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Abstract
As quantum processing units (QPUs) scale toward hundreds of qubits, diagnosing noise-induced
correlations (crosstalk) becomes critical for reliable quantum computation. In this work, we intro-
duce Zero-Entropy Classical Shadows (ZECS), a diagnostic tool that uses information of a rank-
one quantum state tomography reconstruction from classical shadow information to make a
crosstalk diagnosis. We use ZECS on trapped ion and superconductive QPUs including ionq_forte
(36 qubits), ibm_brisbane (127 qubits), and ibm_fez (156 qubits), using from 1000 to 6000
samples. With these samples, we use the ZECS to characterize crosstalk among disjoint qubit sub-
sets across the full hardware. This information is then used to select low-crosstalk qubit subsets on
ibm_fez for executing the quantum approximate optimization algorithm on a 20-qubit problem.
Compared to the best qubit selection via Qiskit transpilation, our method improves solution qual-
ity by 10% and increases algorithmic coherence by 33%. ZECS offers a scalable and measurement-
efficient approach to diagnosing crosstalk in large-scale QPUs.

1. Introduction

In recent years, the capabilities of quantum processing units (QPUs) have grown to the size of hun-
dreds of qubits [1, 2]. At this scale, sources of noise only visible at large circuit sizes, such as crosstalk,
are emerging. Crosstalk, understood here as a platform-independent phenomenon, refers to errors in
the execution of quantum circuits that originate from interactions with the immediate neighborhood of
the targeted qubits and beyond. These include correlated errors between distant qubits and gate errors
induced by qubits not directly involved in the gate operations [3]. Different studies have investigated the
nature and characterization of crosstalk, including [3–8].

Usually, characterization methods show how noise affects individual qubits, 2-qubit gates, or
quantum circuits. Different methods have been proposed for the characterization of quantum hardware,
e.g. quantum state tomography [9] (QST), randomized benchmarking (RB) [10], quantum volume [11],
cross-entropy benchmarking [12], algorithmic qubits (AQ) [13], or error per layered gate [14].

From these techniques, one that recovers detailed information about a quantum system is QST. It
searches through all the degrees of freedom of the density operator ρ, which for nq qubits scales as
22nq+1. In practice, common methods to calculate the QST of ρ for a sampling error ε require at least
O(4nq/ε2) copies of ρ [15, 16] with a lower bound of O(3nq/ε2) [17]. As a result, calculating the density
operator becomes computationally impractical, even for systems with only a few qubits on real quantum
hardware.

In this work, we propose a new methodology to characterize QPUs performance and crosstalk. To
this end, we developed zero-entropy classical shadow (ZECS), a methodology that uses classical shadows
(CS) [18] as a subroutine to reconstruct the density state operator of small QPUs subsystems.
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Figure 1. (a) Shows the ZECS density state operator reconstruction workflow. (b) Shows the QPU layout with three sets of qubits
chosen to implement some circuits. Vertices represent qubits and edges two-qubit native interactions of the QPU. (c) Shows
the acquisition of the CS information to reconstruct the density state operator. After implementing the circuit, the measuring
basis changes randomly from the Pauli set, and the process repeats N times to get N snapshots. (d) One ZECS application is the
quantification of the entanglement entropy from disjoint circuits. First, the full-density state operator ρT is reconstructed, and
then the partial trace to the disjoint circuits is applied. If there is no leakage of information, the entanglement entropy SAB ≈ 0.

CS tool has been used to get information on the expected values of quantum systems. For example,
in [19], CS is used to predict the ground state properties of many-body physics problems, combining
CS with a polynomial-time machine learning algorithm. It has also been applied to predicting quantum
Fisher information [20], quantum process tomography [21], and information scrambling [22]. The
effects of noise on CS have been analyzed in [23], and methods to mitigate these effects, including real
QPU implementations, have been demonstrated in [21, 22, 24].

Figure 1(a) shows the workflow of the ZECS methodology. First, classical snapshots of the density
state operator are collected using random single-qubit Clifford circuits. Then, the density state operator
ρcs of these sections is reconstructed using the mean value of the different snapshots. Up to this point,
the reconstruction is unstable, and ρcs is not positive semidefinite, a needed condition of the density
state operator. To correct this, we use the rank-one reconstruction of the density state operator, which
we denominate ZECS. This methodology projects ρcs into the pure state of the eigenvector associated
with the largest eigenvalue of ρcs, artificially removing the entropy associated with it. This strategy makes
the density state operator generated, ρzecs, to describe a positive semidefinite and unit trace matrix.

Since the number of samples required to reconstruct density state operators is expected to grow
exponentially with the number of qubits, as in other QST methods, ZECS is employed to gain insights
into the behavior of small sections of QPUs even if the qubits involved in the reconstruction are spatially
apart.

The benefit of ZECS comes from its reusability: a single batch of measurements can be reused
to estimate an arbitrary density state operator of any set of qubits from the QPU, requiring at most
O(d log2 d)) random settings, where d= 2nq , and assuming a rank-one (pure state) reconstruction [25].
Therefore, for a trace distance error, ε, the number of samples required is of O(n2q ∗ 2nq/ε2). In contrast,
conventional QST requires O(3nq/ε2) samples for each pair of qubits involved in the protocol. While
ZECS provides less resolution to distinguish different noise processes, we show that it is well-suited for
detecting crosstalk.

Figure 1(b) shows a section of ibm_brisbane layout, where 3 disjoint circuits are used (1,2), (3,4,5,6),
and (7,8,9). The ZECS methodology is flexible enough to reconstruct the 3 disjoint sections or combina-
tions of them. Figure 1(c) shows the reconstruction of one of the disjoint sections, qubits (7,8,9). Using
ρzecs7,8,9, a diagnostic can be done in terms of, for instance, the fidelity (F) or trace distance (D).

Figure 1(d) shows another application of ZECS. It is based on the reconstruction of the density state
operator involving qubits (1,2,3,4,5,6), ρT , which has the disjoint circuit ρB → (1,2) and ρA → (3,4,5,6).
What is expected is that the entanglement entropy SAB is close to zero. A large value of SAB, on the other
hand, would indicate that crosstalk between the qubits is involved.

