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Why �great�? σ = JJJ �XXX XXX = RRR � JJJ XXX = RRRSEA � JJJ Far non-eq SEA geom Concl SEA QT

What makes some physical principles �great�?

Mechanics

Mass

Energy

Momentum

Charge

Angular momentum

Number of constituents
considered as indivisible
in the model

Other quantum
invariants

are:
properties of all states

exchanged via interactions

conserved in all processes

Thermodynamics

Second Law:
among all states with identical values of all conserved
properties, one and only one is stable equilibrium

Entropy is:

a property of all states

exchanged via interactions

conserved in reversible processes

generated in irreversible processes

maximal at stable equilibrium
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Why �great�? σ = JJJ �XXX XXX = RRR � JJJ XXX = RRRSEA � JJJ Far non-eq SEA geom Concl SEA QT

Any �great� principles from NET?

Usual NET assumptions for near-equilibrium models:

Continuum (�elds)

Local (or nonlocal)
equilibrium relations

Heat&Di�usion �uxes
within the continuum

e = u(s, ci ) +
speci�c kinetic and
potential energies + nonlocal energies

such as 1
2∇ci · ∇cj

µitot = µi +
partial molar kinetic
and potential energies +

nonlocal
terms a�nity

d(ρu) = T d(ρs)+
∑

i
µtot,i dci Yk = − 1

T

∑
i
νikµi

JJJE = T JJJS +
∑

i
µtot,i JJJni JJJZ =

∑
i
ziJJJni

charge
�ux

Combined with the balance equations (for energy, momentum, charge, species, etc.)

they yield the usual force��ux expression for the entropy production density:

σ =
∑

f
JJJ f �XXX f

JJJ={ rk ; JJJE , JJJni , JJJZ ; JJJmvvv }

�={ × ; ··· , ··· , ··· ; ::: }

XXX ={Yk ;∇∇∇
1

T
,∇∇∇µn − µi

T
,−∇∇∇ϕel

T
;− 1

T
∇∇∇vvv }

i.e.:

σ =
∑

k
rkYk + JJJE · ∇

1

T
+
∑n−1

i=1
JJJni · ∇

µn − µi
T

− JJJZ · ∇
ϕel
T
− 1

T
JJJmvvv ::: ∇vvv
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Why �great�? σ = JJJ �XXX XXX = RRR � JJJ XXX = RRRSEA � JJJ Far non-eq SEA geom Concl SEA QT

σ =
∑

f JJJ f �XXX f is an extrinsic relation

Extrinsic because:

it follows from general balance equations
and local equilibrium assumptions only

it holds for all materials, independently of
their particular properties

For given JJJ f and XXX f , and To the temperature of the environment,

Toσ = To

∑
f
JJJ f �XXX f

represents the rate of exergy dissipation per unit volume when we drive:

a chemical reaction rate down a decreasing Gibbs free energy;

a heat �ux down a decreasing temperature;

a di�usion �ux down a decreasing chemical potential;

an electric current down a decreasing voltage;

a capillary �ow down a decreasing pressure;

a momentum �ux down a decreasing strain;
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Why �great�? σ = JJJ �XXX XXX = RRR � JJJ XXX = RRRSEA � JJJ Far non-eq SEA geom Concl SEA QT

Material resistance to �ux: intrinsic relation for σ

O� equilibrium, local material properties depend on the local equilibrium potentials

Γ = {1/T ,−µ1/T , . . . ,−µn/T ,−ϕel/T}

and determine how strongly the material tries to restore equilibrium:

it resists to imposed �uxes JJJ

by building up forces XXX

The �ux→force constitutive relation
characterizes the material:

XXX = XXX (JJJ, Γ)

In this picture, σ is a function of JJJ:

σ =
∑

f
JJJ f �XXX f (JJJ, Γ) = σ(JJJ, Γ)

it resists to imposed forces XXX

by building up �uxes JJJ

The force→�ux constitutive relation
characterizes the material:

JJJ = JJJ(XXX , Γ)

In this picture, σ is a function of XXX :

σ =
∑

f
JJJ f (XXX , Γ)�XXX f = σ(XXX , Γ)

Compatibility
conditions:

σ(0, Γ) = 0 at equilibrium (where JJJeq = 0 and XXX eq = 0)

σ ≥ 0 o� equilibrium

Curie principle for isotropic conditions

Onsager reciprocity near equilibrium
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Near equilibrium: Pierre Curie's �great� principle

Pierre Curie (1894): the symmetry of the cause is preserved in its e�ects.
Therefore, in isotropic conditions, �uxes and forces of di�erent tensorial character
do not couple.

XXX Yk − 1

T
∇∇∇ · vvv ∇∇∇ 1

T
∇∇∇µn − µi

T
−∇∇∇ϕel

T
− 1

T
(∇∇∇vvv)sym

JJJ � × × ··· ··· ··· :::
rk × � �

Tr(JJJmvvv ) × � �
JJJE ··· � � �
JJJni ··· � � �
JJJZ ··· � � �

(JJJmvvv )
dev ::: �
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Why �great�? σ = JJJ �XXX XXX = RRR � JJJ XXX = RRRSEA � JJJ Far non-eq SEA geom Concl SEA QT

Near-eq linear regime: Onsager's �great� principle

Linearize the relations XXX = XXX (JJJ, Γ)
with respect to JJJ near equilibrium

XXX f (JJJ) = XXX f (0) +
∂XXX f

∂JJJg

∣∣∣∣
0

�JJJg + . . .

RRR0

fg ≡
∂XXX f

∂JJJg

∣∣∣∣
0

XXX f ≈ RRR0

fg (Γ)� JJJg

σ(JJJ) = JJJ f �XXX f (JJJ) ≈ JJJ f �RRR0

fg �JJJg

Second Law: RRR0

fg ≥ 0

Curie: RRR0

fg = 0 for XXX f and JJJg
of di�erent tensorial order.

Reciprocity∗: RRR0

fg = RRR0

gf

Flux picture

σ

J1J2

Force picture

σ

X1X2

RRR−1
0

= LLL
0
≥ 0

Linearize the relations JJJ = JJJ(XXX , Γ)
with respect to XXX near equilibrium

JJJ f (XXX ) = JJJ f (0)+
∂JJJ f
∂XXX g

∣∣∣∣
0

�XXX g + . . .

LLL0fg ≡
∂JJJ f
∂XXX g

∣∣∣∣
0

JJJ f ≈ LLL0fg (Γ)�XXX g

σ(XXX ) = JJJ f (XXX )�XXX f ≈ XXX f�LLL0fg�XXX g

Second Law: LLL0fg ≥ 0

Curie: LLL0fg = 0 for JJJ f and XXX g

of di�erent tensorial order.

Reciprocity∗: LLL0fg = LLL0gf

∗Lars Onsager (1931) proves reciprocity
based on additional assumptions (see slide 21):

(1) linear regression of deviations from equilibrium,
(2) Einstein-Boltzmann distribution of deviations,
(3) microscopic reversibility on the average.
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Why �great�? σ = JJJ �XXX XXX = RRR � JJJ XXX = RRRSEA � JJJ Far non-eq SEA geom Concl SEA QT

Near eq: Steepest entropy ascent implies reciprocity
Flux picture constitutive relation:

XXX = XXX (JJJ, Γ)

SEA principle: given JJJ and Γ there
is metric GGG

X
(JJJ, Γ) that makes the

direction of XXX be that of steepest
entropy ascent:

max
XXX

∣∣∣∣
JJJ,Γ

: JJJ�XXX −λX XXX �GGG
X
�XXX

(∂/∂XXX )JJJ,Γ = 0 ⇒ JJJ − 2λX GGG
X
�XXX = 0

RRR ≡ GGG
X

(JJJ, Γ)−1/2λX (JJJ, Γ)

XXX = RRR(JJJ, Γ)� JJJ

RRR(JJJ, Γ) is positive and symmetric
because GGG

X
is a metric.

