desired set of the perturbed density
operator.

To setup the perturbation procedure, consider a composite of M qubits so that
the Hilbert spaces associated with the subsystems are all two-dimensional. The four-
dimensional space of linear operators on each of these Hilbert spaces is spanned
by the Hermitian basis {σ̂0/

√
2, σ̂1/

√
2, σ̂2/

√
2, σ̂3/

√
2}, which is orthonormal with

respect to the symmetrized Hilbert–Schmidt scalar product α̂ · β̂ = 1
2Tr(α̂

†β̂ + β̂†α̂).
Therefore, the linear combinations

1

2M/2

3∑

i1,...,iM=0

ηi1,...,iM

M⊗

K=1

σ̂iK (5)

represent the non-Hermitian operators on the Hilbert space of the composite system
if at least one of the coefficients ηi1,...,iM is a complex number and the Hermitian
operators if they are all real numbers. Here, ηi1,...,iM is the random perturbation for
the combination of operators σ̂i1 , . . . , σ̂iM where in ∈ {0, 1, 2, 3}. Note that the 1

2M/2

pre-factor inserted here and in similar equations below is necessary to make the basis
1

2M/2

⊗M
K=1 σ̂iK orthonormal.

Now, assuming that the composite system is bipartite with subsystems A and B,
the above orthonormal basis for the real space of Hermitian operators on the Hilbert
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space of the composite system is 1
2 σ̂

A
i ⊗ σ̂ B

j and, therefore, any Hermitian operator ω̂

can be written as

ω̂ = 1

2

3∑

i, j=0

η[ω̂]i, j σ̂ A
i ⊗ σ̂ B

j (6)

and represented by the 4×4matrix of coefficientsη[ω̂]i, j ,which in turn canbe obtained
by direct projection onto the operator basis elements,

η[ω̂]i, j = 1

2
Tr

[(
σ̂ A
i ⊗ σ̂ B

j

)
ω̂

]
(7)

For example, Bell diagonal states, which may also be conveniently expressed as

ρ̂0 = 1

2

⎡

⎢⎢⎣

a2 + b2 0 0 b2 − a2

0 c2 + d2 c2 − d2 0
0 c2 − d2 c2 + d2 0

b2 − a2 0 0 a2 + b2

⎤

⎥⎥⎦ (8)

are represented by the coefficients

η[ρ̂0]i, j = 1

2
δi, j ci = 1

2

⎡

⎢⎢⎣

c0 0 0 0
0 c1 0 0
0 0 c2 0
0 0 0 c3

⎤

⎥⎥⎦ (9)

and their nonnegative square roots

γ̂0 = 1

2

⎡

⎢⎢⎣

a + b 0 0 b − a
0 c + d c − d 0
0 c − d c + d 0

b − a 0 0 a + b

⎤

⎥⎥⎦ (10)

by the coefficients

η[γ̂0]i, j = 1

2

⎡

⎢⎢⎣

a+b+c+d 0 0 0
0 b − a+c − d 0 0
0 0 a − b+c − d 0
0 0 0 a+b − c − d

⎤

⎥⎥⎦ (11)

where a, b, c, d are the eigenvalues of γ̂0 and in terms of the parameters c0, c1, c2, c3
used in Eqs. (3) and (9) are given by

a = 1

2

√
c0 − c1+c2+c3 b = 1

2

√
c0+c1 − c2+c3

c = 1

2

√
c0+c1+c2 − c3 d = 1

2

√
c0 − c1 − c2 − c3

(12)
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and, of course, Tr(ρ̂0) = a2+b2+c2+d2 = 1.
The above representation of Bell diagonal states also make it easy to generate them

with given eigenvalues or randomly. For the latter purpose it suffices to pick four
independent numbers ar , br , cr , dr in the range – 1 to 1 and then normalize them by
R = √

a2r +b2r +c2r +d2r so as to obtain the parameters a = ar/R, b = br/R, c = cr/R,
d = dr/R for use with Eq. (8), while for use in Eq. (3) the parameters are

c0 = a2 +b2+c2 + d2

c1 = − a2+b2+c2 − d2

c2 = a2 − b2+c2 − d2

c3 = a2+b2 − c2 − d2

(13)

For our procedure, Eq. (6) is used to express the operators γ̂ε − γ̂0 where each γ̂ε is
in the Hermitian neighborhood of the baseline γ̂0 and is selected by randomly picking
the values of the sixteen real coefficients ηi, j from a suitable distribution. The Hilbert–
Schmidt norm ε = √

Tr[(γ̂ε − γ̂0)2] = (
∑3

i, j=0 η2i, j )
1/2 can be taken as a measure of

the distance from the baseline operator and provides guidance on the random choices
made so as to populate and/or be confined to the neighborhood as desired. For example,
when the ηi, j ’s are all taken from a zero-mean normal distribution N (0, σ̃ ) with
standard deviation σ̃ , the value of ε/σ̃ is distributed according to the well-known χ

distribution.
The perturbed operators

γ̂ε = γ̂0 + 1

2

3∑

i, j=0

ηi, j σ̂
A
i ⊗ σ̂ B

j (14)

are Hermitian but no longer the square root of true density operators because Tr(γ̂ 2
ε ) �=

1. Moreover, no constraints have yet been enforced on the expectation values of the
resulting perturbed density operators.

In general, it may be of interest to impose N (possibly nonlinear) constraints of the
form Tr[γ̂ 2Ĉi (γ̂

2)] = Tr[ρ̂0Ĉi (ρ̂0)], where the always necessary unit-trace constraint
is included by setting Ĉ1 = Î . The symmetrized gradients have the form {Ĝi (γ̂

2), γ̂ }
where Ĝi (γ̂

2) = Ĉi (γ̂
2)+ 1

2 {γ̂ 2, Ĉ ′
i (γ̂

2)} and {·, ·} denotes the usual anticommutator.

For example, for the unit-trace constraint: Ĉ1 = Ĝ1 = Î ; for the energy constraint:
Ĉ2 = Ĝ2 = Ĥ ; for the entropy constraint: Ĉ3(γ̂

2) = −B̂ ln γ̂ 2, Ĉ ′
3(γ̂

2) = −B̂γ̂ −2,
and Ĝ3(γ̂

2) = (− Î − B̂ ln γ̂ 2); and for the linear entropy constraint: Ĉ4(γ̂
2) =

−B̂(γ̂ 2− Î ), Ĉ ′
4(γ̂

2) = −B̂, and Ĝ4(γ̂
2) = −B̂(2γ̂ 2− Î ). Here, operator B̂, following

[35], is the projector onto the range of γ̂ 2 (i.e., onto the subspace spanned by the
eigenvectors of γ̂ 2 with nonzero eigenvalues).