Experimentally, ZECS is used to make a diagnostic in terms of F, (or infidelity, 1− F), D, and
the entanglement entropy (Sij; see section A.1.) on three IBM QPUs: ibm_lagos, ibm_brisbane, and
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ibm_fez with 7, 127, and 156 qubits, respectively, and IonQ ionq_forte [13]. As a testing protocol, the
EfficientSU2 circuit of qiskit is employed [26], the quantum approximate optimization algorithm(QAOA)
algorithm in the case of ibm_fez, and random circuits. With only 1000 samples, the ρzecs of 4 qubits can
be recovered. The different ρzecs are then utilized to create a map of the fidelity and the entanglement
entropy for the entire layout of the device. This information is used as a routing technique to select the
best chain of 20 qubits for an optimization application. It is shown that this methodology improves the
performance of the application compared to the heaviest qiskit transpilation technique.

The paper is organized as follows. Section 2 provides a description of CS, ZECS, the experimental
setup, and the routing application. In section 3, the results of ZECS on real QPUs and for the routing
and non-local correlation applications are presented. Finally, section 4 provides some conclusions.

2. Methods

2.1. Classical shadow
CS is a method for reconstructing an approximate classical description of a quantum system using a
small number of measurements [18]. To reconstruct an n-qubit quantum state ρ using N snapshots, ran-
dom unitary gates Ui are applied to ρ

ρ→ UiρU
†
i , (1)

and measured on the computational basis. This results in a bitstrings |b⟩ ∈ {0,1}n and is modeled by the
quantum channel

E
[
U†

i |bi⟩⟨bi|Ui

]
=M(ρi) , (2)

where the operator M depends on the set of random unitary transformations Ui. A classical snapshot ρi
of ρ can be constructed using the inverted operator such that

ρi =M−1
(
U†

i |bi⟩⟨bi|Ui

)
, (3)

where M−1(X) = (2n + 1)X− I. This is not completely positive, but the collection of N snapshots
is expressive enough to predict many properties of the quantum state. CS is the process of repeating
equation (3) N times, which mathematically is expressed as

S(ρ,N) =



ρ1 =M−1
(
U†
1|b1⟩⟨b1|U1

)
,

ρ2 =M−1
(
U†
2|b2⟩⟨b2|U2

)
,

. . .

ρN =M−1
(
U†

N|bN⟩⟨bN|UN

)


. (4)

This method is restricted here to the Pauli basis measurement (see equation (S44) in [18]) so that each
snapshot is given by

ρi =⊗n
j=1

(
3U†

j |bj⟩⟨bj|Uj − I
)
. (5)

where Uj changes the basis to the {X,Y,or Z} basis. The reconstruction of the state operator ρ using CS
is then found from

ρcs =
1

N

N∑
i=1

ρi. (6)

It is important to note that the inverted channel does not represent a physical system, i.e. it is not a
completely positive and trace-preserving channel. However, a sufficiently large CS will approximate the
true density state operator.
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2.2. ZECS
In general, ρcs is a hermitian but not necessarily a positive semi-definite matrix. This means it cannot
represent a quantum state. Additionally, in the current stage of quantum computation, QPUs are inher-
ently noisy, and, therefore, snapshots are partially corrupted by noise. The ZECS methodology is pro-
posed here to mitigate both problems. ZECS has the objective of reconstructing the closest representa-
tion of a pure state ρ using the information of ρcs.

Singular value decomposition (SVD) is used to decompose ρcs such that

ρcs = VΣV†, (7)

where Σ= diag(|λ1|, |λ2|, . . ., |λn|) is a diagonal matrix with the non-negative singular values of ρcs in
decreasing order, These coincide with the absolute values of the eigenvalues because ρcs is hermitian.
V= [|ψ1⟩, |ψ2⟩, . . ., |ψn⟩] is a matrix with the (orthonormal) eigenvectors of ρcs. The zero-entropy (ZE)
step consists of truncating the information used to reconstruct the density state operator to only that of
the largest eigenvalue. This step is analogous to the rank reduction in QST [27–29] and can be seen as
completely removing the entropy of ρcs. The eigenvector |ψ1⟩ associated with the largest singular value of
ρcs, i.e. |λ1| is then used to reconstruct the density state operator by

ρzecs = |ψ1⟩⟨ψ1|. (8)

This new density state operator fulfills the positive semidefinite and unit-trace conditions for represent-
ing the approximate density state operator ρ.

Note that by the well-known Mirsky generalization of the Eckart–Young theorem [30], the closest
approximation of ρcs by means of a rank-one hermitian operator A with respect to a unitarily invariant
operator norm is given by A1 = VΣ1V† = |λ1|ρzecs where Σ1 = diag(|λ1|,0, . . .,0), i.e.

∥ρzecs |λ1| − ρcs∥= inf
rank(A)=1

∥A− ρcs∥. (9)

In general, A1 is non-negative but not unit trace. Therefore, to obtain a density operator, A1 is renor-
malized so that ρzecs = A1/Tr(A1). The renormalization step modifies the operator to meet the trace
condition but compromises the norm minimization. However, the loss with respect to Eckart–Young
optimality vanishes in the limit as ρcs is not too far from purity, i.e. if 1−λ≪ 1, which is fulfilled in
the experiments we analyze here. In return for this slight compromise, ρzecs provides the best representa-
tion of ρcs, which fulfills the purity characteristic of the theoretical output of the quantum circuit.

Numerical evidence is provided in section A.1. that shows the zero entropy strategy to recover
information of a mixed state. We use a random perturbation on a 2-qubit Bell state following the meth-
odology in [31] and show that if the perturbation is not large, one can always recover more information
using this ZE methodology. Evidence is given in terms of the fidelity, F, the trace distance, D, and the
concurrence, C, for a description of these metrics.

2.3. Crosstalk characterization
Among the various techniques to quantify crosstalk, simultaneous randomized benchmarking (SRB) [4,
32] is used to assess whether running randomized tests in parallel reduces the performance of other-
wise independent systems. SRB consists of three experiments: two involve performing RB on one system
while the other remains idle, and the third runs RB on both systems simultaneously. This yields two
error rates ri for the idle case and rs for the simultaneous case. The crosstalk is then quantified as ri - rs,
representing the change in RB performance of each subsystem due to concurrent operation.

Another way to quantify crosstalk is through gate set tomography , which can be used to determine
whether the observed data is better explained by a crosstalk-free model, a model with context-dependent
crosstalk between nearby qubits, general crosstalk, or non-Markovian noise. The most accurate repres-
entation is identified based on a metric called the likelihood [33].