Force picture constitutive relation:

JJJ = JJJ(XXX , Γ)

SEA principle: given XXX and Γ the-
re is metric GGG

J
(XXX , Γ) that ma-

kes the direction of JJJ be that of
steepest entropy ascent:

max
JJJ

∣∣∣∣
XXX ,Γ

: XXX � JJJ − λJ JJJ �GGG
J
� JJJ

(∂/∂JJJ)XXX,Γ = 0 ⇒ XXX − 2λJ GGGJ
� JJJ = 0

LLL ≡ GGG
J

(XXX, Γ)−1/2λJ (XXX, Γ)

JJJ = LLL(XXX , Γ)�XXX

LLL(XXX , Γ) is positive and symmetric
because GGG

J
is a metric.

Near eq.: RRR(JJJ, Γ)→ RRR
0
(Γ) ⇒ RRR−1

0
= LLL

0
⇐ Near eq.: LLL(XXX , Γ)→ LLL

0
(Γ)

Also: GGG
X

= LLL
0
makes λX = 1/2. Also: GGG

J
= RRR

0
makes λJ = 1/2.
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Onsager's variational principle, Ṡgen −Φdiss = max, is SEA

Near equilibrium, the SEA principle in the �ux picture, with λJ = 1/2 and GGG
J

= RRR
0

max
JJJ

∣∣∣∣
XXX ,Γ

: XXX � JJJ − 1

2
JJJ �RRR

0
� JJJ

is equivalent to Onsager's variational principle: the spatial pattern of �uxes JJJ(x) selected by
Nature maximizes Ṡgen−Φdiss subject to the instantaneous pattern of local-equilibrium en-
tropic potentials Γ(x) = {1/T (x),−µ1(x)/T (x), . . . ,−µn(x)/T (x),−ϕel(x)/T (x)} and
hence for given forces obeying XXX (x) =∇∇∇Γ(x) (i.e., no convection and no reaction),

max
JJJ(x)

∣∣∣∣
Γ(x),XXX (x)=∇∇∇Γ(x)

: Ṡgen − Φdiss

where: Ṡgen =
∫∫∫

XXX (x)� JJJ(x) dV Φdiss =
1

2

∫∫∫
JJJ(x)�RRR

0
(Γ(x)) · JJJ(x) dV

The Euler-Lagrange equations yield the linear laws

JJJ(x) = LLL
0
(Γ(x))�XXX (x) where LLL

0
(Γ(x)) = RRR

0
(Γ(x))−1

The convective nonlinearity of the conservation laws may lead to instabilities and multiple solutions (e.g., conduction vs convective
rolls, laminar vs turbulent �ow, phase inversion, change of hydrodynamic pattern). In such cases, the principle

Ṡgen = max
Now equivalent to Ṡgen − Φdiss = max,

since Φdiss = Ṡgen/2 when XXX = RRR
0
� JJJ

identi�es which hydrodynamic pattern is stable and hence actually selected.
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If: steady state, no convection, no reactions, linear regime, constant conductivities

Then: local MEP (SEA) implies min global EP
Glansdor�-Prigogine (1954) noted that assuming

stationary boundary conditions, dΓ/dt|Ω = 0

no convection and no reactions, so that XXX = ∇Γ

linear regime, JJJ = LLL�XXX , σ = XXX � LLL�XXX

constant Onsager conductivities, dLLL/dt = 0

Then:

ŝ = ŝ(û) with all û conserved

dû

dt
= −∇∇∇ · JJJ with JJJ = JJJ û

Γ =
∂ŝ

∂û
and

∂Γ

∂û
=

∂2ŝ

∂û∂û
≤ 0

dṠgen

dt
=

∫∫∫
dσ

dt
dV = 2

∫∫∫
JJJ � dXXX

dt
dV = 2

∫∫∫
dû

dt
� ∂2ŝ

∂û∂û
� dû

dt
dV ≤ 0

i.e., the free �uxes and forces adjust until the system reaches a stable stationary state
with minimum Ṡgen. For variable conductivities, dLLL/dt 6= 0, the theorem loses validity.

dṠgen

dt
=

∫∫∫ dσ

dt
dV =

∫∫∫ d

dt
XXX � LLL �XXX dV = 2

∫∫∫
JJJ �

dXXX

dt
dV +

�������∫∫∫
XXX �

dLLL

dt
�XXX dV

∫∫∫
V

JJJ �
dXXX

dt
dV =

∫∫∫
V

JJJ �
d∇Γ

dt
dV =

������∫∫
∂V

JJJ �
dΓ

dt
· nnn dA −

∫∫∫
V

dΓ

dt
�∇ · JJJ dV

−
∫∫∫ dΓ

dt
�∇ · JJJ dV =

∫∫∫ dΓ

dt
�

dû

dt
dV =

∫∫∫ dû

dt
�
∂Γ

∂û
�

dû

dt
dV =

∫∫∫ dû

dt
�

∂2 ŝ

∂û∂û
�

dû

dt
dV ≤ 0
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Ṡgen = max selects hydrodynamic pattern

Rayleigh-Benard 2D rolls in horizontal layer of �uid heated from below as a function of
Rayleigh number R (Woo, 2002). A slow decrease in R is allowed with time.

Ṡgen =
∫∫∫

σ dV

dṠ

dt
5A

d

dt
~JiDXi !<0, ~15!

whereJi5Ji
(2)52Ji

(1) andDXi5Xi
(2)2Xi

(1) . The inequality
reflects the expectation that the magnitude ofJi , and there-
fore DXi , would only decrease in time as the equilibrium is
approached.

Figure 2 summarizes the expected behavior of the overall
nonequilibrium thermodynamics represented by variational
principle ~3!. A RBC system of Fig. 1, initially set up with a
Rayleigh number above the threshold,R.Rc , at t50, is
allowed to relax toward equilibrium. At each timet, S is in a
quasistationary state withR5R(t). For any t, solutions to
the equation of motion~6! correspond to the set of extrema
of Ṡ2F. The maximum would be selected, which should
also be hydrodynamically stable to be physically realizable.
Equation ~14! implies that for a givenR, the overall heat
flux, or the Nusselt numberN, would be maximized. Fort
,tc @where R(tc)5Rc], convective rolls with a band of
wave numbers are stable@13,24#, and the roll with the maxi-
mumN would be realized. At the threshold, the rolls become
unstable, and the conduction becomes the only stable solu-
tion for R,Rc . When we restrict ourselves to the loci of
local maxima of Eq.~3!, or equivalently, make a projection
of the thick lines in Fig. 2 onto thet versusṠ plane~Fig. 3!,

the variational principle now takes the form of Eq.~2!. Equa-
tion ~15! dictates that the slope is negative therein.

V. DISCUSSIONS

It should be noted that the existence and stability of the
stationary solutions are determined not by the variational
principle, but via the full nonlinear dynamics of Eq.~7!. The
entropy production rate isnot a potential or Lyapunov func-
tion to the dynamics. Therefore, it is possible, and in fact has
been noted before@13#, that a solution might remain unstable
and thus physically inaccessible even though it has a larger
overall heat flux.

The plot of entropy production rate as a function of con-
trol parameter, such as Fig. 3, is a close analog of the equi-
librium counterpart, the free energy versus an intensive vari-
able. The threshold in RBC would then be an example of
nonequilibrium phase transition. Unlike the full landscape
shown in Fig. 2, it can be straightforwardly obtained for
cases where one can obtain solutions to the nonlinear hydro-
dynamic equation. Thus the entropy production rate is seen
to play the role of thermodynamic potentials for nonequilib-
rium stationary states.