To impose the unit-trace condition and the other constraints, each γ̂ε is corrected
by subtracting from it the symmetrized gradient of each constraint, computed at γ̂ε ,
multiplied by an undetermined multiplier. Therefore, the nonnegative square root of
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the desired perturbed density operator, γ̂r , is written as

γ̂r = γ̂ε −
N∑

i=1

{Ĝi (γ̂
2
ε ), γ̂ε} λi (15)

where the N multipliers λi are to be determined by substituting Eq.(15) into the system
of constraint equations

Tr
(
γ̂ 2
r Ĉi (γ̂

2
r )

)
= Tr

(
ρ̂0 Ĉi (ρ̂0)

)
(16)

and solving numerically.
To fix ideas, assume that the constant energy and constant entropy constraints are

to be imposed. Then, for each randomly generated γ̂ε , the Hermitian operator

γ̂r = γ̂ε − { Î , γ̂ε}λI − {Ĥ , γ̂ε}λH − {− Î − B̂ ln γ̂ 2
ε , γ̂ε}λS

= (1 − 2λI + 2λS)γ̂ε − {Ĥ , γ̂ε}λH − {−B̂ ln γ̂ 2
ε , γ̂ε}λS

(17)

is defined and points to the desired constrained perturbed density operator ρ̂r = γ̂ 2
r

which is obtained once the multipliers λI , λH , and λS are determined by imposing
the respective constraints: C1 = Tr(γ̂ 2

r ) = 1, C2 = Tr(γ̂ 2
r H) = Tr(γ̂ 2

0 H), and C3 =
Tr(γ̂ 2

r ln γ̂ 2
r ) = Tr(γ̂ 2

0 ln γ̂ 2
0 ).

An illustration of the procedure for determining the multipliers for a single con-
straint in addition to the necessary unit-trace constraint is presented in Appendix A.

Note that while for some sets of constraints it may be possible to find an analytical
solution for γ̂r , this is not possible for the constant entropy and other constraints that
are nonlinear in the state operator. However, the resulting system of N Eq. (16) can be
solved numerically for the values of the λi where it is noted that solutions near λi = 0
are sought.

After the set of constraints is applied by computing the multipliers λi , Eq. (15)
gives the desired operator γ̂ Cn

r and the projection of γ̂ Cn
r − γ̂0 onto the basis elements

allows the direct computation of the coefficients ηCn
i, j ,

ηCn
i, j = η[γ̂ Cn

r − γ̂0]i, j = 1

2
Tr

((
γ̂ Cn
r − γ̂0

) (
σ̂ A
i ⊗ σ̂ B

j

))
(18)

where Cn is the constraint set applied (i.e., C1 or C1,C2 or C1,C3 or C1,C2,C3, or
C1,C2,C4) and ηCn

i, j is computed for i, j ∈ {0, 1, 2, 3} so that the γ̂ Cn
r can be expressed

in the form

γ̂ Cn
r = γ̂0 + 1

2

3∑

i, j=0

ηCn
i, j σ̂

A
i ⊗ σ̂ B

j (19)

An illustration of the procedure for determining the explicit solution of the η[γ̂r ]i, j
for the case of no non-trivial constraints is given in Appendix B.

123



  314 Page 8 of 34 J. A. Montañez-Barrera et al.

2.2 Review of state distance and entanglementmeasures

To understand the effects of the perturbations, measures characterizing the “closeness"
of the perturbed state to the baseline state are first examined. This is followed by
measures quantifying the entanglement of the two subsystems and some quantifiers
for measuring quantum correlations beyond simple entanglement.

To begin with, a widely used measure of the closeness of two quantum states ρ̂1
and ρ̂2 is the (square-root) fidelity defined according to [36] as the trace norm of the
product of the respective nonnegative square roots γ̂1 = √

ρ̂1 and γ̂2 = √
ρ̂2 such that

F(ρ̂1, ρ̂2) = ‖γ̂1γ̂2‖1 = Tr
(|γ̂1γ̂2|

) = Tr
√

γ̂1γ̂
2
2 γ̂1 (20)

It is noted that 0 ≤ F(ρ̂1, ρ̂2) = F(ρ̂2, ρ̂1) ≤ 1 and that F(ρ̂1, ρ̂2) = 1 if and only
if the two states are identical. It is also noteworthy that some authors call fidelity the
square of F .

Alternativemeasures of fidelity can be obtained by using two other relatedmeasures
of distance between quantum states based, following [35], on the observation that
density operators map one-to-one to the unit sphere, ‖γ̂ ‖ = 1, in the real space of
Hermitian operators on the Hilbert space of the system equipped with the real scalar
product γ̂1 · γ̂2 = Tr(γ̂1γ̂2) and the norm ‖γ̂ ‖ = Tr(γ̂ 2). The distance between two
points on the surface of a sphere can be equivalently measured by the geodesic arc
length d, the chord length c, and the central angle θ . For the unit sphere, d = θ ,
c = 2 sin(θ/2) and, in terms of the unit-norm ’vectors’ γ̂1 and γ̂2 associated with
the two points, cos(θ) = γ̂1 · γ̂2 and c2 = ‖γ̂1 − γ̂2‖2 = 2(1 − γ̂1 · γ̂2). Therefore,
the following expressions (and related identities) provide geometrically well-founded
measures of distance between two state operators:

θ(ρ̂1, ρ̂2) = arccos(γ̂1 · γ̂2) = arccos
(
Tr(γ̂1γ̂2))

)

= 2 arccos

(
1 − 1

2
Tr

(
(γ̂1 − γ̂2)

2
))

= 2 arcsin

(
1√
2

√
1 − Tr(γ̂1γ̂2)

)

= 2 arcsin

(
1

2

√
Tr

(
(γ̂1 − γ̂2)2

))

c(ρ̂1, ρ̂2) =
√
Tr

(
(γ̂1 − γ̂2)2

) =
√
2

(
1 − Tr(γ̂1γ̂2)

)

(21)

where −1 ≤ Tr(γ̂1γ̂2) ≤ 1, 0 ≤ θ ≤ π , 0 ≤ c ≤ 2, θ and c are zero if and only
if the two states are identical, and θ ≈ c for small values. When operator γ̂1 − γ̂2 is
expressed in the form of Eq. (6) then c is the Hilbert–Schmidt norm (

∑3
i, j=0 η2i, j )

1/2

and θ = 2 arcsin(c/2), and the coefficients can be obtained by direct projection onto
the operator basis elements, ηi, j = 1

2Tr[(γ̂1 − γ̂2) (σ̂ A
i ⊗ σ̂ B

j )]. Although beyond the
scope of the present paper, wemention that the distancemeasures θ and cmay be easily
extended to more complex composite systems by means of the multipole approach to
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quantum state representation developed in the almost forgotten pioneering papers [37–
39] which anticipated by three or four decades the field of quantum-state tomography.