In this work, we use the entanglement entropy to characterize crosstalk. The entanglement entropy is
expressed as

Sab =−ρa log(ρa) =−ρb log(ρb) , (10)

where ρa = Trb(ρ) is the partial trace of the composite density state operator ρ over the basis states of
subsystem b. The classical cost to compute the entanglement entropy from a given state ρ is dominated
by two steps. The first entails forming the reduced density matrix ρa = Trb ρ, which requires O(d2adb)

arithmetic operations, where da = 2n
a
q and db = 2n

b
q are the Hilbert-space dimensions of subsystems a and
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Figure 2. Crosstalk simulation between subsystems a and b. (a) A random circuit used to simulate crosstalk between subsystems
a and b. The noisy gate that represents the crosstalk connects both subsystems and has a strength parameter ε. (b) Entanglement
entropy versus the number of shadows used for different crosstalk strengths for the simulation of the circuit in (a). The inset plot
shows the fidelity for the same process.

b. The second consists of obtaining the spectrum required by equation (10) (e.g. via SVD or diagonaliza-
tion of ρa), which costs O(d3a).

When subsystems a and b are disentangled, i.e. ρ= ρa ⊗ ρb, Sab = 0. In our experiments, we run
quantum circuits on subsets of qubits independently, reconstructing ρ using ZECS, so the entanglement
entropy of combinations of these subsystems is expected to be zero. Uncorrelated noise should not affect
the entanglement entropy. However, if crosstalk induces correlations between the subsystems, the entan-
glement entropy will deviate from zero.

Figure 2 shows how ZECS reconstruction can be used to identify crosstalk in noisy quantum circuits.
Figure 2(a) depicts the circuit composed of two subsystems, a and b. Crosstalk is simulated by introdu-
cing additional random two-qubit gates acting between one qubit of subsystem a and one qubit of sub-
system b, with the interaction strength controlled by the parameter ε. We consider random circuits with
a two-qubit depth of 10, simulated using Qiskit’s noisy simulator [34] with 2-qubit depolarizing noise
λ= 1× 10−3. At each depth step, a random two-qubit gate is applied to each subsystem, followed by a
crosstalk gate. Three scenarios are investigated: ε= 0 (no crosstalk), ε= 0.1, and ε= 0.3. The crosstalk
gates are implemented as Rxx(θ) and Rzz(θ) rotations, with θ randomly chosen in the interval [−ε,ε]. As
ε increases, the effective strength of the induced crosstalk also increases.

Figure 2(b) shows how the entanglement entropy changes with the number of shadows for three
different crosstalk strengths. Since depolarizing noise is included in all cases, the entanglement entropy
approaches zero when ε= 0, indicating that uncorrelated noise does not produce a large Sab. In con-
trast, increasing the crosstalk strength consistently increases the observed Sab, showing that ZECS is an
effective method for detecting crosstalk. The inset of figure 2(b) presents the corresponding fidelity res-
ults, where stronger crosstalk also leads to lower fidelity. Together, these simulation outcomes clarify why
ZECS serves as a useful methodology for identifying crosstalk.

2.4. Experiments
To evaluate the ZECS methodology on real quantum hardware, we use the IonQ Forte (ionq_forte)
and the IBM Falcon (ibm_lagos), Eagle (ibm_brisbane), and Heron (ibm_fez) processors [35, 36].
ionq_forte is a trapped ion device with a fully connected layout, while the other QPUs are supercon-
ductive quantum processors [37] with a Heavy-Hex layout [38].

Figure 3 shows (a) the circuit used for the ibm_lagos experiment and (b) the ibm_lagos layout. The
circuit used is an EfficientSU2 gate from qiskit. This is a parametrized circuit with 4nNq parameters,
where n is the number of repetitions of the circuit and Nq is the number of qubits. The parameters are
randomly selected from a uniform distribution with values between 0 and π/2. 10 000 snapshots are col-
lected for this circuit on ibm_lagos, measuring the 7 qubits involved.
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Figure 3. (a) The EfficientSU2 circuit used for the characterization of ibm_lagos. The circuit is repeated n layers, and the para-
meters for each layer, the θni , are randomly chosen from a uniform distribution between 0 and π/2; (b) The layout of ibm_lagos
where the vertices represent the qubits and the edges the physical connectivity between them.

In the case of ibm_brisbane, 1 and 10 repetitions of the EfficientSU2 gate are applied in pairs of
qubits throughout the device. The parameters are randomly selected for different pairs of qubits using
the same distribution employed with ibm_lagos. 6000 snapshots are utilized to measure all the qubits at
the end of the protocol. In the case of ibm_fez and ionq_forte, the 2-qubit systems execute an LR-QAOA
[39] protocol with p = 10. This circuit consists of 20 CZ gates and 10 Rx gates.

2.5. Routing application
The entanglement entropy, Sij, of non-local pairs of qubits can be used to detect leakage of informa-
tion in a non-local way. It is believed that this non-local crosstalk in at least some cases can occur at the
multiplexing readout stage [40, 41]. To determine if this information gained through ZECS provides a
better strategy for routing qubits in the IBM Heavy-Hex topology than the method used by the qiskit
transpiler, the LR-QAOA is used. LR-QAOA is employed in combinatorial optimization applications and
is an approximation of a digital adiabatic protocol consisting of a fixed set of linear annealing paramet-
ers in the QAOA [39, 42–45].

For routing, qiskit uses an algorithm called VF2Postlayout [46] that consists of finding the best iso-
morphic subgraphs to the input circuit using a heuristic objective function derived from the calibration
data of the device. In qiskit, there are four levels of routing optimization (from 0 to 3), with 3 being the
level where the most effort in the algorithm occurs to find the layout with the lowest error.

To compare both methods, a weighted maxcut problem (WMC) is used with weights randomly selec-
ted from the options [0.1,0.2,0.5,2.0] on a 20-qubit 1D-chain topology. LR-QAOA is run from p= 3 to
100 layers with a ∆γ,β = 1.0 (see equation (4) in [39]). The ZECS and qiskit methodologies are run
consecutively on ibm_brisbane with 1000 shots. The performance is calculated using the approximation
ratio (see equation (11) in [39]).

3. Results

Results for the experiments conducted on the QPUs are presented below.

3.1. ibm_lagos
Figure 4 shows a comparison of the infidelity versus the number of snapshots resulting from the CS and
ZECS reconstruction of the density state operator for a 3-qubit EfficientSU2 protocol with 7 repetitions.
Two different samplers are used: a noiseless sampler (qasm_simulator) and ibm_lagos to show the effect
of noise on the reconstruction. Under the assumption of a noiseless procedure (green lines), at N = 1000
snapshots, the qasm_simulator reaches an infidelity of ≈ 0.001 for both CS and ZECS. In the case of a
real device (orange curves), using CS, the infidelity stabilizes at around 0.25 while using ZECS, more of
the noise is removed, obtaining an infidelity of 0.057. An extended study of the noise on ibm_lagos is
presented in appendix A.3.