Onsager’s variational principle, Eq.~3!, depends crucially
on the validity of the linear phenomenological equation of
motion, which justifiesa posteriori the definition of the dis-
sipation function~4!. It remains to be seen whether Eq.~2!,
which appears general, still holds for systems where the ba-
sic dissipative relation is intrinsically nonlinear, as is typical
in chemical reactions.

@1# B. Derrida, J. L. Lebowitz, and E. R. Speer, Phys. Rev. Lett.
87, 150601~2001!.

@2# B. Derrida, J. L. Lebowitz, and E. R. Speer, Phys. Rev. Lett.
89, 030601~2002!.

@3# G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett.74, 2694
~1995!.

@4# D. J. Evans and D. J. Searles, Phys. Rev. E50, 1645~1994!.
@5# C. Jarzynski, Phys. Rev. Lett.78, 2690~1997!.

FIG. 2. A schematic rendering of the evolution of entropy pro-
duction landscape expected for Fig. 1. A RBC system initially with
R.Rc at t50 evolves toward the equilibrium whereR50 at t
5`. At each t, the systemS is in quasistationary states for the
given R(t). TheJi axis represents the space of macroscopic trajec-

tories satisfying the conservation laws. The dotted lines are theṠ
2F profiles at eacht. The thick solid lines are the loci of trajecto-

ries, given by Eq.~6!, maximizingṠ2F. The convective roll state
is replaced by conduction at the instability threshold whereR(t)
5Rc .

FIG. 3. A projection of the maximal path in Fig. 2 onto thet-Ṡ
plane. They axis shown is the the entropy production rate normal-
ized by the pure conduction value, equal to the Nusselt numberN.
The solid line forR.Rc51708 is from Ref.@24# for the rolls with
Prandtl numberP57.0 and wave numbera53.117. The solid and
dashed lines atN51 represent the stable and unstable branches of
the conduction mode.

H.-J. WOO PHYSICAL REVIEW E 66, 066104 ~2002!

066104-4

Woo, Phys. Rev. E, Vol. 66, 066104 (2002).
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FIGURE 8. The dependence of u and b for the oscillatory instability in the case P = 0.71 
and a = 2.0. The lower and the upper curves in the case of the real part of u (solid lines) 
and in the case of the imaginary part (dashed lines) refer to R = 5000 and R = 7000, 
respectively. 
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FIGURE 9. A qualitative sketch of oscillating convection rolls. The bending of the rolls 
propagates along the roll axis in time. 
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of the critical Rayleigh numbers R, for the onset of oscillations the strong de- 
pendence of R, on the wavenumber a has to be taken into account. A plot of the 
experimentally observed wavenumber dependence on the Rayleigh number for 
an air layer is given in the paper by Willis et al. (1972). When this is plotted on 
the stability diagram given in figure 6 a value of R, 1: 6000 is obtained which 
compares well with the value R, 21 5800 observed by Willis & Deardorff (1970). 

41  F L M  65 

dṠ
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Far non-eq: more detailed levels of description

The entropy of non-equilibrium states
is well de�ned, but depends on possi-
bly many more properties than just the
conserved properties.

S = S [γ] E = E [γ] Ni = Ni [γ] . . .

Where γ denotes the full set of state va-
riables or �elds in the chosen framework
of description (square brackets denote functionals).

Representation of nonequilibrium states on E vs S graph
(see Gyftopoulos, Beretta, Thermodynamics, Dover 2005.)
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Far non-eq: more detailed levels of description

The entropy of non-equilibrium states
is well de�ned, but depends on possi-
bly many more properties than just the
conserved properties.

S = S [γ] E = E [γ] Ni = Ni [γ] . . .