To examine the effects of the proposed perturbation strategy on the correlations
and entanglement of the resulting perturbed state, three quantifiers are considered: the
mutual information, the concurrence, and the CHSH operator maximum expectation
value. The mutual information, I (ρ̂), which is related to the entropy of the system, is
computed as [36]

I (ρ̂) = −TrA(ρ̂A ln ρ̂A) − TrB(ρ̂B ln ρ̂B) + Tr(ρ̂ ln ρ̂) (22)

It is a nonnegative quantity, equal to zero only when the states of subsystems A and B
are uncorrelated and hence separable, i.e., when ρ̂ = ρ̂A ⊗ ρ̂B . However, it is noted
that it being nonzero is not necessarily indicative of entanglement.

The concurrence,C(ρ̂), as givenby [40, 41], is an entanglementmonotone (meaning
that it increases as entanglement increases) and for two-qubit states is expressed as

C(ρ̂) = max(0, r1 − r2 − r3 − r4) (23)

where the ri ’s are the eigenvalues, in decreasing order, of the operator R̂ defined as

R̂(ρ̂) =
√

γ̂ ρ̃(ρ̂) γ̂ (24)

where γ̂ = √
ρ̂ is the nonnegative square root of ρ̂ and ρ̃(ρ̂) is obtained by first

computing the complex conjugate ρ̂∗ of ρ̂ in the standard basis and then spin-flipping
it with respect to the Pauli matrix σ̂1 expressed in the same basis, i.e.,

ρ̃(ρ̂) = (
σ̂1 ⊗ σ̂1

)
ρ̂∗ (

σ̂1 ⊗ σ̂1
)

(25)

Another entanglement measure considered here is the violation of the CHSH
inequality [42]. This inequality, which is closely related to Bell’s inequality [43],
states that local hidden variable theories cannot predict correlations above a value of
2, and, thus, correlations above this value must be due to the quantum phenomenon
of entanglement. Cirel’son [44] showed that when accounting for quantum mechani-
cal effects, the maximum value of the correlations exhibited between the subsystems
in a composite quantum system is 2

√
2. In an experiment, it is possible to compute

various expectation values for the CHSH operator, B̂CHSH, depending on the relative
orientation of the experimental measurement. However, an analytical form for the
maximum possible expectation value of this operator for a given state of the system
can be computed from [1]

〈B̂CHSH(ρ̂)〉max = 2
√
t21,1 + t22,2 (26)

where t22 to t2,2 are the two largest eigenvalues of the 3×3 matrix T T
ρ̂
Tρ̂ , with the

elements of Tρ̂ given by ti, j = Tr
(
ρ̂ (σ̂i ⊗ σ̂ j )

)
for i, j ∈ {1, 2, 3}.
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To go beyond the measurement of entanglement, quantum discord [2, 3] and
discord-like quantifiers are introduced. These quantifiers identify quantum correla-
tion phenomena that do not necessarily involve entanglement only but instead a wider
variety of characteristics of the “quantumness" of a system. The quantum discord is
given by

DA(ρ̂) = I (ρ̂) − JA|B, (27)

where I (ρ̂) is the mutual information and JA|B is the maximum classical information
two subsystems A and B can share. One of the discord-like measurements is the local
quantum Fisher information (LQFI) [5, 6], a quantifier that gives a notion of the entan-
glement depth, i.e., the proportion of the minimum number of subsystems entangled
for a given state, and the underlying structure of the multi-partite entanglement. The
quantification of quantum correlation in terms of the LQFI is given by

Q(ρ̂) = min
ĤA

F(ρ̂, ĤA), (28)

where ĤA = ∑3
i=1 σ̂ A

i ⊗σ B
0 is the general formof the localHamiltonian and F(ρ̂, ĤA)

is the LQFI expressed as

F(ρ̂, ĤA) = 1

2

∑

i �= j

(λi − λ j )
2

λi + λ j
|〈ψi |ĤA|ψ j 〉|2

= tr(ρ̂ Ĥ2
A) −

∑

i �= j

(2λiλ j )
2

λi + λ j
|〈ψi |ĤA|ψ j 〉|2

(29)

In this last expression, the spectral decomposition of ρ̂ = ∑
i λi |ψi 〉〈ψi | with λi > 0

and
∑

i λi = 1 has been used. To minimize Eq. (28) it is necessary to maximize the
second term in Eq. (29). This is accomplished by using the maximum eigenvalue of
the 3 × 3 matrix written as

Mkl =
∑

i �= j

(2λiλ j )
2

λi + λ j

〈
ψi |σ̂ A

l ⊗ σ B
0 |ψ j

〉 〈
ψi |σ̂ A

k ⊗ σ B
0 |ψ j

〉
(30)

Therefore, the quantification of the quantum correlation by LQFI is given by

Q(ρ̂) = 1 − λmax(M). (31)

A second quantum discord-like quantifier is the trace distance discord (TDD). This
metric has important attributes to quantify quantum correlations. Among them is the
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fact that it is monotonically non-increasing under local operations (contractivity) [45],
and it is similar in structure to the one-shot state distinguishability [46], i.e., the max-
imum probability to distinguish between two states using a single measurement. It is
defined as theminimal distance between the state and the set of classical-quantum den-
sity matrices that have zero quantum discord under local measurements on subsystem
A. The one side TDD is given by

D(→) = 1

2
min

{ρ̂(→)
AB }

||ρ̂AB − ρ̂
(→)
AB ||1 (32)

where ρ̂
(→)
AB = ∑

j |α j 〉〈α j |⊗ ρ̂B are the states that exhibit zero quantum discord with
respect to a local measurement on A.

Before presenting the results for these distance and entanglement measures relative
to the proposed perturbation methodology, the next section provides a description of
the IBM transmon quantum device ibmq_manila used here to experimentally obtain
approximate Bell states.

2.3 IBM transmon quantum device

The ibmq_manila device used in the experiments is a superconductive quantum
processor with a Falcon architecture, 5 qubits, a quantum volume (QV) of 32, an
average T1 = 160.55 μs, an average T2 = 59.29 μs, and an average CNOT error of
9.730e–3. Qubits q0 and q1 are employed with f0 = 4.963 GHz and f1 = 4.838 GHz.
The Hamiltonian of the two-qubit system is expressed as

Ĥ = −�

2

(
ω0 σ̂3 ⊗ σ̂0 + ω1 σ̂0 ⊗ σ̂3

)
(33)

where ω0 = 2π f0 and ω1 = 2π f1.
The experimental setup in ibmq_manila is the sequence of gates presented in Fig.