3.2. ibm_brisbane
Figure 5(a) shows the relation between the infidelity, 1− F, and the trace distance, D (See section A.1.),
for two experiments, 1 and 10 layers of EfficientSU2 in pairs of qubits of ibm_brisbane using CS and
ZECS. In table 2, there is a list of the qubits involved in the EfficientSU2 experiments. In both metrics, a
value of zero is desired, and the ZECS can correct most of the noise, bringing the error to an isentropic
line where 1− F and |D| are correlated. In contrast, in the CS case, because of an unstable reconstruc-
tion of the density state operator, there is no strong correlation between the two metrics. Figure 5(b)

6
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Figure 4. Infidelity versus the number of snapshots using the qasm_simulator and ibm_lagos for 7 repetitions of the protocol of
figure 3(a) on qubits 0, 1, and 2. The dashed lines represent the CS and the solid lines the ZECS reconstructions of the density
state operator.

Figure 5. (a) (1− F) vs. D using CS and ZECS for the 2-qubit experiment of the EfficientSU2 gates for n= 1 and 10 repetitions
on ibm_brisbane. The inset circuit is the EfficientSU2 gate repeated n times with random parameters θi. Every marker represents
a pair of qubit results. (b) Singular values of ρcs for the bipartite subsystems in the n= 10 EfficientSU2 experiment.

shows the singular values magnitude for the bipartite systems involved in the n= 10 EfficientSU2 exper-
iments. The order of them is the same as shown in table 2. Note that there is a good separation of λ1
to the other singular values. This is a good indication that noise is not strong enough to forbid a good
reconstruction of the density state operator.

Figure 6 shows the fidelity information of ibm_brisbane obtained from the reconstruction of dens-
ity state operators using N = 6000 snapshots and the ZECS methodology for 10 repetitions of the
EfficientSU2 circuit. Figure 6(a) shows the layout of ibm_brisbane, with edge color representing the
fidelity of the density state operator reconstructed. This reconstruction is based on the information of
2, 3, and 4-qubit density state operators. In table 2, there is a list of the qubits involved in each recon-
struction. This fidelity map helps to identify regions where poor performance is present. For example,
qubit 68 and its neighboring nodes have the lowest performance. If we compare this fidelity against, for

7



Quantum Sci. Technol. 11 (2026) 015008 J A Montañez-Barrera et al

Figure 6. Fidelity information of ibm_brisbane based on the reconstruction of the density state operator using CS and ZECS.
(a) Fidelity map of the different 2, 3, and 4-qubit subsystems. In the case of 3-qubit subsystems, the fidelity is represented by the
edge between the idle qubit node and its neighbor. For example, in (13,12,17), the edge between nodes 12 and 17 represents the
fidelity. In the case of the 4-qubit subsystem, the edge that connects the two pairs of qubits represents the fidelity, e.g. in (13,12)
and (11,10), the edge between nodes 12 and 11 represents the fidelity. (b)–(d) 1–F versus the subsystems involved in the recon-
struction of the density state operator using ZECS and CS. (b) Qubits are involved in the EfficientSU2 protocol. (c) The 3-qubit
subsystems involve an idle qubit. For example, in subsystem (13,12,17), qubit 17 is the idle qubit. (d) 2 neighbor pairs of 2-qubit
subsystems that are involved in the EfficientSU2 protocol.

example, the RB fidelity, we can expect a more detailed noise characterization. Because the characteriza-
tion of 2-qubit gates using RB uses only one expectation value.

Figure 6(b) shows the infidelity of the 2-qubit systems involved in the EfficientSU2 protocol. There
is a significant impact of applying the ZECS methodology to the CS information, reducing the infidelity
from 0.19(±0.08) to 0.03(±0.03) on average. Furthermore, there is a correlation between the infidelity of
CS and ZECS, but not in all cases. For instance, subsystem (27,28) has a lower infidelity than subsystem
(26,25) using the CS reconstruction, but once ZECS is applied, subsystem (26,25) has a lower infidelity.
This suggests that some kinds of errors are more prone to be corrected. ZECS shows improvements in
some cases of 1 order of magnitude in the infidelity compared to CS. It is interesting to note that ZECS
is based completely on the CS information and no further assumptions are made. Therefore, the extra
information recovered in ZECS comes completely from the QPU. Figures 6(c) and (d) show the infidel-
ity for the 3-qubit and 4-qubit cases. The recovery of ZECS is also important in these cases. A detriment
in fidelity from the 3 and 4-qubit cases when compared with the 2-qubit case results primarily from the
dimensionality of the density matrix that is reconstructed. In the case of the 2-qubit problem, there are
only 2Nq = 4 complex parameters, while for 3 qubits, there are 8 and 4 qubits 16.

Figure 7 shows the entanglement entropy, Sij, of the different subsystems. Edges are associated with
3-qubit and 4-qubit subsystems. In figure 6(a), fidelity is presented as a quantifier of the quality of
the 2-qubit operations and the 3-qubit and 4-qubit interactions. However, correlating this information
with unwanted crosstalk is limited. In contrast, the entanglement entropy, Sij, between the subsystems
indicates that there is a leak of information between the subsystems. In the ideal case, Sij = 0 because
the subsystems are not interacting. Furthermore, information about the fidelity and the entanglement
entropy seems to be correlated, i.e. in regions where there is low fidelity, the subsystems have high Sij.
But the region with the worst fidelity (68,69) is not the region with the highest Sij. In the lower part of
ibm_brisbane, there is higher entanglement entropy in qubits 104, 105, 110, 118, 121, and 122.

Now, based on the information provided by figures 6 and 7, the best 20 qubits that form a 1D chain
are chosen and compared to the best routing procedure of Qiskit. In the inset of figure 8(a), the chain
chosen using ZECS information is indicated in orange, while the chain chosen by the qiskit transpiler
with an optimization level 3 is shown in blue. The routing procedure of qiskit uses calibration informa-
tion of the device, including the native 2-qubit gates error. In the case of ZECS, the fidelity and entan-
glement entropy information are used to guide the routing.
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Figure 7. Entanglement entropy between subsystems not connected during the CS experiment. The color map represents the
normalized entropy of the system. The entropy is normalized with respect to the maximum entropy of the 3-qubit and the 4-
qubit systems. A red color is an indication of an unwanted correlation between subsystems. For instance, the edge connecting
qubits 12 and 17 yields S12,13 = S17 where the two subsystems are (12,13) and (17). Because these subsystems are not connected
in the protocol, their entanglement entropy should be zero so if any entropy is found, it could be related to the presence of some
crosstalk.