Where γ denotes the full set of state va-
riables or �elds in the chosen framework
of description (square brackets denote functionals).

Representation of nonequilibrium states on E vs S graph
(see Gyftopoulos, Beretta, Thermodynamics, Dover 2005.)
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Far non-eq: state variables in various frameworks
Frameworks State Variables γ

RGD
SSH

Rare�ed Gases Dynamics
Small-Scale Hydrodynamics

f (c, x, t)

RET
NET
CK

Rational Extended Thermodynamics
Non-Equilibrium Thermodynamics
Chemical Kinetics

{αj (x, t)}

MNET Mesoscopic NE Thermodynamics P({αj}, x, t)
SM
IT

Statistical Models
Information Theory

{pj (t)}

QSM
QT
MNEQT

Quantum Statistical Mechanics
Quantum Thermodynamics
Mesoscopic NE QT

ρ(t) density
operator
αj = TrρAj

Dynamical law
Either of the form:

∂γ

∂t
+∇ · Joγ = ΠγΠγΠγ

or of the form:

dγ

dt
+Rγ = ΠγΠγΠγ

In each framework, the production terms in the balance or evolution equations

for entropy and conserved properties Ci (such as E , Ni , etc) are scalar products

ΠS = (
δS

δγ

δS

δγ

δS

δγ
|ΠγΠγΠγ) ≥ 0 ΠCi = (

δCi
δγ

δCi
δγ

δCi
δγ
|ΠγΠγΠγ) = 0

where ΠγΠγΠγ is the tangent vector to the trajectory γ(t) in state space
More precisely, it is its component due to the dissipative part of the evolution equation.
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Steepest Entropy Ascent construction

Beretta, Phys.Rev.E, 90, 042113 (2014). See also Montefusco, Consonni, Beretta, Phys.Rev.E, 91, 042138 (2015)
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Multipliers βi de�ne the constrained variational derivative

De�ned by orthogonality(δS
δγ

∣∣
C

δS

δγ

∣∣
C

δS

δγ

∣∣
C

∣∣δCj
δγ

δCj
δγ

δCj
δγ

)
= 0 ∀j

i.e., by the system of equations∑
i

(δCi
δγ

δCi
δγ

δCi
δγ

∣∣δCj
δγ

δCj
δγ

δCj
δγ

)
βi =

(δS
δγ

δS

δγ

δS

δγ

∣∣δCj
δγ

δCj
δγ

δCj
δγ

)
∀j

Solving the system with Cramer's rule, the constrained variational
derivative may be written as a ratio of determinants

δS

δγ

∣∣
C

δS

δγ

∣∣
C

δS

δγ

∣∣
C

=

∣∣∣∣∣∣∣∣∣∣∣∣

δS
δγ
δS
δγ
δS
δγ

δC1
δγ
δC1
δγ
δC1
δγ

· · · δCn
δγ
δCn
δγ
δCn
δγ(

δS
δγ
δS
δγ
δS
δγ

∣∣δC1
δγ
δC1
δγ
δC1
δγ

) (
δC1
δγ
δC1
δγ
δC1
δγ

∣∣δC1
δγ
δC1
δγ
δC1
δγ

)
· · ·

(
δCn
δγ
δCn
δγ
δCn
δγ

∣∣δC1
δγ
δC1
δγ
δC1
δγ

)
...

...
. . .

...(
δS
δγ
δS
δγ
δS
δγ

∣∣δCn
δγ
δCn
δγ
δCn
δγ

) (
δC1
δγ
δC1
δγ
δC1
δγ

∣∣δCn
δγ
δCn
δγ
δCn
δγ

)
· · ·

(
δCn
δγ
δCn
δγ
δCn
δγ

∣∣δCn
δγ
δCn
δγ
δCn
δγ

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(
δC1
δγ
δC1
δγ
δC1
δγ

∣∣δC1
δγ
δC1
δγ
δC1
δγ

)
· · ·

(
δCn
δγ
δCn
δγ
δCn
δγ

∣∣δC1
δγ
δC1
δγ
δC1
δγ

)
...