1a). Ideally, such gates result in the Bell state |�+〉 = 1√
2

(|00〉 + |11〉). The set of
gates (a Hadamard and a CNOT gate) shown in this figure are translated into pulse-
level control as shown in Fig. 1b) where D0 and D1 are the driven channels for qubit
0 and qubit 1, respectively. The U0 channel permits the qubits to interact with a cross
resonance interaction and is the principal element for the CNOT gate.

To reconstruct the density operator ρ̂n
R of the Bell state preparation, the procedure

of Smolin et al. [47] is followed where the density operator ρ̂n
R is recovered with 2000

shots or measurements in each of 9 different Pauli bases. A shot is defined as a single
repetition of a given circuit. Next, for each experimental result, the nonnegative square
root operator, γ̂ n

R = √
ρ̂n
R , is computed first after which the nonnegative square root

γ̂0 = √
ρ̂0 of the ideal Bell state

ρ̂0 = |�+〉〈�+| (34)
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Fig. 1 (a) Circuit to obtain a Bell state is comprised of a Hadamard gate in the control qubit followed by a
CNOT gate; (b) set of pulses for the IBM transmon quantum device ibmq_manila that represent the circuit
in (a)

is subtracted.
Two hundred approximate Bell states, Ne = 200, via 3,600,000 measurements

(2000 × 9 × 200) are generated using the transmon quantum device ibmq_manila.
A set of random values for the ηi, j are determined using a normal distribution
N (μi, j , σi, j ). This set of values is then used in

γ̂ε = γ̂0 + 1

2

3∑

i, j=0

ηi, j σ̂i A ⊗ σ̂ j B (35)

to generate a set of randomly perturbed operators γ̂ε to which the correction proce-
dure described in Sect. 2.1 is applied so that the unit-trace, the constant energy, and
the constant entropy constraints can be implemented and the corresponding sets of
compatible randomly generated state operators γ̂ 2

r be obtained and compared with the
experimental ones. Then, in the spirit and intention of our construction, if the additional
constraints aremeaningfully related to the experimental setup, the randomly generated
state operators γ̂ 2

r should be distributed in a fashion similar to the experimental state
preparation of qubits on ibmq_manila.

Finally, as seen in Fig. 2, the IBM experimental setup used here to validate the
proposed perturbation procedure produces values of the energy and entropy that are
normally distributed. Therefore, as a variant to the proposed procedure, it is convenient
to also consider the possibility that the constraining values of energy and entropy are
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affected by experimental fluctuations and are, thus, not simply the fixed values of the
baseline state. To ensure that the procedure accounts for the distribution of the energy
and entropy seen in Fig. 2, the system of constraint equations, Eq. (16), which must be
solved for each γ̂ε to obtain the corresponding γ̂r , can be modified by substituting the
right-hand side of the equation with randomly selected values sampled from normal
distributionswithmean values and standard deviations (Ẽμ, Ẽσ , S̃μ, and S̃σ ) inferred
from the experimental data using Eqs. (36)–(39) (e.g., see Fig. 2). Thus, both results
for the fixed energy Tr(ρ̂0 Ĥ) and entropy −Tr(ρ̂0 ln(ρ̂0)) values of the baseline as
well as normally distributed values sampled from the normal distributionsN (Ẽμ, Ẽσ )

and N (S̃μ, S̃σ ), respectively, are presented in Sect. 3. The procedure for obtaining a
random set of density operators based on real devices is presented in Algorithm 1
which uses Eq. (15) and Eqs. (35) to (39):

Ẽμ = 1

Ne

Ne∑

n=1

Tr
(
ρ̂n
R Ĥ

)
(36)

Ẽσ =

√√√√
∑Ne

n=1

(
Tr(ρ̂n

R Ĥ) − Ẽμ

)2

Ne
(37)

S̃μ = − 1

Ne

Ne∑

n=1

Tr
(
ρ̂n
R ln

(
ρ̂n
R

))
(38)

S̃σ =

√√√√
∑Ne

n=1

(
−Tr(ρ̂n

R ln(ρ̂n
R)) − S̃μ

)2

Ne
(39)

where Ne = 200 for this case.

3 Results

The results presented here are organized into two sections. Sect. 3.1 provides results
predicted by the perturbation procedure independently of any experimental considera-
tions, andSect. 3.2 couples the experimental predictions of the ibmq_manila quantum
device with those of the perturbation procedure.
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Fig. 2 Histogram of the energy (left) and entropy(right) of the 200 experiments on ibmq_manila

Algorithm 1: Generating randomly perturbed density state to simulate a
quantum device.

Input: Baseline density operator ρ̂0, set of experimental operators ρ̂nR , perturbation mean μi, j ,

perturbation standard deviation σi, j , number of perturbed states N, constraints Ĉ ∈ [C1,
C2, C3, C4]

Output: Set of randomly perturbed density operator subject to a set of constraints.
Data: Experimental set ρ̂nR .

1 Get Ẽμ, Ẽσ , S̃μ, S̃σ , S̃Lμ, and S̃Lσ using Eqs. (36)-(39) for the set of ρ̂nR
2 for k=0; k++; k <N do
3 Randomly generate ηi, j fromN (μi, j , σi, j ) ∀ i, j ∈ {0, 1, 2, 3}
4 Get γ̂ε from Eq. (35)
5 Initialize λi // Random set of numbers with size equal to the number

of constraints typically close to σ̃

6 Evaluate γ̂r using Eq. (15)
7 Cost = 1

8 while Cost > 10−6 do

9 Cost =
(
Tr(γ̂ 2

r ) − 1
)2

10 if Ĉ2 ∈ Ĉ then

11 Cost +=
(
Tr

(
γ̂ 2
r Ĉ2(γ̂

2
r )

)
− N (Ẽμ, Ẽσ )

)2

12 else if Ĉ3 ∈ Ĉ then

13 Cost +=
(
Tr

(
γ̂ 2
r Ĉ3(γ̂

2
r )

)
− N (S̃μ, S̃σ )

)2

14 else if Ĉ4 ∈ Ĉ then

15 Cost +=
(
Tr

(
γ̂ 2
r Ĉ4(γ̂

2
r )

)
− N (S̃Lμ, S̃Lσ )