Table 1. Comparison of the ZECS and Qiskit Transpilation Routing.

Metric ZECS Routing Qiskit Routing

ECRavg
error 0.01 (±4.8× 10−3) 0.006 (±1.8× 10−3)

F̄ 0.983 (±0.011) 0.974 (±0.015)
S̄ij 0.299 (±0.09) 0.375 (±0.155)

Table 1 summarizes the mean values for 2-qubit error of the native ECR gate of ibm_brisbane
(ECRavg

error), the average fidelity F̄, and the average entanglement entropy S̄ij of the qubits selected using
both routing methodologies. In parentheses is the standard deviation. In terms of ECRavg

error, the error of
the qubits chosen by qiskit is much lower than the ZECS error. In terms of F̄ and S̄ij, the ZECS routing
is better than the qiskit routing.

Figure 8(a) shows the results of the optimization solutions using the LR-QAOA of section 2.5 for the
WMC. The y-axis represents the approximation ratio vs. the number of QAOA layers. This metric indic-
ates the proximity of the QPU’s outputs to the optimal solution of the problem, with r= 1 indicating a
100% probability of finding the optimal solution of WMC using LR-QAOA. In an ideal case, as p grows,
r approaches 1. However, when noise is involved, r grows to the point where the LR-QAOA is stronger
than the noise inherent in the device. As can be seen, using the ZECS routing, the chosen set of qubits
improves the lifetime of the LR-QAOA compared to the routing chosen by qiskit by more than 33%,
i.e. from p= 50 to p= 75, and the peak of the approximation ratio from r= 0.750 to r= 0.785, which
is a 10% reduction in error when compared to the ideal approximation ratio of r= 0.876 at p= 5. This
suggests that the qiskit routing and the two-qubit errors do not fully capture the characteristics needed
for a set of qubits to perform well on some tasks that require cohesion between qubits.

Figure 8(b) shows another application of ZECS, i.e. the detection of non-local correlations in pairs of
qubits. Because of their low performance, three subsystems of interest are analyzed: (19,20), (67,68), and
(118119). In this case, the density state operators involving the 2-qubit subsystems of interest are recon-
structed, as are the other subsystems used in the EfficientSU2 protocol for 1 and 10 repetitions that do
not share a direct connection. The non-local interactions could show potential crosstalk coming from,
for example, the multiplexing readout. The strongest entanglement entropy, Si,j = 0.237, is between pairs
(19,20) and (2,3), which is 3.5 σ above the mean entropy of S̄i,j = 0.113(±0.035) of all pairs versus
(19,20) for the 10 repetitions case. Note that the F of (2,3) (figure 6(a)) is not affected, which suggests
that the information of (2,3) corrupts that of (19,20) but not vice versa. The case of (67, 68) qubits
is the most correlated subsystem, especially with the bottom region of the QPU, i.e. subsystems (118,
119), (120121), and (122123). The detriment in F of the subsystems of interest might be related to this
unwanted non-local interaction.
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Figure 8. Combinatorial optimization application using the qubit chain found via ZECS versus that determined via the best
transpilation method of qiskit. (a) Approximation ratio versus the number of LR-QAOA layers p of a randomWMC using both
chains. In a noiseless simulation, i.e. qasm_simulator, as p grows, the solution approaches r= 1. The shaded region, random,
shows where the outputs from the QPU cannot be distinguished from a random sampler. The inset shows the chain of qubits
used in the application for the two methods. There is an overlap of qubits 62, 63, and 64 for both routing methods. (b) Non-local
map of high Si,j for three subsystems of interest: (19,20), (67,68), and (118, 119). The orange squares represent the subsystems
of interest. The pink ovals represent the subsystems that share a high entanglement with the subsystems of interest. Dashed and
solid lines are the results from 1 and 10 repetitions of the EfficientSU2 protocol, respectively. The arrows connect the systems that
have an Si,j 2 standard deviations above the mean value over all possible pairs. The red arrows represent the highest Si,j for each
subsystem analyzed.

3.3. ibm_fez
To systematically explore the scalability of non-desired entanglement in larger quantum systems, the
ibm_fez quantum processor is employed using three experimental configurations consisting of three
layers of qubit pairs (see device layout in figure 9(b)). In each configuration, 6000 measurement shots
are performed to reconstruct 4-qubit subsystems composed of two independent qubit pairs. Since the
LR-QAOA circuit with p = 10 operates separately on each pair, the entanglement entropy within a single
pair should ideally be zero. A nonzero entropy value indicates residual correlations between the subsys-
tems, suggesting the presence of crosstalk or other unintended interactions.

Figure 9(a) presents the results for the 2 cases: in red (blue) the pair with the highest (lowest) entan-
glement entropy relative to the rest of the systems. While the pair in blue exhibits near-zero entangle-
ment entropy with the other subsystems, the red pair reaches a high entanglement entropy with all other
subsystems. Notably, when a qubit pair shows significant entanglement, it is not restricted to interactions
with a few other pairs but instead displays a more global entanglement across the full QPU. This wide-
spread entanglement can be detrimental to the QPU performance.

Figure 9(b) presents the average entanglement entropy (left) and fidelity (right) for the qubit pairs
involved in the three experimental configurations. The edge color coding in the inset corresponds to
the respective experimental setups. In all three cases, a small subset of qubit pairs exhibits signific-
antly higher entanglement compared to the others. Interestingly, while low fidelity sometimes correlates
with high entanglement entropy, this is not a consistent trend. Additionally, it is observed that highly
entangled pairs can also exhibit high fidelity. This indicates that entanglement cannot be reliably pre-
dicted solely based on two-qubit gate error rates. Figure 9 shows in orange the systems with a high S̄ab.
This gives a map of the qubits that must be avoided in experiments. The ovals represent the systems
with the highest S̄ab for each experiment.