. . .
...(

δC1
δγ
δC1
δγ
δC1
δγ

∣∣δCn
δγ
δCn
δγ
δCn
δγ

)
· · ·

(
δCn
δγ
δCn
δγ
δCn
δγ

∣∣δCn
δγ
δCn
δγ
δCn
δγ

)
∣∣∣∣∣∣∣∣

where C1, . . . ,Cn is a subset of the Ci 's such that the variational

derivatives
δC1
δγ
δC1
δγ
δC1
δγ

, . . . ,
δCn
δγ
δCn
δγ
δCn
δγ

are linearly independent. By virtue

of this choice, the determinant at the denominator is a positive
de�nite Gram determinant.

see, e.g., Beretta, Phys.Rev.E, 73, 026113 (2006) and Beretta, Rep.Math.Phys., 64, 139 (2009)
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Focus on the dissipative part of the dynamics

Framework State variables Rede�ne Dynamics

A IT {pj} γ = diag{√pj}
dγ

dt
= Πγ

B
RGD
SSH

f (c, x, t) γ =
√
f

∂γ

∂t
+ c · ∇xγ + a · ∇cγ = Πγ

C
RET
NET
CK

{αj (x, t)} γ = diag{αj}
∂γ

∂t
+∇x · Jγ = Πγ

D MNET P({αj}, x, t) γ =
√
P({αj}, x, t)

∂γ

∂t
+ v · ∇xγ = Πγ

E
QSM
QT
MNEQT

ρ ρ = γγ†
dγ

dt
+

i

~
H γ = Πγ

Πγ is the TANGENT VECTOR to the time-dependent trajectory of γ
in state space when time evolution is determined only by the dissipative
component, i.e., as viewed from an appropriate local material frame,
streaming frame, or Heisenberg picture.

Beretta, Phys. Rev. E, Vol. 90, 042113 (2014).
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Conclusions? �Great� principles from NET?

Strength of symmetry and geometric considerations

Curie principle

Steepest Entropy Ascent?

SEA guarantees thermodynamic consistency
Near equilibrium it entails Onsager's reciprocity
Far from equilibrium it generalizes Onsager's principle
A metric is positive and symmetric
Boltzmann equation can be cast as SEA
Fokker-Planck equation can be cast as SEA
Chemical kinetics (standard model) can be cast as SEA
Quantum thermodynamic models can be cast as SEA?

Deep connections with recent hot topics in mathematics:

Information geometry � Amari, Nagaoka, Methods of information geometry, Oxford UP, 1993.

Gradient �ows in metric spaces � Jordan, Kinderlehrer, Otto, SIAM J. Math. Anal. 29, 1 (1998).

Ambrosio, Gigli, Savaré, Gradient �ows in metric spaces and in the Wasserstein spaces, Birkhäuser, 2005. Mielke,

Renger, Peletier, JNET 41, 141 (2016).

L2-Wasserstein metric and evolution PDE's of di�usive type � Wasserstein distance in

probability space: Kantorovich-Rubinstein (1958) and Vasershtein (1969).
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SEA Quantum Thermodynamics

Given the density operator ρ, assume

ρ = γ†γ ρ ≥ 0 Trρ = 1 |TrρH| <∞

dγ

dt
− i

~
γH = ΠγΠγΠγ ⇒

dρ

dt
+

i

~
[H, ρ] = Π†γΠ†γΠ†γγ + γ†ΠγΠγΠγ

where H is the Hamiltonian operator,

S [γ] = −kTrρ ln ρ

E [ρ] = TrρH and U[ρ] = Trρ conserved

With respect to the scalar product

(A|B) = 1
2Tr(A

†B + B†A)