)2

16 Update λi that minimize Cost with an optimizer.
17 Evaluate γ̂r using Eq. (15)

18 Save γ̂r

3.1 Perturbations under different constraints

The results for five different constrained perturbation cases are presented in this sec-
tion. Case 1 entails C1 = Tr(ρ̂) = 1; Case 2 C1 and C2 = Tr(ρ̂ Ĥ); Case 3 C1 and
C3 = Tr(ρ̂ logρ̂); Case 4 C1, C2, and C3; and Case 5 C1, C2, and C4 = Tr(ρ̂( Î − ρ̂)).
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Table 1 Summary of the performance for the algorithm in terms of iterations per second (it/s) for the three
different perturbation scenarios of the standard deviation of the normal distribution N (0, σ ) used for the
16 different ηi, j parameters

σ \ Constr. C1 [it/s] C1,C2 [it/s] C1,C3 [it/s] C1,C2,C3 [it/s] C1,C2,C4 [it/s]

0.05 698.57 365.18 3.77 4.06 220.57

0.1 636.93 378.59 4.56 4.05 218.31

0.2 657.89 350.63 4.18 3.84 207.54

For all cases, the number of perturbed states is N = 1000 (as opposed to the 200
generated experimentally and presented in Sect. 3.2), and all the random numbers,
the ηi, j ’s, are generated from the normal distributionN (μ = 0, σ ) for three different
values of the standard deviation σ ∈ {0.05, 0.1, 0.2} in order to test the performance
of the algorithm in terms of iterations per second (it/s) on a personal laptop. The it/s
roughly means the number of density or state operators that one can create in 1 second
using the respective set of constraints. A summary of the performance results for the
three σ ’s is presented in Table 1 for the five cases. The performance of the algorithm
in terms of iterations per second when the perturbed amplitude σ increases does not
change considerably. Thus, the results presented in the rest of this section focus on the
analysis of the σ = 0.05 results.

While it is understood that this sample size is too small to thoroughly sample
the entire 15-dimensional space required to fully characterize a normalized density
operator of a bipartite system of two-level subsystems, it is assumed for simplicity that
the trends exhibited by the perturbed states here are representative of the neighborhood
of the entire 15-dimensional space. The quantities plotted are the system energy,
entropy, mutual information, concurrence, the CHSH operator maximum expectation
value, the local quantumFisher information, and the trace distance discord. In addition,
the fidelity F and distance measure θ of the perturbed state relative to the baseline
state ρ̂0 are also shown.

Figure 3a shows the energy versus entropy diagram and Fig.3b the perturbed state
fidelity versus the distancemeasure θ . In Fig. 3a, it is seen that the energy and entropyof
the perturbed density operators for the C1 constraint are distributed about the baseline
value of the unperturbed density operator with the heaviest concentration of values to
the right of the baseline value. This concentration of values to the right is due to the
fact that the set of perturbations follow a χ distribution (see Sect. 1), which deviates
slightly to the right of a normal distribution. In addition, as seen in this figure, the
perturbed density operator values for Cases 2, 3, and 4 clearly achieve their objective
of preserving the energy, the entropy, and the energy and entropy values, respectively,
for the perturbed density operators, while for Case 5, the energy constraint is achieved
but the approximation of the linear entropy makes the entropy, in this case, spread
in a range somewhere to the right of the entropy baseline. Figure 3b shows that the
distance measure θ is distributed about the mean value of 0.18 and varies O((2/3)σ )

for all cases. In a similar fashion, the fidelity is distributed about the mean value 0.98
and varies an O((1/5)σ ) for all cases.

Histograms of the distance measure θ and the fidelity of Fig. 3 are shown in Fig.
4a and b, respectively. Here, the distance measure is distributed according to a χ
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Fig. 3 (a) Perturbed state energy-entropy diagram and (b) the fidelity versus the distance measure θ

distribution, while the fidelity follows a χ -square distribution. The y-axis for both
cases in Fig. 4 show the probability density. This means that each bin in the histogram
displays the bin’s raw count divided by the total number of counts times the bin width
so that the area under each histogram integrates to one. The same is true for all of the
histograms in the subsequent figures.

Figure 5a shows the mutual information of the perturbed state versus the entropy,
and Fig. 5b provides the perturbed state concurrence versus the mutual information.
Figure 5a indicates that the perturbed state mutual information decreases approxi-
mately linearly as the entropy increases for all constrained cases except for those
where the entropy is constant. For these cases, the whole set of mutual information
values lie vertically directly below the baseline value. Furthermore, the points are
distributed unevenly from the baseline, something that can be explained by the χ

distribution that is obtained from a set of normally distributed random variables as is
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Fig. 4 (a) Histogram of the perturbed states relative to the distance measure θ and (b) histogram of the
perturbed states relative to the fidelity. The y-axis for both cases show the probability density

explained in Sect. 1. In Fig. 5b, it is seen that the mutual information varies an O(σ )

from the baseline value for Cases 1 and 2 and an O((1/3)σ ) for Cases 3, 4, and 5,
while the concurrence varies an O((5/3)σ ) from the mean value for Cases 1 and 2,
an O(σ ) for Cases 3 and 4, and O((1/2)σ ) for Case 5. Also, as can be seen in the
figure, there is a clear trend between the value of the mutual information and that of
the concurrence of a given state since as expected for a state that decreases the mutual
information with the baseline there is also a loss of entanglement.

Figure 6a and b shows the histograms for the entropy and the mutual information
of Fig. 5. As is seen in Fig. 6a, the entropy is distributed (as it was in Fig. 3a) slightly
to the right of the baseline indicating that values with higher entropy are more prone
to occur owing to the perturbation characteristics. For the mutual information, Fig.
6b shows that Cases 1 and 2 are normally distributed with a mean value to the left
of the baseline, indicating that the perturbation reduces the entanglement between the
two subsystems. For cases 3, 4, and 5, the mutual information follows a χ -square
distribution.

Figure 7a shows the maximumCHSH operator expectation value versus the mutual
information of the perturbed state, and Fig. 7b provides the perturbed state concur-
rence versus the maximum CHSH operator expectation value. Figure 7a indicates
that the increase in the perturbed state maximum CHSH operator expectation value
is proportional to the mutual information increase for Cases 1 and 2, which is again
expected since both aim to quantify the entanglement of a system’s state. However,
for the constrained cases that include C3 and C4 (i.e., Cases 3, 4, and 5), there is a
restriction in the mutual information that can be reached with a value below that of
the baseline.