3.4. Cross-platform comparison
Figure 10 shows the comparison between ionq_forte, ibm_fez, and a noiseless simulator. From the pre-
vious experiment on ibm_fez, result reconstructions with only 1000 samples are used in 60 pairs out of
176 possible pairs, and the same protocol is run on ionq_forte using its 36 qubits (18 pairs) and on the
noiseless simulator using 20 qubits (10 pairs). The reconstruction is then made in pairs of 2-qubit sub-
systems throughout all possible pairs, which grows as Ntotal = Npairs(Npairs− 1)/2. In the case of ibm_fez,
there are 1770 pairs, on ionq_forte 153 pairs, and on the noiseless simulator 45 pairs.
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Figure 9. Entanglement entropy of pairs of qubits on ibm_fez. (a) The red line shows the pair of qubits that shares the largest S̄ab
with the other pairs, and the blue line shows the pair of qubits with the lowest S̄ab in experiment 0. The inset graph shows the
pairs of qubits in experiment 0, with edges describing the S̄ab of each pair, and a reddish color indicating a stronger S̄ab. The two
ovals represent the two pairs of qubits with minimum and maximum correlation. (b) S̄ab (solid line) for the three experiments:
the inset layout shows the distributions of pairs of qubits in each experiment. The circles represent the fidelity (right y-axis) of
the pair of qubits experiment. The dotted line represents the S̄ab that is considered normal. (c) ibm_fez layout with orange lines
representing the S̄ab that are above the dotted line in (b) and, therefore, the pairs of qubits that generate a high entanglement
when used.

Figure 10. Cross-platform comparison of ZECS between trapped ions and superconducting QPUs of 2-qubit circuit using 1000
samples. (a) Fidelity versus entanglement entropy. Markers represent all the 2-subsystem pairs of each device. (b) The box shows
the interquartile range (IQR) for the entanglement entropy, with the central red line indicating the median. Whiskers extend to
data within 1.5IQR, caps mark their endpoints, and circles are outliers.

Figure 10(a) presents the entanglement entropy versus fidelity for the three scenarios. Among them,
ibm_fez shows the strongest impact of crosstalk, affecting many qubit pairs. Note that some part of the
entanglement entropy can still be attributed to sampling limitations since even in the noiseless simula-
tion, a residual Sab remains.

Figure 10(b) summarize the Sab of the different platforms. The median Sab values (with the upper
whiskers in parentheses) are [0.22(0.46),0.16(0.28),0.12(0.18)] for the ibm_fez, ionq_forte, and noise-
less case, respectively. Furthermore, ibm_fez shows 190 outliers, compared with only 2 outliers in the
other two cases. These findings are consistent with previously reported performance across both plat-
forms when running the same quantum applications [39, 47]. Despite ibm_fez having a lower average
two-qubit gate error rate (2.6× 10−3) than ionq_forte (10.2× 10−3), the performance of the ionq_forte
in these applications is better.

4. Conclusions

In this work, ZECS has been proposed as a tool to diagnose quantum devices in terms of their oper-
ational quality and the leakage of information. ZECS is a methodology used to reconstruct the closest
representation of the true density state operator of a quantum circuit, given the information of CS.
Similar to rank 1 QST, ZECS considers only the eigenvector associated with the largest eigenvalue of the
CS density state operator reconstruction. In this step, the entropy of the circuit is artificially suppressed.
This methodology ensures that the density state operator represents a positive semidefinite and unit
trace matrix. These conditions are needed to represent a true quantum state. As the number of required
samples is expected to grow exponentially, as is the case with other QST methodologies, the focus here
is on using ZECS to reconstruct small sections of QPUs for performance evaluation and information
leakage detection.
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Experimental validation of the ZECS methodology is performed using ibm_lagos, ibm_brisbane,
ibm_fez, and ionq_forte. 1000 shots are demonstrated to be sufficient to recover the information of 2,
3, and 4 qubit density state operators. Using this information, a diagnostic in terms of fidelity, trace
distance, and entanglement entropy is given. These metrics show how pairs of qubits perform when
they are involved in gate operations. Entanglement entropy provides additional information about the
crosstalk between pairs of qubits. This is, to our knowledge, the first cross-platform quantification of
crosstalk under identical circuit conditions.

Using ZECS, regions where quantum devices have low performance are identified and can, thus,
be avoided. This methodology is shown to have better performance in finding a set of qubits for a
quantum optimization application compared to the qiskit routing procedure, improving the lifetime of
the quantum algorithm by more than 33% and the approximation ratio from r= 0.750 to r= 0.785. The
improvement is the result of a more informed decision.

While qiskit routes are based on the collected calibration information of disjoint terms, routing using
ZECS uses detailed information from the density state operator, like fidelity and entanglement entropy.
These are meaningful metrics that can be correlated to noise and crosstalk. This reconstruction is flex-
ible, i.e. the qubits for the reconstruction can be chosen arbitrarily, although it is necessary to be aware
that the number of snapshots needed grows exponentially with the number of qubits involved in the
reconstruction. However, with only 6000 shots, a good estimation of the density state operator for up to
4 qubits can be given.

We extended the ZECS experiments to ionq_forte, a trapped-ion QPU from IonQ. On this platform,
crosstalk is present but less pronounced than on ibm_fez. The results also reveal that certain subsys-
tems of ibm_fez are highly correlated, consistent with the large number of outliers observed. This pro-
tocol can also be extended to other platforms, such as neutral-atom and photonic-based QPUs. The only
requirement is the availability of single-qubit gates that include at least RX and RZ rotations.

The density state operator reconstruction has the advantage that one can unveil hidden noise ele-
ments like unwanted correlations using the entanglement entropy. This characteristic is tested to uncover
non-local crosstalk that can explain partially why some pairs of qubits have low performance. For
example, reconstructing the density state operator of nonconnected pairs of qubits (2,3) and (19,20)
on ibm_brisbane shows an entanglement entropy that deviates considerably from the mean entangle-
ment entropy calculated for the interaction of (19,20) with all other pairs. It suggests that information
leakage may occur at the multiplexed readout stage, a phenomenon that has been previously reported
in [48–50].

Finally, the ZECS shows that much more information about a quantum protocol on a given device
can be recovered. It raises the question of how one can recover that information without having to
reconstruct the whole density state operator, which quickly becomes impractical as the number of qubits
increases. A future direction would be to understand what is the source of the noise removed and where
exactly the remaining noise is coming.
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Appendix. Supplementary material

A.1. Metrics
The fidelity (F), trace distance (D), concurrence (C), and entanglement entropy (Sab) are used to meas-
ure the quality of the solution given by CS and ZECS. The fidelity is expressed as

F= Tr

(√√
ρ1ρ2

√
ρ1

)2

, (A1)

where ρ1 is the density state reconstruction and ρ2 the ideal density state operator. The trace distance
[51] is defined by

D(ρ1,ρ2) =
1

2
tr|ρ1 − ρ2|, (A2)

where |A|=
√
A†A and ρ1 and ρ2 are the density state operators.