δS
δγ

= −2kγ(I + ln ρ), δE
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∆H = H − E I

∆S = −k ln ρ− S I

〈∆H∆H〉 = Trρ(∆H)2 = TrρH2 − E 2

〈∆S∆H〉 = Trρ∆S∆H = −kTrρH ln ρ−E S

Ṡ =
(
2γ∆Mρ

∣∣Ĝ−1γ ∣∣2γ∆Mρ

)

= 2γ∆S − 1

θH(ρ)
γ∆H = 2γ∆Mρ

where θH(ρ) =
〈∆H∆H〉
〈∆S∆H〉

nonequilibrium
dynamical
temperature

and Mρ = −k ln ρ− H

θH(ρ)

nonequilibrium
Massieu
operator

As stable equilibrium is approached

ρeq(E) ⇒ exp(−H/kT (E))

Tr exp(−H/kT (E))
:

TrρMρ ⇒ Seq(E)− E

T (E)

θH(ρ) ⇒ T (E) 2γ∆Mρ ⇒ 0

See Refs. [12�23] and [27�32] in Montefusco et al, Phys.Rev.E, 91, 042138 (2015) and Beretta, Rep.Math.Phys., 64, 139 (2009)
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∣∣∣δS
δγ

∣∣
C

)

δS

δγ

∣∣
C

= −2k

∣∣∣∣∣∣
γ ln ρ γ γH

Trρ ln ρ 1 TrρH

TrρH ln ρ TrρH TrρH2

∣∣∣∣∣∣∣∣∣∣ 1 TrρH

TrρH TrρH2

∣∣∣∣∆H = H − E I

∆S = −k ln ρ− S I

〈∆H∆H〉 = Trρ(∆H)2 = TrρH2 − E 2

〈∆S∆H〉 = Trρ∆S∆H = −kTrρH ln ρ−E S
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Onsager reciprocity from microscopic reversibility (standard proof)

At local stable equilibrium states,

ŝ = ŝeq(û, n̂)

In general, for non-equilibrium states,

ŝ = ŝ(û, n̂, α1, . . . , αm)

thus ŝeq(û, n̂) = ŝ
(
û, n̂, αeq(û, n̂)

)
Since ŝeq maximizes ŝ for given û and n̂,

∂ŝ/∂αj |eq = 0

ŝ(α) = ŝeq−gij (αi−αeq
i )(αj−αeq

j )+. . .

where gij = − 1
2∂

2ŝ/∂αi∂αj |eq ≥ 0.
De�ne the non-equilibrium forces driving
relaxation towards equilibrium

Xk = −∂(ŝeq − ŝ(α))

∂αk
= −gkj (αj −αeq

j )

Onsager (1931) assumes:
(1): linear regression towards equilibrium

α̇i = LikXk = −Mij (αj − αeq
j )

with Mij = Likgkj .
(2): Einstein-Boltzmann probability distribu-
tion

pB(α) = C exp[−(ŝeq − ŝ(α))/kB ]

with C such that
∫∞
−∞ pB(α) dα = 1.

(3): microscopic reversibility on the average

〈αi (t)αj (t + τ)〉pB = 〈αi (t + τ)αj (t)〉pB

that is 〈αi α̇j 〉pB = 〈α̇iαj 〉pB
Proof of reciprocal relations:
(2)+(3) imply: 〈αiXk〉pB = −kBδik
Then, (1)+(3) yield

kBLji = −〈αi α̇j 〉pB = −〈α̇iαj 〉pB = kBLij
G.P. Beretta (U. Brescia) Steepest entropy ascent Thermocon2016, 19Apr16 21 / 23



Why �great�? σ = JJJ �XXX XXX = RRR � JJJ XXX = RRRSEA � JJJ Far non-eq SEA geom Concl SEA QT

Steepest entropy ascent before GENERIC and quantum thermodynamics before today's quantum thermodynamics
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