As to Fig. 7b, it shows that the concurrence and the maximum CHSH operator
expectation value vary asymmetrically from the baseline. Thus, those values with less
concurrence and maximum CHSH expectation values are prone to occur, and there is
a clear trend between the value of the mutual information and the value of the concur-
rence of a given state. In both Fig. 7a and b, the extent of the spread of the perturbed
state values varies and is in particular greatly impacted by the entropy restriction.
The spread on the concurrence and mutual information are as indicated above in the
discussion surrounding Fig. 5, while that for the maximum CHSH expectation values
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Fig. 5 (a) Perturbed state mutual information versus the entropy and (b) the concurrence versus the mutual
information

Fig. 6 (a) Histogram of the perturbed states relative to the entropy 〈Ŝ〉 and (b) histogram of the perturbed
states relative to the mutual information. The y-axis for both cases shows the probability density
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Fig. 7 (a) Perturbed state maximum CHSH operator expectation value versus the mutual information and
(b) the concurrence versus the maximum CHSH operator expectation value

vary an O((3/2)σ ) from the mean value for Cases 1 and 2, almost an O((2/3)σ ) for
Cases 3, 4, and 5 .

The histograms for the perturbed state distribution relative to the maximum CHSH
operator and the concurrence of Fig. 7b are shown in Fig. 8a and b, respectively. For
the case of the CHSH operator, values to the left of the baseline are more likely to
occur (see Fig. 8a), and the C3 constraint considerably reduces the spread of the points.
Something similar occurs with the concurrence, except that in this case, values to the
right of the baseline are more likely (see Fig. 8b). It is also interesting to note that the
C3 constraint affects the entanglement so that there is a greater probability of higher
values of entanglement when the C3 constraint is present than when it is not. For the
C4 case, the distribution is much more narrow than in the other cases with the mean
value close to the baseline.
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Fig. 8 (a) Histogram of the perturbed states relative to the maximum CHSH operator and (b) histogram of
the perturbed states relative to the concurrence. The y-axis for both cases shows the probability density

Fig. 9 Trace distance discord TDD versus the local quantum Fisher information LQFI

Figure 9 shows the relation between the two quantum discord-like quantifiers, plot-
ting the trace distance discord versus the local quantum Fisher information of the
perturbed state. The spread of the points in this figure does not suggest a clear rela-
tionship between these two quantifiers. In addition, the entropy constraint reduces the
spread of the points decreasing the distance with respect to the baseline. Furthermore,
the histograms in Fig. 10a and b for the TDD and LQFI show a shift of the points
distribution to the right suggesting that the perturbation slightly increases the quantum
correlation of these systems. This is similar to what is observed with the concurrence.

Finally, Fig. 11 shows the spread of (a) the mutual information and (b) the con-
currence of the Case 5 (C1 & C2 & C4) for different values of σ . Here, the spread
of values increases with the perturbation for both cases as is expected. The mutual
information follows a χ distribution with a mean value moving to the left with the
increase of σ , while the concurrence follows a normal distribution.
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Fig. 10 (a) Histogram of the perturbed states relative to the TDD and (b) histogram of the perturbed states
relative to the local quantum Fisher information. The y-axis for both cases shows the probability density

Fig. 11 (a) Histogram of the different perturbed states σ = 0.05, σ = 0.1, and σ = 0.2 relative to the
mutual information of Case 5 (C1 & C2 & C4) and (b) histogram of the perturbed states relative to the
concurrence of Case 5 (C1 & C2 & C4). The y-axis for both cases shows the probability density

3.2 Applications of the perturbed state generation to the IBM transmon device

In this section, the simulation results for 200 Bell states prepared on ibmq_manila
as explained in Sect. 2.3 are presented. Experimental fluctuations in the constrain-
ing values of the energy and entropy are taken into account in these simulations using
random values of the energy, entropy, and linear entropy sampled from the experimen-
tally generated normal distributions N (Ẽμ, Ẽσ ),N (S̃μ, S̃σ ), andN (S̃Lμ, S̃Lσ ). The
energy and entropy distributions are given in Fig. 2. To generate the set of randomly
perturbed states, 200 randomly generated values for each ηi, j are also determined
from normal distributions with N (μi, j = 0, σi, j = 0.05). However, simply using
these to generate the random set of 200 perturbed density operators with a distribution
of energies Ẽμ’s and entropies S̃μ’s similar to that for the density operators resulting
from the experiments is problematic in that the ηi, j values are effectively uncorrelated,
while those for the experiments are not.

This is seen clearly in Fig. 12a where each square represents a Pearson correlation
[48] value between two experimental ηi, j with a value of 1 or – 1 indicating a linear
correlation and a value of 0 no correlation. In contrast and as expected, Fig. 12b shows
a Pearson correlation value close to 0 for all of the randomly generated ηi, j values.
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Fig. 12 Correlation diagram of (a) the experimental ηi, jvalues and (b) the simulated ηi, j values. Here, +
1 and – 1 indicates an exact linear relationship between values while a value of 0 indicates non-correlated
values

Fig. 13 Correlations between the (a) ηC1
i, j , (b) η

C1,C2
i, j , (c) ηC1,C3

i, j , and (d) ηC1,C2,C3
i, j values after applying

the different constraints

However, as seen in Fig. 13a, once the first constraint, C1, is applied to the random
generation of γ̂ε to transform it from a non-Hermitian operator to the Hermitian oper-
ator γ̂R , correlations between the ηi, j appear. These increase with the addition of the
constraint C2, but, mainly with the addition of constraint C3, as seen in Fig. 13b to d
where it is noted that the density operator generated without the C3 constraint is less
correlated.

Figure 14 shows the energy-entropy distribution for the perturbed density operators
generated with different sets of constraints. The orange crosses in this figure represent
the density operators resulting from the 200 experiments. These experimental states are
distributed between an entropy of about 0.4 and 0.7 and, for the most part, at an energy
a little below the baseline energy when the energy is constrained. As can be seen, the
states generated for Cases 1, 2, and 3 result in much broader spreads, respectively,
in terms of the energy and entropy. This contrasts with the spread of states generated
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Fig. 14 Energy-entropy diagram of the simulation of the ibmq_manila device based on the ηi, j values using

the normal distributionsN (Ẽμ, Ẽσ ) andN (S̃μ, S̃σ ) for the energy and entropy, respectively. The orange
crosses are the 200 experimental values

with Cases 4 and 5, which closely approximates that for the experimental results from
ibmq_manila. As a result, the following figures, Figs. 15, 16 and 17, focus on Cases
2 to 5 and exclude Case 1 since its spread is the least representative of that for the
experiments.