The concurrence [52] is a metric of the entanglement of pairs of qubits and is given by

C(ρ) =max(0,λ0−λ1−λ2−λ3) (A3)

where the λi are the eigenvalues, sorted by magnitude from largest to smallest of the operator R defined
as

R(ρ) =
√√

ρρ̄
√
ρ (A4)

where ρ̄= (σx ⊗σx)ρ
∗(σx ⊗σx), σx is the x-Pauli matrix, and ρ∗ is the complex conjugate of ρ.

A.2. Zero entropy
The ZE methodology is general and can be applied to mixed states. In figure 11, the capabilities of the
ZE methodology to recover information from a noisy density state operator are shown. Random per-
turbations on a Bell state, |ψ⟩= 1√

2
(|00⟩+ |11⟩) are used and information is recovered using ZE. The

random perturbation presented in [31] is given by

ρ̃= ρ0+
1

2

∑
i,j

ηijσi ⊗σj, (A5)

and

ρ=

(√
ρ̃
)†√

ρ̃

Tr(ρ̃)
(A6)

where ρ is a mixed state, ρ0 = |ψ⟩⟨ψ|, ηij is the random perturbation in the basis i, j ∈ {0,1,2,3}. ηij is
taken randomly from a normal distribution with mean 0 and standard deviation, σ, varying from 0 to
0.5 to simulate different noise strengths.

The density operator ρze is first constructed from ρ using equations (7) and (8). In figure 11, ρ and
ρze are compared in terms of the (a) infidelity (1− F), (b) D, and (c) C. These metrics are intended to
give a sense of how close both states are to ρ0. For 1− F and D, it is seen that for perturbations with
σ< 0.3, the ρze is closer to the ideal ρ0. In practice, this means that for QPUs with low error rates, ZE
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Figure 11. Bell state’s perturbed density state operator compared to the reconstructed density state operator using ZE for different
noise strengths in terms of the (a) infidelity, (b) trace distance, and (c) concurrence. The x-axis represents the standard deviation
of the perturbation. The markers represent the mean value and the error bars represent the standard deviation of 1000 random
perturbed states.

Figure 12. Eigenvalues of the Bell state’s perturbed density state operator for different noise strengths.

allows the reconstruction of a closer representation of ρ0. In terms of C, which measures entanglement
in pairs of qubits, using ZE, the entanglement remains stronger and for longer than the noisy case.

Figure 12 shows the 4 eigenvalues of the Bell state for the ibm_brisbane experiment (figure 5(b))
when random perturbations are applied. As can be seen, as the strength of σ increases, the informa-
tion of the first eigenvalue decreases and the other eigenvalues begin to become more relevant. That the
curves never cross as the strength of the noise increases indicates that the first eigenvalue can always be
the largest of all the eigenvalues.

A.3. ibm_lagos extended analysis
Figure 13 provides the F results for the reconstruction of the 7-qubit density state operator of ibm_lagos
using CS and ZECS. In particular, figure 13(a) shows the results for F versus the number of snapshots
for 4 repetitions of the EfficientSU2 gate. Because of inherent noise on ibm_lagos, after 2500 snapshots,
CS cannot improve the fidelity above 0.62. In contrast, applying ZECS, the fidelity improves up to 0.76.
The results could improve even further using ZECS, but more snapshots would be needed. This is not
the case for CS. The inset bar plots represent the relative error of the real and imaginary components of
ρ− ρ0.

Figures 13(b) and (c) show the real (blue) and imaginary (magenta) components of ρ at N= 10000.
Because of noise and limitations in sampling, the results deviate from the noiseless result. However,
after applying ZECS to the CS information, part of the noise is removed so that the real and imagin-
ary parts of the reconstructed density operator approach those for the noiseless simulation. In terms of
fidelity, at the end of 10000 snapshots, CS reaches a F= 0.756 while ZECS reaches a F= 0.943. ZECS is
an assumption-free methodology and shows the information that a QPU can replicate from a quantum
protocol. This is an advantage for diagnosis and characterization, allowing the focus to be on the inher-
ent noise of the device instead of that associated with the instability of the device and the number of
snapshots.
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Figure 13. Comparison between ZECS, CS, and a noiseless simulation of the density state operator reconstruction of the 7-qubits
of ibm_lagos for 4 repetitions of the protocol of figure 3(a). (a) Fidelity versus the number of snapshots. The bars in the inset
plots represent the noise in the real and imaginary components of the density state operator. Matrix elements of the (b) real and
(c) imaginary components of the density state operator.

A.4. ibm_brisbane experiment
Table 2 summarizes the data for the EfficientSU2 experiments (two-qubit case), the EfficientSU2 2-qubit
+ idle qubit reconstruction (three-qubit case), and the pairs of 2-qubit reconstruction (four-qubit case)
on ibm_brisbane.

Table 2. Summary of data for the two-, three-, and four-qubit cases involved in the reconstruction of the density state operators on
ibm_brisbane.