Figure 15 shows (a) the energy-entropy distribution and (b) the fidelity versus the
distance measure. The figures at the top and on the right side of each of these figures
represent histograms of the number of simulated and experimental states. As can be
seen in Fig. 15a, all the energy and entropy values for Case 4 and 5 are comparable
to those for the experiment (the orange crosses). For Case 3 this is only true for the
entropy values, while for Case 2 neither the entropy nor the energy values match the
experimental. In contrast, Fig. 15b, shows that variations in both distance measures
for Cases 3 to 5 match those of the experiment well. This is not true for Case 2.

Figure 16a shows the entropy versus mutual information distribution for states
generated with Cases 2 to 5. As in Fig. 15, histograms of the number of states appear
at the top and on the right side. As seen, values for the mutual information for Case 2
are higher than those for the experiment and Cases 3 to 5 and span a lower range of the
entropy. In contrast, the values for the entropy and mutual information for Cases 3 to
4 overlay the experimental values (orange crosses) fairly well with the commonality
being that both cases apply the entropy constraint. A similar behavior is observed
with the values of the concurrence and mutual information seen in Fig. 16b. Case 2
again lies outside the experimental range, while Cases 3 to 5 overlay this range. The
commonality once more is the entropy constraint.

Figure 17a shows the maximum CHSH expectation values versus the mutual
information distribution and Fig. 17b the concurrence versus the maximum CHSH
expectation values. Histograms again are at the top and on the right. As before, the
states generated for Cases 3 to 5 provide the best approximations to the experimental
results, demonstrating the importance of the entropy constraint.
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Fig. 15 (a) Energy-entropy diagram of the simulation of the ibmq_manila device based on the ηi, j values

using the normal distributions N (Ẽμ, Ẽσ ) and N (S̃μ, S̃σ ) for the energy and entropy, respectively. The
orange crosses are the 200 experimental values; (b) the fidelity versus the distance measure θd for these
states
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Fig. 16 (a) Mutual information versus the entropy and (b) the concurrence versus the mutual information
for the experimental and randomly generated perturbed Bell states
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Fig. 17 (a) Maximum CHSH operator expectation value versus the mutual information and (b) the con-
currence versus the maximum CHSH operator expectation value for the experimental and the randomly
generated perturbed Bell states
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Fig. 18 Trace distance discord versus local quantum Fisher information for the experimental and the
randomly generated perturbed Bell states

Finally, Fig. 18 shows the trace distance discord versus the local quantum Fisher
information. In this case, the constraints involving the entropy and linear entropy are
in the region of the experimental results but somewhat more widely distributed. In
addition, in this case, the two metrics follow a linear relationship contrary of what it
is observed in Sect. 3.1 where there is no clear relationship between them. This may
be caused by the type of state analyzed but further investigation is required.

4 Conclusions

This paper presents a general perturbation method for randomly creating perturbed
states that are a specified distance θ away from the original baseline state, with θ

defined in Sect. 2.2. The method, furthermore, permits arbitrary sets of constraints
to be applied to the expectation values of the perturbed states and is illustrated by
using combinations of energy and entropy constraints to generate perturbations of a
Bell diagonal state, a so-called maximally entangled state, as well as perturbations of
experimentally prepared Bell states. The effects of the various types of perturbations
on the entanglement characteristics of the resulting perturbed states are presented.

A first observation is that, for the simulated values when experimental fluctuations
are not considered, the constant entropy constraint has amajor effect on the distribution
of the perturbed state entanglement characteristics. This suggests that the entanglement
of two systems is closely correlated to the composite system entropy and that, for
example, as the system entropy increases, the entanglement decreases. In fact, the

123



  314 Page 28 of 34 J. A. Montañez-Barrera et al.

magnitude of the change of the mutual information from the baseline state is directly
proportional to the magnitude of change in the entropy from the baseline state. This
observation is, of course, likely dependent on the choice of baseline state (i.e., in this
case, a Bell diagonal state), and further work should be done to examine this trend for
a broader class of states.

A secondobservation is that the differences in the distancemeasures of the perturbed
states from the base state do not greatly depend on which constraints are applied.
For all the cases, the distance measure θ varies an O((2/3)σ ) away from the mean
value, while the fidelity varies an O((1/5)σ ). The principal difference between these
measurements of the "closeness" between two states is the distribution that best fits the
spread of perturbed states. For the case of the distance measure θ , it is a χ distribution,
while for the fidelity it is a χ -square distribution.

Regarding the simulated values when experimental fluctuations are taken into
account, the first observation is that, without both the energy and entropy constraints,
determining the simulation ηni, j coefficients based on the experimentally generated
normal distributions is problematic since these coefficients are effectively uncorre-
lated. Including the constraints introduces correlations similar to what is seen in the
experimentally generated η̃ni,j coefficients. Without these correlations, generating sim-
ulated perturbed density operators comparable to those generated by the experiments
is not possible.

Another observation is that using the perturbation method proposed here, a large
number of density operators can be constructed with a limited number of experiments
to provide the necessary statistics. This is advantageous for theoretical models that
need a large sampling of density operators. To generate all the needed density opera-
tors experimentally would be extremely time-consuming and costly. In addition, this
approach can be extended to study the behavior of NISQ devices from a theoretical
perspective and to characterize the devices in terms of the experimental ηi, j . Further
investigation in this direction, however, is beyond the scope of the present paper.

Even though constraint C4 is an approximation of the von Neumann entropy con-
straint C3, both give similar results for the simulation of real quantum devices. In
this case, C4 improves considerably the performance in terms of iterations per second
from 3.77 it/s and 4.06 it/s when the C3 constraint is present to 220.57 it/s for the
C4 constraint in the σ = 0.05 case. This is an advantage because it means that using
the C4 constraint, one can create almost 53 density operators for every density oper-
ator created with constraint C3. However, the C3 and C4 constraints show a different
behavior for almost all of the metrics analyzed in Sect. 3.1 with a narrower region for
the C4 case.

Finally, future extensions of this work include the development of a broader set
of constraints to apply in the perturbation procedure (e.g., a constant concurrence
constraint) as well as a more in-depth statistical analysis to better understand how
certain types of perturbations change various system properties andwhich correlations
between variables are strongest.
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Appendix

A example of determining the �i ’s for a single linear constraint

Here the procedure for a single constraint in addition to the necessary unit-trace con-
straint is illustrated. To fix ideas, perturbations at constant energy are assumed. Then,
the constraining operators are Ĉ1 = Ĝ1 = Î and Ĉ2 = Ĝ2 = Ĥ . Equation (15)
simplifies to

γ̂r = (1 − 2λ1) γ̂ε − {Ĥ , γ̂ε} λ2 (40)

and the system of Eq. (16) that determines the values of λ1 and λ2 becomes

(1 − 2λ1)
2 g1 + 4(1 − 2λ1) λ2 g2 + λ22 g3 = 1

(1 − 2λ1)
2 g2 + (1 − 2λ1) λ2 g3 + λ22 g4 = E0

(41)

where E0 = Tr(ρ̂0 Ĥ) is the energy of the base state and for shorthand g1 = Tr(γ̂ 2
ε ),

g2 = Tr(γ̂ 2
ε H), g3 = Tr({Ĥ , γ̂ε}2), and g4 = Tr({Ĥ , γ̂ε}2H) are defined.

B Explicit solution for the case of no nontrivial constraints

For no constraints except the necessary unit-trace condition the procedure can be
solved explicitly in terms of the representation of Hermitian operators discussed in
Sect. 2.1. Operator γ̂ε [Eq. (14)] has coefficients

η[γ̂ε]i, j = δi, j η[γ̂0]i, j + ηi, j (42)

where the base state η[γ̂0ε]i, j ’s are given in Eq. (11) and the ηi, j ’s are independently
sampled from N (0, σ̃ ). The trace of its square, denoted for shorthand as t2ε , is

t2ε = Tr(γ̂ 2
ε ) =

3∑

i, j=0

(
δi, j η[γ̂0]i, j + ηi, j

)2 (43)

Equation (15) simplifies to γ̂r = (1 − 2λI ) γ̂ε and the system of Eq. (16) that
determines the value of λI reduces to the unit-trace condition Tr(γ̂ 2

r ) = 1, which
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yields (1 − 2λI ) = 1/tε , so that the coefficients of the nonnegative square root γ̂r of
the desired perturbed density operator are

η[γ̂r ]i, j = δi, j η[γ̂0]i, j + ηi, j

tε
(44)

C Relation between the � distribution and the �i,j values for the C1
constraint

In this appendix,we discuss the relationship between the 16-dimensional set of random
variables ηi, j , the theoretical χ probability distribution, and that based on the C1
constraint.

To begin with, we recall that the positive square root of the sum of the squares
of a set of independent random variables ηi, j each picked from N (0, 1) (i.e., from a
standard normal distribution with zero mean, μi, j = 0, and unit standard deviation,
σi, j = 1) is distributed according to the so-called χ distribution. When the ηi, j ’s
are taken from N (0, σi, j ), then ηi, j/σi, j can be said to be equivalently taken from
N (0, 1). For example, if all the σi, j are equal, then

〈√√√√
3∑

i, j=0

η2i, j

〉
= √

2σ
�((k + 1)/2)

�(k/2)
(45)

where k = 16 is the number of random variables. This is the case analyzed in Sect.
3.1. Figure 19 presents the distribution (in yellow) for 1,000 random samples of the
16-dimensional set of variables ηi, j all drawn from N (0, σ ) with σ = 0.05. The
corresponding χ distribution is indicated by the dotted blue curve, with mean equal
to 3.94.

Figure 19 also presents, in purple, the distribution for the same samples after the
C1 constraint is applied. As can be seen, the distribution no longer corresponds to a
χ distribution. This is because the C1 constraint induces strong correlations between
η0,0 and η1,1 and between η1,1 and η0,0 as seen in Fig. 20.

These correlations can be also computed explicitly from the solution obtained in
Sect. 1. In fact, Eq. (44) represents a nonlinear transformation from the random vari-
ables ηi, j to the perturbed state variables η[γ̂r ]i, j . Since the ηi, j are independent, their
variance-covariance matrix � is diagonal, with the variances �i, j;i, j = σ 2

i, j on the
diagonal. But the covariance matrix of the transformed variables η[γ̂r ]i, j is given by
Cov = J � J T where J is the Jacobian of the transformation evaluated at the mean
values μi, j of the original variables ηi, j , i.e., from Eq. (44),

Ji, j;k,� = δikδ j�

tε
− (δi, j η[γ̂0]i, j + μi, j )(δk� η[γ̂0]k,k + μk,�)

t3ε
(46)
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Fig. 19 Blue dotted curve: χ distribution (k=16). Yellow histogram: distribution of values of
√
X2
i /σ for

1,000 samples of a 16-dimensional set of random variables Xi = ηi, j all drawn from N (0, σ ). Purple
histogram: distribution of the values Xi = η[γ̂r ]i, j obtained for the same samples via Eq. (18) with the C1
constraint applied (Color figure online)

where tε =1+2
∑3

i=0 η[γ̂0]i, jμi, j+∑3
i, j=0 μ2

i, j andwe recall that
∑3

i=0 η[γ̂0]2i, j =1.
When the 16 independent random variables ηi, j are all drawn from N (0, 1), then

μi, j = 0 and σi, j = 1 for all i and j , �i, j;k,� = δikδ j� and the covariance matrix
simplifies to

Covi, j;k,� = δikδ j� − δi, j η[γ̂0]i, j δk� η[γ̂0]k,k (47)

and yields the correlation matrix

Corri, j;k,� = δikδ j� − δi, j η[γ̂0]i, jδk� η[γ̂0]k,k√
1 − δi, j η[γ̂0]2i, j

√
1 − δk� η[γ̂0]2k,k

(48)

For our particular choice of the scalar coefficients, c0 = 1, c1 = 0.996, c2 = 0.4,
c3 = −0.4, we have a = 0.0316, b = 0.5468, c = 0.8361, d = 0.0316,
η[γ̂0]0,0 = 0.7231, η[γ̂0]1,1 = 0.6598, η[γ̂0]2,2 = 0.1446, η[γ̂0]3,3 = −0.1446,
and the only nonzero off-diagonal entries of the (symmetric) correlation matrix are
Corr1,1;0,0 = −0.9191, Corr2,2;0,0 = −0.1530, Corr3,3;0,0 = 0.1530, Corr2,2;1,1 =
−0.1283, Corr3,3;1,1 = 0.1283, and Corr3,3;2,2 = 0.0214. Figure 20 illustrates the
above relations by comparing the correlation diagrams for a set of 1000 random sam-
ples of the ηi, j ’s drawn fromN (0, 1) and the corresponding values of the transformed
variables η[γ̂r ]i, j .
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Fig. 20 Left: correlation diagram for 1,000 random samples of the ηi, j ’s drawn from N (0, σ ). Center:
correlation diagram for the values obtained numerically with the C1 constraint. Right: correlation diagram
for the transformed variables η[γ̂r ]i, j obtained analytically from Eq. (48) with the C1 constraint applied,

i.e., the unit-trace condition Tr(γ̂ 2
r ) = 1
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