Two Qubit Cases Three Qubit Cases Four Qubit Cases

qubits 1− FCS 1− FZECS qubits 1− FCS 1− FZECS Sab qubits 1− FCS 1− FZECS Sab

(13, 12) 0.144 0.021 (13, 12, 17) 0.168 0.02 0.016 (13, 12, 11, 10) 0.401 0.132 0.099
(11, 10) 0.303 0.08 (9, 8, 16) 0.122 0.014 0.017 (11, 10, 9, 8) 0.355 0.09 0.107
(9, 8) 0.089 0.004 (5, 4, 15) 0.121 0.026 0.01 (9, 8, 7, 6) 0.211 0.041 0.086
(7, 6) 0.143 0.025 (19, 20, 33) 0.397 0.104 0.031 (7, 6, 5, 4) 0.243 0.069 0.08
(5, 4) 0.128 0.024 (21, 22, 15) 0.128 0.017 0.01 (5, 4, 3, 2) 0.308 0.078 0.063
(3, 2) 0.229 0.043 (23, 24, 34) 0.278 0.077 0.02 (3, 2, 1, 0) 0.339 0.058 0.102
(1, 0) 0.131 0.005 (25, 26, 16) 0.222 0.074 0.008 (1, 0, 14, 18) 0.271 0.043 0.074
(14, 18) 0.154 0.02 (27, 28, 35) 0.247 0.015 0.014 (14, 18, 19, 20) 0.472 0.143 0.117
(19, 20) 0.375 0.087 (29, 30, 17) 0.2 0.014 0.015 (19, 20, 21, 22) 0.442 0.126 0.145
(21, 22) 0.126 0.017 (50, 49, 55) 0.164 0.016 0.017 (21, 22, 23, 24) 0.353 0.097 0.072
(23, 24) 0.258 0.075 (48, 47, 35) 0.119 0.005 0.011 (23, 24, 25, 26) 0.42 0.193 0.115
(25, 26) 0.208 0.071 (46, 45, 54) 0.194 0.007 0.006 (25, 26, 27, 28) 0.373 0.107 0.058
(27, 28) 0.239 0.011 (44, 43, 34) 0.264 0.053 0.019 (27, 28, 29, 30) 0.376 0.035 0.081
(29, 30) 0.162 0.009 (42, 41, 53) 0.179 0.035 0.013 (29, 30, 31, 32) 0.292 0.069 0.101
(31, 32) 0.149 0.038 (40, 39, 33) 0.179 0.007 0.015 (31, 32, 36, 51) 0.254 0.089 0.049
(36, 51) 0.136 0.041 (57, 58, 71) 0.149 0.019 0.015 (36, 51, 50, 49) 0.288 0.07 0.098
(50, 49) 0.153 0.014 (59, 60, 53) 0.245 0.014 0.01 (50, 49, 48, 47) 0.239 0.028 0.088
(48, 47) 0.105 0.004 (61, 62, 72) 0.226 0.014 0.016 (48, 47, 46, 45) 0.265 0.033 0.081
(46, 45) 0.176 0.003 (63, 64, 54) 0.151 0.004 0.015 (46, 45, 44, 43) 0.356 0.084 0.074
(44, 43) 0.232 0.052 (65, 66, 73) 0.131 0.022 0.022 (44, 43, 42, 41) 0.342 0.113 0.151
(42, 41) 0.14 0.035 (67, 68, 55) 0.478 0.171 0.031 (42, 41, 40, 39) 0.327 0.05 0.075
(40, 39) 0.183 0.006 (88, 87, 93) 0.266 0.053 0.03 (40, 39, 38, 37) 0.288 0.03 0.08
(38, 37) 0.153 0.01 (86, 85, 73) 0.234 0.019 0.011 (38, 37, 52, 56) 0.26 0.044 0.066
(52, 56) 0.126 0.028 (84, 83, 92) 0.145 0.02 0.029 (52, 56, 57, 58) 0.254 0.057 0.074
(57, 58) 0.13 0.018 (82, 81, 72) 0.188 0.016 0.007 (57, 58, 59, 60) 0.324 0.061 0.078
(59, 60) 0.21 0.009 (80, 79, 91) 0.152 0.026 0.016 (59, 60, 61, 62) 0.339 0.052 0.171
(61, 62) 0.208 0.012 (78, 77, 71) 0.271 0.02 0.012 (61, 62, 63, 64) 0.293 0.026 0.09

(Continued.)
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Table 2. (Continued.)

Two Qubit Cases Three Qubit Cases Four Qubit Cases

qubits 1− FCS 1− FZECS qubits 1− FCS 1− FZECS Sab qubits 1− FCS 1− FZECS Sab

(63, 64) 0.127 0.001 (95, 96, 109) 0.173 0.02 0.005 (63, 64, 65, 66) 0.243 0.039 0.047
(65, 66) 0.101 0.02 (97, 98, 91) 0.142 0.016 0.007 (65, 66, 67, 68) 0.517 0.19 0.078
(67, 68) 0.475 0.162 (99, 100, 110) 0.25 0.023 0.015 (67, 68, 69, 70) 0.603 0.222 0.134
(69, 70) 0.192 0.013 (101, 102, 92) 0.312 0.046 0.014 (69, 70, 74, 89) 0.374 0.061 0.105
(74, 89) 0.21 0.028 (103, 104, 111) 0.236 0.11 0.017 (74, 89, 88, 87) 0.383 0.102 0.05
(88, 87) 0.264 0.053 (105, 106, 93) 0.17 0.015 0.005 (88, 87, 86, 85) 0.43 0.095 0.099
(86, 85) 0.194 0.019 (123, 122, 111) 0.208 0.024 0.017 (86, 85, 84, 83) 0.299 0.045 0.08
(84, 83) 0.154 0.012 (119, 118, 110) 0.436 0.094 0.046 (84, 83, 82, 81) 0.256 0.041 0.075
(82, 81) 0.152 0.015 (115, 114, 109) 0.369 0.071 0.022 (82, 81, 80, 79) 0.256 0.042 0.068
(80, 79) 0.127 0.018 (80, 79, 78, 77) 0.36 0.061 0.101
(78, 77) 0.256 0.019 (78, 77, 76, 75) 0.399 0.138 0.121
(76, 75) 0.213 0.08 (76, 75, 90, 94) 0.348 0.115 0.066
(90, 94) 0.14 0.016 (90, 94, 95, 96) 0.274 0.054 0.103
(95, 96) 0.148 0.018 (95, 96, 97, 98) 0.205 0.041 0.051
(97, 98) 0.112 0.01 (97, 98, 99, 100) 0.332 0.053 0.123
(99, 100) 0.242 0.02 (99, 100, 101, 102) 0.433 0.104 0.109
(101, 102) 0.285 0.04 (101, 102, 103, 104) 0.428 0.141 0.096
(103, 104) 0.21 0.098 (103, 104, 105, 106) 0.321 0.142 0.209
(105, 106) 0.145 0.01 (105, 106, 107, 108) 0.28 0.038 0.055
(107, 108) 0.18 0.018 (107, 108, 112, 126) 0.284 0.065 0.129
(112, 126) 0.132 0.008 (112, 126, 125, 124) 0.406 0.072 0.056
(125, 124) 0.254 0.029 (125, 124, 123, 122) 0.383 0.079 0.086
(123, 122) 0.181 0.021 (123, 122, 121, 120) 0.362 0.077 0.175
(121, 120) 0.257 0.016 (121, 120, 119, 118) 0.568 0.171 0.196
(119, 118) 0.426 0.071 (119, 118, 117, 116) 0.515 0.159 0.105
(117, 116) 0.132 0.018 (117, 116, 115, 114) 0.455 0.119 0.1
(115, 114) 0.356 0.064
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